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Abstract:- General-Purpose Processors (GPP)-based 

computers and Application Specific Integrated Circuits 

(ASICs) are the typical computing platforms used to 

develop the back propagation (BP) algorithm-based 

Artificial Neural Network (ANN) systems, but these 

computing devices constitute a hurdle for further 

advanced improvements due to a high requirement for 

sustaining a balance between performance and 

flexibility. In this work, architecture for BP learning 

algorithm using a 16-bit fixed- point representation is 

designed for the classification of handwritten digits on a 

field- programmable gate array (FPGA). The proposed 

design is directly coded and optimized for resource 

utilization and frequency in Verilog Hardware 

Description Language (HDL) and synthesized on the 

ML-605 Virtex 6 evaluation board. Experimental results 

show 10 times speedup and reduced hardware utilization 

when compared with existing implementations from 

literature. The architecture is expandable to other 

specifications in terms of number of layers, number of 

neurons in each layer, and the activation function for 

each neuron. The correctness of the proposed design is 

authenticated by comparing parameters obtained 

through Python code and Verilog. 
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I. INTRODUCTION 
 

The biological neural networks that make up the 

human brain are deeply layered.  These biological neural 

networks are able to recognize complicated things by first 

spotting basic traits and then combining them to pick 

up on complex ones. Similarly, an artificial neural 

network is trained to recognize different objects by first 

identifying small patterns inside the object and then 

integrating these simple patterns to identify complex 

patterns. 
 

ML algorithms are generally complex and resource 

hungry thus implementation of Back propagation algorithm 

on low power device such as FPGA is much 

complicated than on GPUs or CPUs [18]. The data 

processing required obtaining the requisite convergence 
and accuracy by updating each weight makes BP 

computationally complex and time-consuming. Thus, 

almost all of the existing FPGA designs for ANN are 

based on software-hardware co-design [17] [11] [14] 

[19]. 
 

A tremendous amount of parallel computing 

operations are required by ANN architectures. Due to 

inherent parallelization and application-specific adaption, 

FPGAs are a realistic and affordable choice that, when 

compared to processor-based systems, helps in meeting the 

stringent speed requirements in real-time, delivers 
advanced AI services, and protects user privacy. Current 

ANN models emphasize a static and offline training 

mechanism in which the training data is pre-prepared. 

Nonetheless, training ANNs dynamically and adapting 

the models to the local environment is in great demand 

[16].  
 

The goal is to provide a flexible testbed on FPGA 

where ML designers can specify their neural network 

architecture and fully or partially utilize the available 

hardware resources. 
 

A multi-layered perceptron network of 784 x 32 x 

10 is implemented and verified on the Xilinx Virtex 6 

ML-605 evaluation board. Using 100 out of 60,000 

training images and 100 out of 10,000 validation images 

from the MNIST dataset, this network is trained and tested 

in Python and Verilog using the stochastic gradient 

descent BP algorithm, which has a learning rate of 0.125 

and 10 epochs. The performance of Python and Verilog-

based implementations is compared in terms of both 
accuracy and speed. 

 

II. BACK PROPAGATION ALGORITHM 
 

Back propagation is the process of calculating the 

error that is difference between the predicted output and 

the actual output and then propagating this error 

backwards through the network in order to revise the 

weights of the neurons. This is accomplished by 

calculating the gradient of the error with regard to the 
weights of each neuron using the chain rule of calculus. 

 

eNi = yNi − dNi  


where, eNi is the error signal, dNi is the desired 
output and weight correction parameter can be 

summarized as  
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III. METHODOLOGY 
  

A. Finite State Machine for ANN 

Each image undergoes six distinct phases during the computation process. The FSM used to execute back propagation in 

Verilog is illustrated in the figure 1. Table I provides a summary of each state and its corresponding function. 

 

 

 

 

 

 

 

 
  

 

 

 

 
 

Table 1: Summary of States and their functionality 

 

 

B. Multiply-Accumulate Unit 

A Multiply-Accumulate (MAC) unit is an 
arithmetic logic unit (ALU) designed to perform two 

mathematical operations on two sets of input values: 

multiplication and addition. It multiplies two input values 

and then adds the product to an accumulator register, 
which contains the sum of all prior products computed by 

the MAC unit. 

  
Fig. 2: MAC Unit 

 

 

 

 
 

     Fig. 1:  FSM for ANN 
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C. Implementation of a Neuron 

A neuron is composed of a dedicated weight memory 
and a MAC unit, which is utilized based on the 

operational state. The register is capable of being loaded 

and its value  depend on the operational state, where it is 

either 1’b0 in State 0, latched in States 1 and 2, and either 

latched or utilizing Weight2[counter] in State 3, 1’b0 in 

State 4, and utilizing either Weight1[counter] or latched in 

State 5. The value in State 3 and State 5 relies on the 

layer in which particular neuron belongs. 
 

The output flow is determined by the Conditional 

Block, which either directs it to the LUT, the Weight 

memory, or the error computation block as shown in 

Figure 3. The Look up table (LUT) provides the 

activation value and its derivative with O(1) complexity 

when applied to the computed weighted sum using the 

magnitude of the weighted sum to address it. As there are 

no subsequent layers for the error signals to propagate back, 
neurons in the first layer do not utilize the error 

computation block.   Multiplexers use the control signals 

generated by the FSM as their select lines. 
 

IV. OVERALL DESIGN 
 

A 784 x 32 x 10 architecture was constructed using 

the generate function in Verilog. The hidden layer has 32 

neurons with a memory depth of 784, while the output 

layer has 10 neurons with a memory depth of 32 each. Some 
computations reuse MAC units while others require 

additional resources to achieve a balance between 

performance and resource utilization. The architecture 

shown in figure 4 operates as follows: 

 

Fig. 3: Architecture of a Neuron 
 

 In the first state, the MAC units of the first layer are 

active.  The input pixels are multiplied by their 

respective weights, and the resulting weighted sum is 

passed through LUTs to derive H and Hbar 

simultaneously for all 32 neurons. 

 In the second state, H and Hbars are sequentially 

multiplied by the output layer’s weights, commencing 

from 0 to 31. The resulting weighted sum is then fed 
through LUTs to derive O and Obar for each of the 10 

output neurons. At the end of this state, the error2 in 

the output layer is evaluated using 10 readily available 

subtractors, and delta2 value is determined using 10 

multipliers. These operations are combinatorial and do 

not require any additional clock cycle. 

 In the third state, output layer registers are serially loaded 

with weights from weight2 memory. This enables the 

learning rate, delta2, and H product to be added to the 

weight, and the weight is then written back to 

memory. 

 To calculate the hidden layer error in state 4, multiply 

delta2 and Weights in sequence. Error1 for the present 

counter value is the sum of all of these partial products in 

a single cycle. To accomplish this, an adder with 10 

operands is required. At the end of this state, delta1 

values for all 32 neurons are calculated using the 

available error1 values. 

 Within state 5, the input pixel is multiplied by the 

shifted delta1 value, and in one cycle, 32 weights in 

the hidden layer are updated. This step is similar to 

step 3 for weight updation of output layer. 

A. Clock Cycles 

For an arbitrary network (M x N x K x L) Clock 

cycles and number of computations can be generalized 

as follows: If we consider a network with dimensions 

784 x 32 x 10, the number of cycles required or forward 

propagation is 816, which can be generalized as 

M+N+K. For back propagation, the number of cycles 

required is 848, which can be generalized as K + 
(K+N) + (N+M). Therefore, the total number of cycles 

required is M+N+K+ K+ (N+K)+(N+M). 
 

B. Computational Units 

In a 784 x 32 x 10 network, there are 42 MAC units, 
10 subtractors, one adder with ten operands, 42 

multipliers, and 42 LUTs. If we generalise for a network 

with dimensions M x N x K x L, the required number of 

MAC units, multipliers, and LUTs would be N+K+L, 

the required number of subtractors would be L, and the 

required number of adders with N operands would be 

one, assuming N is greater than K and L. 
 

The process of training and testing of MNIST dataset 

begins by loading the weight memory and input memory 

and initializing the values of parameters such as the number 

of hidden layers, neurons in each layer, activation function 

for each neuron, and number of epochs. The next step is 

to load an image to be trained and perform forward 

propagation. The weights are then updated, followed by an 

error calculation. This process is repeated from loading the 
image to be trained to weight updating 100 training 

images. 
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Once the training process is complete, the next 

step is to load an image to be tested and perform 
forward propagation. The output is then compared with 

the desired output, and if it matches, the value of 

accuracy is incremented. This process is repeated from 

loading the image to be tested to comparing the output with 
the desired output for 100 testing images. The whole 

process constitutes one epoch. 

 

Fig. 4: ANN Architecture for 784 x 32 x 10 network for training and testing of MNIST Dataset  
 

V .  RESULTS AND COMPARATIVE ANALYSIS 
 

Figure 5 shows the simulation results on Xilinx ISE 14.7 for the training and testing of the MNIST dataset for 100 

images.  
 

 
Fig. 5: Simulation results on Xilinx ISE 14.7 for training and testing of MNIST dataset for 100 images 

 

 

Fig. 6: Accuracy Comparison on different Platforms. 
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The Timing report obtained after synthesizing the 

design on Virtex 6 FPGA. The minimum clock period 
required for our design is 1.774 ns, and based on this 

value, we estimated the time required for one epoch to 

be 0.4403ms for 100 images. In contrast, the software-

based implementation of the ANN requires approximately 
4ms per epoch.  

 

 

The results of the timing analysis in hardware 

and software are tabulated in the table II, which shows 

that the hardware implementation is roughly 10 times 

faster than the software-based implementation. Speedup 

achieved is 4/0.4403 = 9.08 or approximately 10. 
 

The proposed hardware-based implementation is 

approximately 10 times than the software-based 

implementation while sacrificing some accuracy.   However, 

the results obtained show that the hardware-based 

implementation is a viable solution for applications where 

fast processing times are essential. 
 

Table 2: Timing Comparison on different Platforms 

 

Table III and table IV and presents a comparison between the proposed design and an existing implementation in terms of 

speed, resource and other parameters. The results indicate that the proposed design outperforms the existing design in terms of 

speed, flexibility, power and resource utilization.  
 

Table 3: Comparison of Proposed design with High Level Synthesis based architectures from literature 

 
 

Furthermore, it is worth noting that the proposed design is more efficient than the existing design, which only 

implements the forward propagation part in hardware as shown in table V.  
 

Table 4: Comparison of Proposed design with RTL designed based architectures from literature 
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Table 5: Comparison of Hardware requirements for forward propagation 

 

It shows that roughly 0.2%, 2.76%, 20% of the 

hardware of Non-pipelined, Fully-pipelined and 8-stage 

pipelined, respectively is utilized in our design when 

compared with architecture 784 x 12 x 10 of 

r e f e r e n c e  [19]. 
 

VI. CONCLUSION 
 

This work presents a novel FPGA-based 

implementation of an artificial neural network that offers 

reconfigurability in terms of the number of layers, 

neurons, and activation functions for each layer. The 

implementation provides faster computation speed than 

software-based implementation, but accuracy is com- 

promised due to fixed-point computation. The design 

also outperforms pre- existing hardware-based 

implementations in terms of frequency and resource 
utilization.  This work represents a significant 

contribution in demonstrating the potential of FPGA-

based implementation in accelerating neural network 

prediction, and not just limiting the use of FPGA for 

recognition phase. 
 

Future work for this research includes incorporating 

a linear feedback shift register (LFSR) to generate 

random numbers for weight initialization, processing 

real-time data using serial communication techniques, 

and improving the accuracy of the hardware-based 

implementation. 
 

It should be noted that almost all the recent research 

papers have focused on ANN inference with FPGAs, 

training an ANN with FPGAs has not been well exploited 

by the community. This is likely due to the complexity 

of designing an FPGA system that can effectively 

pipeline the processes . The flexibility of FPGAs in terms 

of integrated circuit reconfiguration provides 

opportunities for implementing a wide range of 
operations and instructions. 

 

Future research in this area can explore more complex 

hardware architectures and improved number 

representations to enhance the accuracy of hardware- based 
implementations. 
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