ISSN No:-2456-2165

Probability of Misclassification Under Nelly Distribution Using Optimal Rule

Nnabude Chinelo Ijeoma¹ S. I. Onyeagu (Professor)² Dr. C. H. Nwankwo³ Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

Abstract:- Errors of misclassification and their probabilities are studied for classification problems associated with univariate Nelly distribution. The effect of applying the linear discriminant function (LDF) based on normality to Nelly populations are assessed by comparing probability (Optimum) based on the linear discriminant function (LDF) with those based on the likelihood ratio rule (LR) for the Nelly. Both theoretical and empirical results are presented.

Keywords:- Errors of Misclassification, Nelly Distribution, Linear Discriminant Function, Likelihood Ratio Rate, Error Rate.

I. INTRODUCTION

The linear discriminant function (LDF) when used to categorize an observation that belongs to one of two normal population, has numerous advantageous qualities in classification issues. The parent populations' multivariate normal distributions are assured in the majority of the study. In the univariate case (denoted by $N(\mu, \sigma^2)$), the classification problem has been studied by John [6] and Sedransk and Okamoto [10]. Numerous kinds of nonnormality have t heir effects studied. The linear discriminant function's resilience when the underlining distribution is a part of Johnson's system was investigated by Lachenbruch et. al (1975). Further exploring this issue, Ching'anda [4], Ching'anda and Subrohmaniam [5] developed distributions based on sizable samples for both conditional and unconditional probabilities of misclassification. Similar studies have been done for the inverse Gaussian distribution by Amoh and Kocherlakota [2] and Gamma distribution by Mahmoud and Moustafa [9].

In this paper, we will consider the probability of misclassification using optimal rule, when we have two classes and sampling from Nelly distributions. The probability of misclassification distributions is examined. The parameters X_1 and X_2 are known coming from Nelly distributions.

$$f_i(X) = \frac{(2\lambda_i)^{\alpha} X^{\alpha-1} e^{-2\lambda_i x}}{\Gamma(\alpha)} i = 1,2$$
(1)

- The Robustness of the Linear Discriminant Function will be Examined in two ways
- Supposing that in classifying an observation X from (1), the linear discriminant function (LDF) derived under the assumption of normality, how are the optimum (based on all parameters being known) probability of misclassification affected?
- The optimum probability of misclassification based on the likelihood ratio rule will be compared with those obtained from linear discriminant function.

II. THE CLASSIFICATION RULES

A classification rule or classifier is a process by which the elements of the population set are each expected to belong to one of the classes given a population whose members each belong to one of a number of different sets or classes. Every component of the population is assigned to the class which it actually belongs in a flawless categorization. If certain flaws are present in the classification, statistical analysis must be used to examine the classification. The general solution to the classification rule is to minimize the total probability of misclassification. (Anderson, 1958)

Suppose that $f_i(x)$ is the density function of X if it comes from the population

 Π_i (*i* = 1,2) and we assign X to Π_1 if X is in some region R_1 and to Π_2 if X is in some region R_2 .

We assume $R_1 \cap R_2 = \emptyset, R_1 \cup R_2 = R$

Let P_i (i = 1, 2) be the proportion (Bayes assumption) of population Π_1 . $P_1 + P_2 = 1$. The total probability of misclassification is

$$E = P_1 \int_{R_2} f_1(x) \, dx + P_2 \int_{R_1} f_2(x) \, dx$$

ISSN No:-2456-2165

$$E = P_1 \left[1 - \int_{R_1} f_1(x) \, dx + P_2 \int_{R_1} f_2(x) \, dx \right]$$
$$= P_1 - \left[P_1 \int_{R_1} f_1(x) + P_2 \int_{R_1} f_2(x) \, dx \right]$$
$$E = P_1 + \int_{R_1} [P_2 f_2(x) - P_1 f_1(x)] \, dx \qquad (2)$$

Where *E* is minimized (Neyman Pearson Lemma) if R_1 included the points *X* such that $[P_2f_2 - P_1f_1] < 0$ and excludes the points for which $[P_2f_2 - P_1f_1] > 0$. Thus, the classification rule is

$$R_{1}: \frac{f_{1}}{f_{2}} \ge \frac{P_{2}}{P_{1}}$$
$$R_{2}: \frac{f_{1}}{f_{2}} < \frac{P_{2}}{P_{1}}$$

In what follows, assume $P_1 = P_2 = \frac{1}{2}$, it is well known that if $P_1 = P_2$ and $f_i(x)$ is univariate normal; the classification rule given above is equivalent to Fisher's Linear Discriminant function. (Lachenbruch, 1975).

→ Linear Discriminant Function for the Univariate Normal Distribution (known $\mu_1 \neq \mu_2$, and the same Variance σ^2)

let the probability density function of *X* in π_i (*i* = 1, 2) be

$$f_i(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left[-\frac{1}{2}\left(\frac{X-\mu_i}{\sigma}\right)^2\right] - \infty < x < \infty, i = 1, 2$$

If θ is the mean of the observation X and

$$H_0: \theta = \mu_1 \text{ vs}$$
$$H_a: \theta \neq \mu_2$$

Then the likelihood when $\mu_1 < \mu_2$

$$L = \frac{f_1(x)}{f_2(x)} = exp\left[-\frac{1}{2}\left(\frac{X-\mu_1}{\sigma}\right)^2 + \frac{1}{2}\left(\frac{X-\mu_2}{\sigma}\right)^2\right]$$
$$L' = \frac{-1}{2}\left(\frac{X-\mu_1}{\sigma}\right)^2 + \frac{1}{2}\left(\frac{X-\mu_2}{\sigma}\right)^2$$
$$= \frac{-1}{2\sigma^2}[2X-(\mu_1+\mu_2)](\mu_2-\mu_1)$$
$$= \left[X-\frac{1}{2}(\mu_1+\mu_2)\right]\left(\frac{\mu_1-\mu_2}{\sigma}\right)$$
(3)

The above equation is the Anderson discriminant function, when the distributions in the populations are univariate normal with the same variance but different means. H_o is rejected if L < K, where K is a constant from equation 3.

The classification rule specifies as

Classify
$$X \in \pi_1$$
 if $X < \frac{1}{2}(\mu_1 + \mu_2)$ and
Classify $X \in \pi_2$ if $X \ge \frac{1}{2}(\mu_1 + \mu_2)$

Similarly, when $\mu_1 > \mu_2$ the classification rule becomes

Classify
$$X \in \pi_2$$
 if $X < \frac{1}{2}(\mu_1 + \mu_2)$ and
Classify $X \in \pi_1$ if $X \ge \frac{1}{2}(\mu_1 + \mu_2)$

> Derivation of Classification Rule for Nelly Distribution

We assume that the distributions of X in π_i is given by Nelly distribution. Then the classification rule for Nelly distribution is

$$f_i(X) = \frac{(2\lambda_i)^{\alpha} X^{\alpha-1} e^{-2\lambda_i x}}{\Gamma(\alpha)}$$

$$L = \frac{f_1(X)}{f_2(X)} = \frac{\frac{(2\lambda_1)^{\alpha} X^{\alpha-1} e^{-2\lambda_1 X}}{\Gamma(\alpha)}}{\frac{(2\lambda_2)^{\alpha} X^{\alpha-1} e^{-2\lambda_2 X}}{\Gamma(\alpha)}}$$
(4)

$$= \left(\frac{\lambda_1}{\lambda_2}\right)^{\alpha} e^{2(\lambda_2 - \lambda_1)x}$$
(5)

Since $ln \frac{f_1}{f_2} \le lnk$

$$2(\lambda_2 - \lambda_1)x \le \ln k - \propto \ln \left(\frac{\lambda_1}{\lambda_2}\right)$$
$$X \le \frac{1}{2(\lambda_2 - \lambda_1)} \left[\ln k - \propto \ln \left(\frac{\lambda_1}{\lambda_2}\right) \right]$$
$$\le \frac{\ln k}{2(\lambda_2 - \lambda_1)} - \frac{\alpha}{2(\lambda_2 - \lambda_1)} \ln \left(\frac{\lambda_1}{\lambda_2}\right)$$

The classification rule would be

$$R_1 = \{X ; x \ge B \text{ if } \mu_1 \ge \mu_2\}$$

Where *B* is = $\frac{\alpha}{2(\lambda_2 - \lambda_1)} In\left(\frac{\lambda_1}{\lambda_2}\right)$

The optimum probabilities of misclassification of Nelly distribution using Linear discriminant function (LDF) and Likelihood ratio (LR)

For LDF we have

$$E_{12} = P \{X < A \mid X \in \pi_1; \mu_1, \mu_2\}$$
 if $\mu_1 > \mu_2$ and $E_{21}(\mu_1, \mu_2)$ similarly defined.

The cumulative distribution function of Nelly distribution with parameters μ_1 and $\alpha \left(\mu_i = \frac{\alpha}{2\lambda}\right)$ is given by

$$F(x, \alpha, \mu) = \frac{\Upsilon(\alpha, \mu x)}{\Gamma(\alpha)} = P(\alpha, \mu x)$$
(6)

Where $\Upsilon(\propto, \mu x) = \sum_{n=0}^{\infty} \frac{(-1)^n (\mu x)^{\alpha+n}}{n! (\alpha+n)}$

Then using equation 1 we have

$$E_{12} = F(A: \propto, \mu_1), \mu_1 > \mu_2: A = \frac{(\mu_1 + \mu_2)}{2}$$

Therefore, the total optimum probability of misclassification using LDF is given as

IJISRT23MAY669

ISSN No:-2456-2165

$$E = \frac{(E_{12} + E_{21})}{2} \quad for P_1 = P_2 = 0.5 \tag{7}$$

➢ For Likelihood Ratio

$$E_{12}^* = P\{X < B \mid X \in \pi_1\} = F(B, \propto, \mu), \qquad if \ \mu_1 > \mu_2$$

Recall B = $\frac{\alpha}{2(\lambda_2 - \lambda_1)} In \left(\frac{\lambda_1}{\lambda_2}\right)$

Therefore, the total probability of misclassification using LR is given as

$$E^* = \frac{(E_{12}^* + E_{21}^*)}{2}$$
 for $P_1 = P_2 = 0.5$ (8)

Therefore, the probabilities of misclassification based on the linear discriminant function (LDF) and likelihood ratio (LR) rules for various combination of the parameter λ_1, λ_2 and \propto the values chosen are $\lambda_1 = 1.0$, $\lambda_2 = 2.0, 3.0, 4.0$ and $\alpha = 2.0, 3.0, 4.0, 5.0, \dots$, 15.0

III. RESULTS

Table 1 Comparison of the optimum probability of misclassification based on the LDF and LR when $\lambda_1=1$ and $\lambda_2=2$

Pa	aramet	ers	Linear D	iscriminant Functi	on (LDF)	Likelihood Ratio (LR)				
λ_1	λ_2	α	<i>E</i> ₁₂	E ₂₁	Ε	E_{12}^{*}	E_{21}^{*}	E^*		
1	2	2	0.1734	0.0549	0.1142	0.1398	0.0431	0.0914		
		3	0.4789	0.1078	0.2934	0.3674	0.0771	0.2223		
		4	0.1156	0.0075	0.0095	0.0830	0.0556	0.0693		
		5	0.0115	0.0087	0.0101	0.1708	0.1314	0.1511		
		6	0.0072	0.0052	0.0062	0.1981	0.1474	0.1727		
		7	0.0059	0.0055	0.0057	0.3880	0.3605	0.3743		
		8	0.0053	0.0037	0.0045	0.5117	0.3650	0.4382		
		9	0.0010	0.0007	0.0009	0.2141	0.1572	0.1856		
		10	0.0005	0.0006	0.0005	0.3322	0.3431	0.3376		
		11	0.0004	0.0003	0.0004	0.4437	0.3603	0.4020		
		12	0.00001	0.00004	0.00001	0.1039	0.0282	0.0661		
		13	0.00001	0.000002	0.000006	0.1171	0.0303	0.0737		
		14 0.000005 0.000001		0.000003	0.1210	0.0279	0.0745			
		15	0.0000003	0.0000006	0.0000001	0.1113	0.0212	0.0663		

Table 1 gives a comparison between the linear discriminant function of Nelly distribution and likelihood ratio of Nelly distribution when all the parameters are known; that is ($\lambda_1=1$, $\lambda_2=2$ and $\alpha=2$ to 15)

Table 2 Comparison of the	Optimum Probabilit	of Misclassification based on the LDF	F and LR when $\lambda_1 = 1$ and $\lambda_2 = 3$
---------------------------	--------------------	---------------------------------------	---

Pa	ramet	ers	Linear D	iscriminant Function	on (LDF)	Likelihood Ratio (LR)			
λ_1	λ_2	α	E ₁₂	E_{21}	Ε	E_{12}^{*}	E_{21}^{*}	E^*	
1	3	2	0.1443	0.0213	0.0828	0.0370	0.0047	0.0209	
		3	0.3823	0.0288	0.2055	0.0626	0.0032	0.0329	
		4	0.0093	0.0005	0.0049	0.2030	0.0047	0.1041	
		5	0.0029	0.0010	0.0019	0.0228	0.0084	0.0156	
		6 0.0022 0.0011		0.0017	0.0484	0.0256	0.0370		
		7	0.0018	0.0009	0.0014	0.0759	0.0412	0.0585	
		8	0.0009	0.0006	0.0007	0.1000	0.0699	0.0850	
		9	0.0008	0.0005	0.0007	0.1702	0.1134	0.1418	
		10	0.0007	0.0006	0.0007	0.3588	0.3036	0.3312	
		11	0.0004	0.0003	0.0004	0.3955	0.3245	0.3599	
		12	0.0003	0.0002	0.0003	0.5845	0.4462	0.5154	
		13	0.0002	0.0001	0.0002	0.6956	0.5181	0.6069	
		14	0.000001	0.000001	0.000001	0.9051	0.6947	0.7999	
		15	0.000001	0.0000006	0.000001	0.000004	0.000006	0.000003	

Table 2 gives a comparison between the linear discriminant function of Nelly distribution and likelihood ratio of Nelly distribution when all the parameters are known; that is ($\lambda_1=1$, $\lambda_2=3$ and $\alpha=2$ to 15)

Table 3 Cor	nparison	of the C)ptim	num	Prob	ability	y of	Misclassificatio	n based	on the	LDF	and	LR	when	$\lambda_1 = 1$	and	$\lambda_2 = 4$
											-						

parameters			Linear d	iscriminant functio	on (LDF)	Likelihood ratio (LR)			
λ_1	λ_2	α	E_{12}	E_{21}	Ε	E_{12}^{*}	E_{21}^{*}	E^*	
1	4	2	0.0161	0.0071	0.0116	0.0237	0.0105	0.0171	
		3	0.3360	0.0111	0.1736	0.0106	0.0002	0.0054	
		4	0.0034	0.0010	0.0022	0.0123	0.0039	0.0081	
		5	0.0053	0.0013	0.0033	0.0033 0.0262 0.0065		0.0164	
		6 0.0040 (0.0008	0.0024	0.0024 0.0326 0.0071		0.0199	
		7	0.0013	0.0003	0.0008	0.0260	0.0069	0.0165	
		8	0.0007	0.0002	0.0005	0.0383	0.0136	0.0259	
		9	0.0006	0.0002	0.0004	0.0711	0.0268	0.0489	
		10 0.0006 0.0004		0.0005	0.2196	0.1469	0.1833		
		11 0.0004		0.0001	0.0003	0.1660	0.0664	0.1162	
		12	0.0003	0.0002	0.0002	0.3967	0.2600	0.3283	
		13	0.0002	0.0001	0.0002	0.6532	0.5239	0.5886	
		14	14 0.000001 0.000006		0.000008	0.6103	0.4085	0.5094	
		15	0.0000002	0.0000005	0.0000001	0.0000003	0.000008	0.0000006	

Table 3 gives a comparison between the linear discriminant function of Nelly distribution and likelihood ratio of Nelly distribution when all the parameters are known; that is ($\lambda_1=1$, $\lambda_2=4$ and $\alpha=2$ to 15)

IV. CONCLUSION

Based on the result of the analysis of data, it can be concluded that the likelihood ratio of the Nelly distribution performs better than its linear discriminant function

REFERENCES

- [1]. Abramowitz, M. and Stegun, I. A. (1970) Editors, *Handbook of* Mathematical Functions, Dover, New York, .
- [2]. Amoh, R.K. and Kocherlakota, K. (1986). Errors of misclassification associated with the inverse Gaussian distribution. Communications in Statistics, theory and methods, 15(2), pp.589-612. doi:10.1080/03610928608829139
- [3]. Anderson, T. W. (1958). An introduction to multivariate statistical analysis. 1st edition. John Wiley and sons, inc., New York.
- [4]. Ching'anda E. F. and Subrahmaniam, K. (1976). *Misclassification errors and their distribution: Robustness*, M.Sc thesis, University of Manitoba
- [5]. Ching'anda E. F. and Subrahmaniam, K. (1979). *Robustness of the linear discriminant function to nonnormality:* Johnson's system, J. statist. Planning and inference 3, 69 – 77
- [6]. John, S. (1961). *Errors in discrimination*. The annals of mathematical statistics vol. 32, No 4, pp. 1125 1144. https://www.jstor.org/stable/2237911
- [7]. Lachenbruch, P. A., Sneeringer C. and Reve L. T. (1973). Robustness of the linear and Quadratic discriminant function to certain types of nonnormality, Commun. Statist. 1, 39 – 57 (1973)
- [8]. Lachenbruch, P. A. (1975). *Discriminant analysis*. 1st edition Hafner press, New York

- [9]. Mahmoud and Moustafa (1995). Estimation of a discriminant function from a mixture of two gamma distributions when sample size is small, *Mathl. Comput. Modelling* 18 (5), 87-95 (1993).
- [10]. Sedransk, N and Okamoto, M. (1971). Estimation of the probability of misclassification for a linear discriminant function in the univariate normal case. Annals of the institute of statistical mathematics 23, 419 - 43