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Abstract:- Statistical distributions can be used to 

describe a number of real-world occurrences. Numerous 

academics have thoroughly examined their theory and 

developed new distributions as a result of the usefulness 

of statistical distributions. There continues to be a strong 

drive in probability theory and statistics to develop 

probability distributions that are more adaptable and 

powerful. In this study, we introduce the Nelly 

distribution a brand-new probability distribution and 

develop suitable expressions for its statistical 

characteristics. 
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I. INTRODUCTION 

 

The description of phenomena in the real world is 

typically done using statistical distributions. The value of 
statistical distributions has prompted in-depth research into 

their theory and the development of new distributions. In the 

area of probability theory and statistics, there is still a lot of 

work being done to produce more useful and flexible 

probability distributions [5]. Being more effective and 

flexible when representing real-world data is the obvious 

rationale for generalizing a standard distribution. 

 

In an effort to increase the flexibility of probability 

distributions, many academics have combined different 

continuous distributions over the years, including [13],[6], 

[1], [4], [7], [8], and [2] more so, [12] have shown that 
distributions using the Bayesian approach are flexible, 

perform better, and have a wider applicability. We introduce 

the Nelly distribution, which was motivated by the need for 

constant extension and generalization to more complex 

situations, as well as current developments in developing 

novel distributions. 

 

II. METHODS 

 

A. Developing of Nelly Distribution 

The probability density function of Nelly distribution is developed using Bayesian approach and Exponential-Gamma 
distribution by Oguwale et. al (2019) as prior  

 

According to Oguwale et al. (2019) theorem, if  𝑋1 and  𝑋2  be a continuous independent random variables such that  

𝑋1 ~ 𝐸(𝑋, 𝜆)  and 𝑋2 ~ 𝐺(𝑋, ∝, 𝜆) then their probability density functions are given as  

 

𝑓(𝑋1) =  𝜆𝑒−𝜆𝑥                             (1) 

 

𝑓(𝑋2 ) =  
𝜆∝ 𝑋∝−1 𝑒−𝜆𝑥

Г(∝)
                   𝑋, 𝛼, 𝜆 > 0            (2) 

 

Therefore, the joint probability density function of Exponential-Gamma distribution is obtained as 𝑓(𝑋1 , 𝑋2 ) =
𝑓(𝑋1 )𝑓(𝑋2 )  where 𝑓(𝑋1 , 𝑋2 )  is the product of 𝑓(𝑋1 )  and 𝑓(𝑋2 ). then the pdf of Exponential-Gamma distribution is given as 

 

          𝑓(𝑋) =  
𝜆∝+1 𝑋∝−1 𝑒−2𝜆𝑥

Г(∝)
          𝑋, 𝛼, 𝜆  >   0           (3) 

 

Finding the integral of equ. (3) with respect to X we have 
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   ∫
𝜆∝+1 𝑋∝−1 𝑒−2𝜆𝑥

Г(∝)
 𝑑𝑥           (4)     

∞

0

 

 

Let  𝑢 = 2𝜆𝑥, 𝑋 =  
𝑢

2𝜆
  𝑎𝑛𝑑  𝑑𝑥 =  

𝑑𝑢

2𝜆
 

 
Substituting we have 

 

∫
𝜆∝+1  (

𝑢
2𝜆

)
∝−1

 𝑒−𝑢

Г(∝)
   

𝑑𝑢

2𝜆
                         

∞

0

 

 

=  
𝜆∝+1

(2𝜆)∝
              (5) 

 

Then the posterior which will be the new Nelly distribution will be 

 

(
𝜆∝+1 𝑋∝−1 𝑒−2𝜆𝑥

Г(∝)
 ) (

𝜆∝+1

(2𝜆)∝
)            ⁄  

 

(
𝜆∝+1 𝑋∝−1 𝑒−2𝜆𝑥

Г(∝)
 ) (

(2𝜆)∝

𝜆∝+1
) 

 

      𝑓(𝑋)  =  
(2𝜆)∝ 𝑋∝−1 𝑒−2𝜆𝑥  

Г(∝)
      (6) 

 

Testing Nelly distribution as a probability distribution 

 

      𝑓(𝑋)  =  ∫
(2𝜆)∝ 𝑋∝−1 𝑒−2𝜆𝑥

Г(∝)

∞

0

     𝑑𝑥 

 

Let  𝑢 = 2𝜆𝑥, 𝑋 =  
𝑢

2𝜆
  𝑎𝑛𝑑  𝑑𝑥 =  

𝑑𝑢

2𝜆
 

Substituting we have 
 

𝑓(𝑋) = ∫
(2𝜆)∝  (

𝑢
2𝜆

)
∝−1

 𝑒−𝑢

Г(∝)
   

𝑑𝑢

2𝜆
      (7)  

∞

0

 

 

𝑓(𝑋) =  
(2𝜆)∝

Г(∝)
∫ (

𝑢

2𝜆
)

∝−1

𝑒−𝑢   
𝑑𝑢

2𝜆
               

∞

0

 

 

𝑓(𝑋) =  
(2𝜆)∝

Г(∝)
∫

𝑢∝−1 𝑒−𝑢

(2𝜆)∝

∞

0

  𝑑𝑢           (8)        

 

𝑓(𝑋) =  
(2𝜆)∝

(2𝜆)∝
∫

𝑢∝−1 𝑒−𝑢

Г(∝)

∞

0

  𝑑𝑢         

 

Where  ∫
𝑢∝−1 𝑒−𝑢

Г(∝)

∞

0
  𝑑𝑢 = 1, we have  

 

𝑓(𝑋) =  1    
 

Which implies that Nelly distribution is a probability distribution 
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III. MOMENTS 

 

Theorem 1: if 𝑋 is a continuous random variable distributed as a Nelly distribution (𝑥, 𝛼, 𝜆) then the rth  non-central moment 

is given by 𝜇𝑟 =  
(2𝜆)∝

Г(∝)
 

1

(2𝜆)∝+𝑟  Г(∝ +𝑟) 

 

Proof:   

 

  𝜇𝑟 = ∫ 𝑋𝑟 𝑓(𝑋, ∝, 𝜆)  𝑑𝑥

∞

0

 

 

= ∫
𝑋𝑟(2𝜆)∝𝑋∝−1е−2𝜆𝑥

Г(∝)
  𝑑𝑥 

∞

0

 

 

= ∫
(2𝜆)∝𝑋𝑟+∝−1е−2𝜆𝑥

Г(∝)

∞

0

 𝑑𝑥        (9) 

 

Let 𝑢 = 2𝜆𝑥,    𝑋 =
𝑢

2𝜆
,       𝑑𝑥 =

𝑑𝑢

2𝜆
    

  

Substituting, we have  

 

=
(2𝜆)∝

Г(∝)
∫ (

𝑢

2𝜆
)

𝑟+∝−1

𝑒−𝑢

∞

0

𝑑𝑢

2𝜆
 

 

=
(2𝜆)∝

Г(∝)
∫

𝑢𝑟+∝−1  𝑒−𝑢

(2𝜆)𝑟+∝

∞

0

  𝑑𝑢 

 

=
(2𝜆)∝

(2𝜆)𝑟+∝
∫

𝑢𝑟+∝−1  𝑒−𝑢

Г(∝)
   𝑑𝑢

∞

0

 

 

= (
(2𝜆)∝

(2𝜆)𝑟+∝
) (

Г(∝+𝑟)

Г(∝)
)          (10) 

 

Therefore when r = 1, we have the mean of the probability distribution 

 

= (
(2𝜆)∝

Г(∝)
) (

Г(∝ +1)

(2𝜆)∝+1
) 

 

= (
(2𝜆)∝

Г(∝)
) (

∝ Г(∝)

(2𝜆)∝ . (2𝜆)
) 

 

Mean = 𝜇1 =
∝

2𝜆
          (11) 

Finding the second moment when r = 2 

 

= (
(2𝜆)∝

Г(∝)
) (

Г(∝ +2)

(2𝜆)∝+2
) 

 

= (
(2𝜆)∝

Г(∝)
) (

∝ (∝ +1)Г(∝)

(2𝜆)∝ . (2𝜆)2
) 

 

=
∝ (∝ +1)

4𝜆2
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Variance = 𝜇2 − (𝜇1)2 

 

=
∝(∝+1)

4𝜆2  - 
∝2

4𝜆2 

 

Therefore, the variance of Nelly distribution is  

 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∝

4𝜆2                  (12) 

 

Finding the third moment when r =3 

 

  𝜇3 = (
(2𝜆)∝

Г(∝)
) (

Г(∝ +3)

(2𝜆)∝+3
) 

 

= (
(2𝜆)∝

Г(∝)
) (

∝ (∝ +1)(∝ +2)Г(∝)

(2𝜆)∝ . (2𝜆)3
) 

 

𝜇3 =
∝(∝+1)(∝+2)

8𝜆3                       (13) 

 

Finding the fourth moment when r = 4 

 

𝜇4 = (
(2𝜆)∝

Г(∝)
) (

Г(∝ +4)

(2𝜆)∝+4
) 

 

= (
(2𝜆)∝

Г(∝)
) (

∝ (∝ +1)(∝ +2)(∝ +3)Г(∝)

(2𝜆)∝ . (2𝜆)4
) 

 

𝜇4 =
∝(∝+1)(∝+2)(∝+3)

16𝜆4          (14) 

 

Theorem: if X is a continuous random variable distributed as Nelly distribution. Then the moment generating function is 

defined as       (1 −
𝑡

2𝜆
)

−∝

 

 
Proof:  

 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) =  ∫ 𝑒𝑡𝑥  𝑓(𝑋, 𝜆, ∝)  𝑑𝑥      𝑖𝑓 𝑡 < 𝜆, 𝑥 > 0

∞

0

 

 

= ∫
𝑒𝑡𝑥(2𝜆)∝𝑋∝−1е−2𝜆𝑥

Г(∝)
  𝑑𝑥

∞

0

 

 

= ∫
(2𝜆)∝𝑋∝−1е−(2𝜆−𝑡)𝑥

Г(∝)
  𝑑𝑥

∞

0
       (15) 

 

Let 𝑢 = 𝑥(2𝜆 − 𝑡), 𝑋 =  
𝑢

2𝜆−𝑡
, 𝑑𝑥 =  

𝑑𝑢

2𝜆−𝑡
 

 

Substituting we have 

 

=
(2𝜆)∝

Г(∝)
∫ (

𝑢

2𝜆 − 𝑡
)

∝−1

𝑒−𝑢

∞

0

𝑑𝑢

2𝜆 − 𝑡
 

 

=
(2𝜆)∝

Г(∝)
∫

𝑢∝−1  𝑒−𝑢

(2𝜆 − 𝑡)∝

∞

0

  𝑑𝑢 
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=
(2𝜆)∝

(2𝜆 − 𝑡)∝
∫

𝑢∝−1  𝑒−𝑢

Г(∝)
   𝑑𝑢

∞

0

 

 

Where ∫
𝑢∝−1  𝑒−𝑢

Г(∝)
   𝑑𝑢

∞

0
  is a gamma function which sums to 1 

 

𝑀𝑥(𝑡) = (
2𝜆

2𝜆 − 𝑡
)

∝

 

 

= (
2𝜆 − 𝑡

2𝜆
)

−∝

 

 

= (1 −
𝑡

2𝜆
)

−∝

         (16) 

 

Theorem: if a random variable distributed as a Nelly distribution (𝑋, ∝, 𝜆 ) then the characteristic function 𝜑𝑥(𝑖𝑡) is defined 

as  (1 −
𝑖𝑡

2𝜆
)

−∝

  

 

Proof:   

 

𝜑𝑥(𝑖𝑡) = 𝐸(𝑒𝑖𝑡𝑥) = ∫ 𝑒𝑖𝑡𝑥  𝑓(𝑋, ∝, 𝜆)     𝑑𝑥

∞

0

 

 

= ∫
𝑒𝑖𝑡𝑥(2𝜆)∝𝑋∝−1е−2𝜆𝑥

Г(∝)
     𝑑𝑥

∞

0

 

 

= ∫
(2𝜆)∝𝑋∝−1е−(2𝜆−𝑖𝑡)𝑥

Г(∝)
  𝑑𝑥

∞

0
    (17) 

 

Let 𝑢 = 𝑥(2𝜆 − 𝑖𝑡), 𝑋 =  
𝑢

(2𝜆−𝑖𝑡)
, 𝑑𝑥 =  

𝑑𝑢

(2𝜆−𝑖𝑡)
 

 

Substituting we have 

 

=
(2𝜆)∝

Г(∝)
∫ (

𝑢

2𝜆 − 𝑡
)

∝−1

𝑒−𝑢

∞

0

𝑑𝑢

2𝜆 − 𝑡
 

 

=
(2𝜆)∝

Г(∝)
∫

𝑢∝−1  𝑒−𝑢

(2𝜆 − 𝑖𝑡)∝

∞

0

  𝑑𝑢 

 

=
(2𝜆)∝

(2𝜆 − 𝑖𝑡)∝
∫

𝑢∝−1  𝑒−𝑢

Г(∝)
   𝑑𝑢

∞

0

 

 

= (
2𝜆

2𝜆 − 𝑖𝑡
)

∝

 

 

= (
2𝜆 − 𝑖𝑡

2𝜆
)

−∝

 

 

  = (1 −
𝑖𝑡

2𝜆
)

−∝

                    (18) 

 

Theorem: if X is a continuous random variable from the Nelly distribution, the cumulative density function (cdf) is given as 

(1 −
𝑡

2𝜆
)

−∝
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Proof:  

 

𝐹(𝑥) = ∫
(2𝜆)∝𝑋∝−1е−2𝜆𝑥

Г(∝)
     𝑑𝑥

𝑥

0
           (19) 

 

Let 𝑢 = 2𝜆𝑥, 𝑋 =  
𝑢

2𝜆
, 𝑑𝑥 =  

𝑑𝑢

2𝜆
 

 

Substituting we have 

 

=
(2𝜆)∝

Г(∝)
∫ (

𝑢

2𝜆
)

∝−1

𝑒−𝑢

𝑥

0

𝑑𝑢

2𝜆
 

 

=
(2𝜆)∝

Г(∝)
∫

𝑢∝−1  𝑒−𝑢

(2𝜆)∝

𝑥

0

  𝑑𝑢 

 

= ∫  𝑢∝−1  𝑒−𝑢  𝑑𝑢
𝑥

0
         (20) 

 

Where (20) is an incomplete lower gamma function. Therefore, the cumulative density function of a Nelly distribution is 

given as 

 

𝐹(𝑥) =
𝛾(∝,𝑋)

Г(∝)
                        (21) 

 

Coefficient of variation (C.V): it is the standardized measure of dispersion of a probability distribution. It is given as  

 

C.V = 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛
      (22) 

 

Therefore, the coefficient of variation of  Nelly distribution is given as 

 

C.V = 
√

∝

4𝜆2

∝

2𝜆

 = 
1

√∝   
           (23) 

 

IV. CONCLUSION 

 

In the study of probability and statistics, a variety of 

distributions have been defined and shown to be used 

extensively. In this study, the first four moments, the 

moment generating function, the characteristics function, 

and the cumulative distribution function of a new 
distribution called the Nelly distribution are defined, 

investigated, and established. 
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