
Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY2378 www.ijisrt.com 2605

Desing of VLSI Architecture for a Flexible

Test Bed of Artificial Neural Network for

Training and Testing on FPGA

Gurmeet Kaur Arora

Electrical and Electronics communication Engineering

Indian Institute of Technology, Kharagpur Dewas, India

Abstract:- General-Purpose Processors (GPP)-based

computers and Application Specific Integrated Circuits

(ASICs) are the typical computing platforms used to

develop the back propagation (BP) algorithm-based

Artificial Neural Network (ANN) systems, but these

computing devices constitute a hurdle for further

advanced improvements due to a high requirement for

sustaining a balance between performance and

flexibility. In this work, architecture for BP learning

algorithm using a 16-bit fixed- point representation is

designed for the classification of handwritten digits on a

field- programmable gate array (FPGA). The proposed

design is directly coded and optimized for resource

utilization and frequency in Verilog Hardware

Description Language (HDL) and synthesized on the

ML-605 Virtex 6 evaluation board. Experimental results

show 10 times speedup and reduced hardware utilization

when compared with existing implementations from

literature. The architecture is expandable to other

specifications in terms of number of layers, number of

neurons in each layer, and the activation function for

each neuron. The correctness of the proposed design is

authenticated by comparing parameters obtained

through Python code and Verilog.

Keywords:- General purpose processors (GPP),

application specific integrated circuits (ASICs), artificial

neural network (ANN), resource utilization, hardware

descriptive language (HDL), field programmable gate-

array (FPGA).

I. INTRODUCTION

The biological neural networks that make up the

human brain are deeply layered. These biological neural

networks are able to recognize complicated things by first

spotting basic traits and then combining them to pick

up on complex ones. Similarly, an artificial neural

network is trained to recognize different objects by first

identifying small patterns inside the object and then

integrating these simple patterns to identify complex

patterns.

ML algorithms are generally complex and resource

hungry thus implementation of Back propagation algorithm

on low power device such as FPGA is much

complicated than on GPUs or CPUs [18]. The data

processing required obtaining the requisite convergence
and accuracy by updating each weight makes BP

computationally complex and time-consuming. Thus,

almost all of the existing FPGA designs for ANN are

based on software-hardware co-design [17] [11] [14]

[19].

A tremendous amount of parallel computing

operations are required by ANN architectures. Due to

inherent parallelization and application-specific adaption,

FPGAs are a realistic and affordable choice that, when

compared to processor-based systems, helps in meeting the

stringent speed requirements in real-time, delivers
advanced AI services, and protects user privacy. Current

ANN models emphasize a static and offline training

mechanism in which the training data is pre-prepared.

Nonetheless, training ANNs dynamically and adapting

the models to the local environment is in great demand

[16].

The goal is to provide a flexible testbed on FPGA

where ML designers can specify their neural network

architecture and fully or partially utilize the available

hardware resources.

A multi-layered perceptron network of 784 x 32 x

10 is implemented and verified on the Xilinx Virtex 6

ML-605 evaluation board. Using 100 out of 60,000

training images and 100 out of 10,000 validation images

from the MNIST dataset, this network is trained and tested

in Python and Verilog using the stochastic gradient

descent BP algorithm, which has a learning rate of 0.125

and 10 epochs. The performance of Python and Verilog-

based implementations is compared in terms of both
accuracy and speed.

II. BACK PROPAGATION ALGORITHM

Back propagation is the process of calculating the

error that is difference between the predicted output and

the actual output and then propagating this error

backwards through the network in order to revise the

weights of the neurons. This is accomplished by

calculating the gradient of the error with regard to the
weights of each neuron using the chain rule of calculus.

eNi = yNi − dNi

where, eNi is the error signal, dNi is the desired
output and weight correction parameter can be

summarized as

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY2378 www.ijisrt.com 2606

III. METHODOLOGY

A. Finite State Machine for ANN

Each image undergoes six distinct phases during the computation process. The FSM used to execute back propagation in

Verilog is illustrated in the figure 1. Table I provides a summary of each state and its corresponding function.

Table 1: Summary of States and their functionality

B. Multiply-Accumulate Unit

A Multiply-Accumulate (MAC) unit is an
arithmetic logic unit (ALU) designed to perform two

mathematical operations on two sets of input values:

multiplication and addition. It multiplies two input values

and then adds the product to an accumulator register,
which contains the sum of all prior products computed by

the MAC unit.

Fig. 2: MAC Unit

 Fig. 1: FSM for ANN

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY2378 www.ijisrt.com 2607

C. Implementation of a Neuron

A neuron is composed of a dedicated weight memory
and a MAC unit, which is utilized based on the

operational state. The register is capable of being loaded

and its value depend on the operational state, where it is

either 1’b0 in State 0, latched in States 1 and 2, and either

latched or utilizing Weight2[counter] in State 3, 1’b0 in

State 4, and utilizing either Weight1[counter] or latched in

State 5. The value in State 3 and State 5 relies on the

layer in which particular neuron belongs.

The output flow is determined by the Conditional

Block, which either directs it to the LUT, the Weight

memory, or the error computation block as shown in

Figure 3. The Look up table (LUT) provides the

activation value and its derivative with O(1) complexity

when applied to the computed weighted sum using the

magnitude of the weighted sum to address it. As there are

no subsequent layers for the error signals to propagate back,
neurons in the first layer do not utilize the error

computation block. Multiplexers use the control signals

generated by the FSM as their select lines.

IV. OVERALL DESIGN

A 784 x 32 x 10 architecture was constructed using

the generate function in Verilog. The hidden layer has 32

neurons with a memory depth of 784, while the output

layer has 10 neurons with a memory depth of 32 each. Some
computations reuse MAC units while others require

additional resources to achieve a balance between

performance and resource utilization. The architecture

shown in figure 4 operates as follows:

Fig. 3: Architecture of a Neuron

 In the first state, the MAC units of the first layer are

active. The input pixels are multiplied by their

respective weights, and the resulting weighted sum is

passed through LUTs to derive H and Hbar

simultaneously for all 32 neurons.

 In the second state, H and Hbars are sequentially

multiplied by the output layer’s weights, commencing

from 0 to 31. The resulting weighted sum is then fed
through LUTs to derive O and Obar for each of the 10

output neurons. At the end of this state, the error2 in

the output layer is evaluated using 10 readily available

subtractors, and delta2 value is determined using 10

multipliers. These operations are combinatorial and do

not require any additional clock cycle.

 In the third state, output layer registers are serially loaded

with weights from weight2 memory. This enables the

learning rate, delta2, and H product to be added to the

weight, and the weight is then written back to

memory.

 To calculate the hidden layer error in state 4, multiply

delta2 and Weights in sequence. Error1 for the present

counter value is the sum of all of these partial products in

a single cycle. To accomplish this, an adder with 10

operands is required. At the end of this state, delta1

values for all 32 neurons are calculated using the

available error1 values.

 Within state 5, the input pixel is multiplied by the

shifted delta1 value, and in one cycle, 32 weights in

the hidden layer are updated. This step is similar to

step 3 for weight updation of output layer.

A. Clock Cycles

For an arbitrary network (M x N x K x L) Clock

cycles and number of computations can be generalized

as follows: If we consider a network with dimensions

784 x 32 x 10, the number of cycles required or forward

propagation is 816, which can be generalized as

M+N+K. For back propagation, the number of cycles

required is 848, which can be generalized as K +
(K+N) + (N+M). Therefore, the total number of cycles

required is M+N+K+ K+ (N+K)+(N+M).

B. Computational Units

In a 784 x 32 x 10 network, there are 42 MAC units,
10 subtractors, one adder with ten operands, 42

multipliers, and 42 LUTs. If we generalise for a network

with dimensions M x N x K x L, the required number of

MAC units, multipliers, and LUTs would be N+K+L,

the required number of subtractors would be L, and the

required number of adders with N operands would be

one, assuming N is greater than K and L.

The process of training and testing of MNIST dataset

begins by loading the weight memory and input memory

and initializing the values of parameters such as the number

of hidden layers, neurons in each layer, activation function

for each neuron, and number of epochs. The next step is

to load an image to be trained and perform forward

propagation. The weights are then updated, followed by an

error calculation. This process is repeated from loading the
image to be trained to weight updating 100 training

images.

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY2378 www.ijisrt.com 2608

Once the training process is complete, the next

step is to load an image to be tested and perform
forward propagation. The output is then compared with

the desired output, and if it matches, the value of

accuracy is incremented. This process is repeated from

loading the image to be tested to comparing the output with
the desired output for 100 testing images. The whole

process constitutes one epoch.

Fig. 4: ANN Architecture for 784 x 32 x 10 network for training and testing of MNIST Dataset

V . RESULTS AND COMPARATIVE ANALYSIS

Figure 5 shows the simulation results on Xilinx ISE 14.7 for the training and testing of the MNIST dataset for 100

images.

Fig. 5: Simulation results on Xilinx ISE 14.7 for training and testing of MNIST dataset for 100 images

Fig. 6: Accuracy Comparison on different Platforms.

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY2378 www.ijisrt.com 2609

The Timing report obtained after synthesizing the

design on Virtex 6 FPGA. The minimum clock period
required for our design is 1.774 ns, and based on this

value, we estimated the time required for one epoch to

be 0.4403ms for 100 images. In contrast, the software-

based implementation of the ANN requires approximately
4ms per epoch.

The results of the timing analysis in hardware

and software are tabulated in the table II, which shows

that the hardware implementation is roughly 10 times

faster than the software-based implementation. Speedup

achieved is 4/0.4403 = 9.08 or approximately 10.

The proposed hardware-based implementation is

approximately 10 times than the software-based

implementation while sacrificing some accuracy. However,

the results obtained show that the hardware-based

implementation is a viable solution for applications where

fast processing times are essential.

Table 2: Timing Comparison on different Platforms

Table III and table IV and presents a comparison between the proposed design and an existing implementation in terms of

speed, resource and other parameters. The results indicate that the proposed design outperforms the existing design in terms of

speed, flexibility, power and resource utilization.

Table 3: Comparison of Proposed design with High Level Synthesis based architectures from literature

Furthermore, it is worth noting that the proposed design is more efficient than the existing design, which only

implements the forward propagation part in hardware as shown in table V.

Table 4: Comparison of Proposed design with RTL designed based architectures from literature

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY2378 www.ijisrt.com 2610

Table 5: Comparison of Hardware requirements for forward propagation

It shows that roughly 0.2%, 2.76%, 20% of the

hardware of Non-pipelined, Fully-pipelined and 8-stage

pipelined, respectively is utilized in our design when

compared with architecture 784 x 12 x 10 of

r e f e r e n c e [19].

VI. CONCLUSION

This work presents a novel FPGA-based

implementation of an artificial neural network that offers

reconfigurability in terms of the number of layers,

neurons, and activation functions for each layer. The

implementation provides faster computation speed than

software-based implementation, but accuracy is com-

promised due to fixed-point computation. The design

also outperforms pre- existing hardware-based

implementations in terms of frequency and resource
utilization. This work represents a significant

contribution in demonstrating the potential of FPGA-

based implementation in accelerating neural network

prediction, and not just limiting the use of FPGA for

recognition phase.

Future work for this research includes incorporating

a linear feedback shift register (LFSR) to generate

random numbers for weight initialization, processing

real-time data using serial communication techniques,

and improving the accuracy of the hardware-based

implementation.

It should be noted that almost all the recent research

papers have focused on ANN inference with FPGAs,

training an ANN with FPGAs has not been well exploited

by the community. This is likely due to the complexity

of designing an FPGA system that can effectively

pipeline the processes . The flexibility of FPGAs in terms

of integrated circuit reconfiguration provides

opportunities for implementing a wide range of
operations and instructions.

Future research in this area can explore more complex

hardware architectures and improved number

representations to enhance the accuracy of hardware- based
implementations.

REFERENCES

[1.] Nuzula Afianah, Agfianto Eko Putra, and Andi

Dharmawan. High-level synthesize of

backpropagation artificial neural network

algorithm on the fpga. In 2019 5th International

conference on science and technology (ICST),

volume 1, pages 1–5. IEEE, 2019.

[2.] Ramón J Aliaga, Rafael Gadea, Ricardo J

Colom, José M Monzó, Christoph W Lerche,

and Jorge D Mart´ınez. System-on-chip

implementa- tion of neural network training on
fpga. International Journal On Advances in

Systems and Measurements Volume 2, Number

1, 2009, 2009.

[3.] Song Bo, Kensuke Kawakami, Koji Nakano, and

Yasuaki Ito. An rsa en- cryption hardware

algorithm using a single dsp block and a single

block ram on the fpga. International Journal of

Networking and Computing, 1(2):277–289, 2011.

[4.] Mohammadreza Esmali Nojehdeh, Levent Aksoy,

and Mustafa Altun. Effi- cient hardware

implementation of artificial neural networks using

approxi- mate multiply-accumulate blocks. In 2020
IEEE Computer Society Annual Symposium on

VLSI (ISVLSI), pages 96–101, 2020.

[5.] Simon S. Haykin. Neural networks and learning

machines. Pearson Edu- cation, Upper Saddle

River, NJ, third edition, 2009.

[6.] Albert Knebel and Dorin Patru. Educational neural

network development and simulation platform. In

2020 St. Lawrence Section Meeting, 2020.

[7.] S.Y. Kung and J.N. Hwang. Digital vlsi

architectures for neural networks. In IEEE

International Symposium on Circuits and Systems,,
pages 445–448 vol.1, 1989.

[8.] Shivani Kuninti and S Rooban. Backpropagation

algorithm and its hard- ware implementations: A

review. In Journal of Physics: Conference Series,

volume 1804, page 012169. IOP Publishing,

2021.

[9.] Yihua Liao. Neural networks in hardware: A

survey. Department of Com- puter Science,

University of California, 2001.

[10.] Sainath Shravan Lingala, Swanand Bedekar,

Piyush Tyagi, Purba Saha, and Priti Shahane.

Fpga based implementation of neural network. In
2022 International Conference on Advances in

Computing, Communication and Applied

Informatics (ACCAI), pages 1–5. IEEE, 2022.

http://www.ijisrt.com/

Volume 8, Issue 5, May 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23MAY2378 www.ijisrt.com 2611

[11.] Harsh Mittal, Abhishek Sharma, and Thinagaran

Perumal. Fpga imple- mentation of handwritten
number recognition using artificial neural net-

work. In 2019 IEEE 8th Global Conference on

Consumer Electronics (GCCE), pages 1010–

1011. IEEE, 2019.

[12.] Esraa Z. Mohammed and Haitham Kareem Ali.

Hardware implementation of artificial neural network

using field programmable gate array. Interna- tional

Journal of Computer Theory and Engineering,

pages 780–783, 2013.

[13.] Syahrulanuar Ngah, Rohani Abu Bakar, Abdullah

Embong, and Saifudin Razali. Two-steps

implementation of sigmoid function for artificial
neural network in field programmable gate array.

ARPN journal of engineering and applied

sciences, 11(7):4882–4888, 2016.

[14.] R Pramodhini, Sunil S. Harakannanavar, CN

Akshay, N Rakshith, Ritwik Shrivastava, and

Akchhansh Gupta. Robust handwritten digit

recogni- tion system using hybrid artificial

neural network on fpga. In 2022 IEEE 2nd

Mysore Sub Section International Conference

(MysuruCon), pages 1–5, 2022.

[15.] L Ranganath, D Jay Kumar, and P Siva
Nagendra Reddy. Design of mac unit in artificial

neural network architecture using verilog hdl. In

2016 In- ternational Conference on Signal

Processing, Communication, Power and

Embedded System (SCOPES), pages 607–612.

IEEE, 2016.

[16.] Yudong Tao, Rui Ma, Mei-Ling Shyu, and

Shu-Ching Chen. Chal- lenges in energy-efficient

deep neural network training with fpga. In 2020

IEEE/CVF Conference on Computer Vision and

Pattern Recogni- tion Workshops (CVPRW),

pages 1602–1611, 2020.
[17.] Huynh Viet Thang. Design of artificial neural

network architecture for handwritten digit

recognition on fpga. Tp ch́ı Khoa hc và Công

ngh-i hc à Nng, 2016.

[18.] Huan Minh Vo. Implementing the on-chip back

propagation learning algo- rithm on fpga

architecture. In 2017 International Conference on

System Science and Engineering (ICSSE), pages

538–541, 2017.

[19.] Isaac Westby, Xiaokun Yang, Tao Liu, and Hailu

Xu. Fpga acceleration on a multi-layer perceptron
neural network for digit recognition. The Journal

of Supercomputing, 77(12):14356–14373, 2021.

.

http://www.ijisrt.com/

