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Abstract:- Many fields of physics and technology use 

hyperbolic partial differential equations pde with initial 

conditions as models. Recently, significant effort has 

been invested in investigating these equations, and they 

have attracted the curiosity of many mathematicians. In 

this paper, the finite difference method is used to 

provide the solution to the one-dimensional hyperbolic 

problem. The wave equation with the first dimension in 

space and time is taken as the boundary condition. The 

numerical results obtained from the examples of the 

Finite Differences Method formulated are compared 

with an analytical solution showing good results. 
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I. INTRODUCTION 

 

Many physical events, it has been clear in recent years, 

may be represented using hyperbolic partial differential 

equations with a traditional boundary condition [1]. 

Investigations of thermoelasticity [2,3], plasma physics [4], 

chemical heterogeneity [5, 6], and other fields use this kind 
of equation. The invention, analysis, and application of 

numerical approaches to the solution of these problems is 

receiving increasing attention. Several researchers have 

investigated hyperbolic problems in one dimension with 

initial boundary conditions [1, 7, 8, 9, 10, 11]. There are 

different types of numerical methods with their respective 

advantages and disadvantages. The method of finite 

differences appears to be the most used numerical method 

for approximating solutions to finite differential equations. 

These methods are widely used to solve time-dependent 

partial differential equations numerically. Furthermore, the 

truncation of terms resulted in errors when we approached 
derivatives using finite differential methods. The remainder 

of this article is structured as follows. The related literature 

review is discussed in Section 2. Section 3 introduces the 

problem’s mathematical models. Section 4 discusses typical 

finite difference discretization of the wave equation. Section 

5 uses numerical examples to show the precision and 

reliability of this methodology. The conclusion of our study 
is given in Section 6.  

 

II. LITERATURE REVIEW 

 

In the late 1950s, a Chinese physicist called Feng Kang 

created the finite difference. He introduced the finite 

difference as a systematic numerical approach for solving 

partial differential equations used in dam building 

calculations. The creation of the finite difference is today 

seen as a watershed moment in computer science [12]. 

Several scholars have contributed to the development of the 

finite difference for solving the wave equation. Oliveira [13] 
recently utilized the fourth order finite difference to solve the 

acoustic wave equation on irregular grids. Maupin and 

Dmowska [14] used the finite difference time domain 

technique to simulate the propagation of seismic waves. 

Lamoureux et al. [15] applied the Galerkin techniques to 

solve acoustic, elastic, and viscoelastic wave models. Chua 

and Stoffab [16] investigated the non-homogeneous grid 

implicit spatial finite difference approach for solving the 

acoustic wave equation. Lines et al. [17] investigated the 

computational stability of finite difference wave equations. 

Saarelma [18] used graphics rendering to estimate room 
acoustics using the finite difference time domain algorithm. 

The finite difference was used by Antunes et al. [19] to 

calculate the acoustic wave problem using spatially adjusted 

time steps. Moczo et al. [20] tested the effectiveness of the 

finite difference and fe methods in terms of the p-wave to s-

wave velocity ratio. Dong et al. [21] solved a two-

dimensional wave equation using the finite difference and fe 

techniques. 
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III. MATHEMATICAL MODELS 

 
In this paper, we consider two typical model problems 

that involving a hyperbolic partial differential equation.  

 

 One-Way Wave Equation from First Order 

 

{

𝜗𝑡 + 𝛿𝜗𝑥 = 0,
𝜗(𝑥, 0) = 𝜁(𝑥),
𝜗(0, 𝑡) = 𝜙1(𝑡)    𝑖    𝛿 ≥ 0,
𝜗(1, 𝑡) = 𝜙2(𝑡)    𝑖𝑓    𝛿 ≤ 0.

 (1) 

 

 Second-Order Linear Wave Equation 

 

{
 

 
𝜗𝑡𝑡 − 𝛿

2𝜗𝑥𝑥 = 0,
𝜗(𝑥, 0) = 𝜁(𝑥),    𝜗𝑡(𝑥, 0) = 𝜐(𝑥),
𝜗(0, 𝑡) = 𝜙1(𝑡)    𝑖𝑓    𝛿 ≥ 0,
𝜗(1, 𝑡) = 𝜙2(𝑡)    𝑖𝑓    𝛿 ≤ 0.

 (2) 

 

Where 𝛿 is a positive constant and 𝜙1(𝑡), 𝜙2(𝑡), 𝜁(𝑥) 
and 𝜐(𝑥) are known functions. We assume that the functions 

𝜙1(𝑡), 𝜙2(𝑡), 𝜁(𝑥) and 𝜐(𝑥) satisfy the conditions in order 

that the solution of this equation exists and is unique. By 

observation, we can see that the exact solution of the 

problem (1) is:  

 

ϑ(x,t)=ϑ_0 (x-δt)     (3) 

 

We may conclude numerous things from formula (3), 

First, at any time, the solution is a copy of the original 

function that has been shifted to the right if 𝛿 is positive and 

to the left if 𝛿 is negative with a value |𝛿|𝑡0. Second, while 

problem (1) seems to make sense only if 𝜗 is differentiable, 

the solution equation (3) does not need 𝜗0 to be 

differentiable. 

     

On the other hand, the analytical solution of the 

problem (2) is given by D’Alembert’s formula [22] as 

follows: 
 

𝜗(𝑥, 𝑡) =
1

2
(𝜗0(𝑥 − 𝛿𝑡) + 𝜗0(𝑥 + 𝛿𝑡)) +

                        
1

2𝛿
∫
𝑥+𝛿𝑡

𝑥−𝛿𝑡
𝜐(𝑠)𝑑𝑠 (4) 

 

 Consequently, if 𝜗𝑡(𝑥, 0) = 0, the solution is:  

 

𝜗(𝑥, 𝑡) =
1

2
(𝜗(𝑥 − 𝛿𝑡, 0) + 𝜗(𝑥 + 𝛿𝑡, 0)). (5) 

 

IV. THE FINITE DIFFERENCE METHOD 

 

The primary concept behind finite difference 

approaches for solving partial differential equations is to 
approximate the derivatives occurring in the equation by a 

collection of function values at a specified number of points. 

Taylor series have been the most common method for 

generating these approximations. The methods introduced 

here are mainly based on analogous partial differential 

equations, which have been thoroughly detailed in[23]. This 

method provides a convenient measurement of the 

hypothetical order of accuracy, enabling the methods to be 

compared. It is also possible to eliminate the dominating 

error components associated with the finite-difference 
equations that include free parameters using the truncation 

error of the adjusted equivalent equation, producing more 

accurate approaches. 

 

Our methodology, like some other numerical methods, 

starts with a partition of the domain of the independent 

variables 𝑥 and 𝑡. The region [0, ℓ] × [0, ℑ] is divided into a 

𝜆 × 𝜇 mesh having spatial step size ℎ = 1/𝜆 in direction 𝑥 

and time step size 𝑘 = ℑ/𝜇. Throughout the content of this 

article, the symbols (𝑥𝑖 , 𝑡𝑛) will be used, where 

  

𝑥𝑖 = 𝑖ℎ,    𝑖 = 0,1,2,… , 𝜆, 
 

𝑡𝑛 = 𝑛𝑘,    𝑛 = 0,1,2,… , 𝜇. 
 

Where 𝜆 and 𝜇 are integers. 

 

A. One Way Wave Equation in Terms of Finite Difference 

Schemes 
In this subsection, the one-dimensional explicit 

numerical schemes with Lax-Friedrichs and Leapfrog 

schemes are presented to approximate the spatial and 

temporal partial derivatives of the advection equation (1). 

 

 The Lax-Friedrichs Scheme: 

Lax and Friedrichs presented a solution to the stability 

problem highlighted by the Forward-Time-Centered-Space 

FTCS scheme [22]. The fundamental concept is to replace 

the term 𝜗𝑗
𝑛 in the FTCS formula 𝜗𝑗

𝑛+1 = 𝜗𝑗
𝑛 −

𝛼

2
(𝜗𝑗+1

𝑛 − 𝜗𝑗−1
𝑛 ) + 𝒪(Δ𝑡2, Δ𝑥2Δ𝑡) with its spatial average, 

i.e., 𝜗𝑗
𝑛 = (𝜗𝑗+1

𝑛 + 𝜗𝑗−1
𝑛 )/2, in order to obtain an advection 

equation.  

 

𝜗𝑗
𝑛+1 =

1

2
(𝜗𝑗+1

𝑛 + 𝜗𝑗−1
𝑛 ) −

𝛼

2
(𝜗𝑗+1

𝑛 − 𝜗𝑗−1
𝑛 ) +  𝒪(Δ𝑥2) (6) 

 

Where 𝛼 = (𝛿
(△𝑡)

(△𝑥)
)2.  

 

 The Leapfrog Scheme: 

The FTCS and the Lax-Friedrichs schemes are both 

"one-level" schemes, with first-order approximation for the 

time derivative and second-order approximation for the 

spatial derivative. In certain cases, 𝛿Δ𝑡 should be considered 

to be substantially less than Δ𝑥, well below the Courant 

condition limit. Second-order accuracy in time can be 

obtained if we insert 𝜗𝑗
𝑛 =

𝜗𝑗
𝑛+1−𝜗𝑗

𝑛−1

2Δ𝑡
+ 𝒪(Δ𝑡2), in the 

FTCS scheme, to find the Leapfrog scheme: 

 

𝜗𝑗
𝑛+1 = 𝜗𝑗

𝑛−1 − 𝛼(𝜗𝑗+1
𝑛 − 𝜗𝑗−1

𝑛 ) + 𝒪(Δ𝑥2)  (7) 

 

B. Second Order Wave Equation in Terms of Finite 

Difference Schemes 

In this section, two types of finite difference schemes 

for the problem (2) will be implemented: explicit and 

implicit schemes with constant velocity 𝛿 ≠ 0. It is assumed 

that the functions 𝜁(𝑥) and 𝜐(𝑥) are assigned such that  

𝜗(𝑥, 0) = 𝜁(𝑥),    𝜗𝑡(𝑥, 0) = 𝜐(𝑥),    0 ≤ 𝑥 ≤ 𝐿. 
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 Explicit Method 
First, a grid is defined by subdividing the interval 

[0, 𝐿] into amplitude subintervals △ 𝑥 = 𝐿/(𝑁 + 1) and 

defining the multiple time instants of a value △ 𝑡: 
 

𝑥𝑗 = 𝑗 △ 𝑥,    𝑗 = 0,1,2,… , 𝑁 + 1,    𝑡𝑛 = 𝑛 △ 𝑡,     

𝑛 = 0,1,2,…. 
 

The second partial derivatives are approximated as 

follows:  
 

𝜗𝑥𝑥(𝑥𝑗, 𝑡𝑛) ≃
𝑢𝑗+1
𝑛 − 2𝜗𝑗

𝑛 + 𝜗𝑗−1
𝑛

(△ 𝑥)2
,    𝜗𝑡𝑡(𝑥𝑗 , 𝑡𝑛)  

≃
𝜗𝑗
𝑛+1 − 2𝜗𝑗

𝑛 + 𝜗𝑗
𝑛−1

(△ 𝑡)2
 

 
𝜗𝑗
𝑛+1−2𝜗𝑗

𝑛+𝜗𝑗
𝑛−1

(△𝑡)2
− 𝛿2

𝜗𝑗+1
𝑛 −2𝜗𝑗

𝑛+𝜗𝑗−1
𝑛

(△𝑥)2
= 0 (8) 

 

𝜗𝑗
𝑛+1 − 2𝜗𝑗

𝑛 + 𝜗𝑗
𝑛−1 = 𝛿2

(△ 𝑡)2

(△ 𝑥)2
 

(𝜗𝑗+1
𝑛 − 2𝜗𝑗

𝑛 +      𝜗𝑗−1
𝑛 ). (9) 

 

Using 𝛼 = (𝛿
(△𝑡)

(△𝑥)
)2 in (9), we obtained the following: 

  

𝜗𝑗
𝑛+1 = 2𝜗𝑗

𝑛 − 𝜗𝑗
𝑛−1 + 𝛼(𝜗𝑗+1

𝑛 − 2𝜗𝑗
𝑛 + 𝜗𝑗−1

𝑛 ),    𝑗 =

1, … ,𝑁.      (10) 
 

 Implicit method 

To solve the wave equation, the second derivative of 

the spatial type can be discretized in a different way:  

 

𝜗𝑥𝑥(𝑥𝑗 , 𝑡𝑛) ≃
1

2
[𝜗𝑥𝑥(𝑥𝑗 , 𝑡𝑛+1) + 𝜗𝑥𝑥(𝑥𝑗 , 𝑡𝑛−1)] (11) 

 

𝜗𝑡𝑡(𝑥𝑗 , 𝑡𝑛) ≃
𝜗𝑗
𝑛+1 − 2𝜗𝑗

𝑛 + 𝜗𝑗
𝑛−1

(△ 𝑡)2
 

 

𝜗𝑥𝑥(𝑥𝑗 , 𝑡𝑛+1) ≃
𝜗𝑗+1
𝑛+1 − 2𝜗𝑗

𝑛+1 + 𝜗𝑗−1
𝑛+1

(△ 𝑥)2
 

 

𝜗𝑥𝑥(𝑥𝑗 , 𝑡𝑛−1) ≃
𝜗𝑗+1
𝑛−1 − 2𝜗𝑗

𝑛−1 + 𝜗𝑗−1
𝑛−1

(△ 𝑥)2
 

 

𝜗𝑥𝑥(𝑥𝑗 , 𝑡𝑛) ≃
1

2
[
𝜗𝑗+1
𝑛+1−2𝜗𝑗

𝑛+1+𝜗𝑗−1
𝑛+1

(△𝑥)2
+

𝜗𝑗+1
𝑛−1−2𝜗𝑗

𝑛−1+𝜗𝑗−1
𝑛−1

(△𝑥)2
].

 (12) 

 

By substituting the approximations into the partial 

derivative equation (11), we obtain:  

 

𝜗𝑗
𝑛+1 − 2𝜗𝑗

𝑛 + 𝜗𝑗
𝑛−1

(△ 𝑡)2
= 𝛿2[

𝜗𝑗+1
𝑛+1 − 2𝜗𝑗

𝑛+1 + 𝜗𝑗−1
𝑛+1

(△ 𝑥)2
 

+
𝜗𝑗+1
𝑛−1−2𝜗𝑗

𝑛−1+𝜗𝑗−1
𝑛−1

(△𝑥)2
]. (13) 

 

Finally, we reach the final expression:  

−𝛼𝜗𝑗−1
𝑛+1 + (2𝛼 + 1)𝜗𝑗

𝑛+1 − 𝛼𝜗𝑗+1
𝑛+1 = 𝛼𝜗𝑗−1

𝑛−1 + (2𝛼 −

1)𝜗𝑗
𝑛−1 + 𝛼𝜗𝑗+1

𝑛−1 + 2𝜗𝑗
𝑛.          (14) 

 

C. Stability Criteria 

Consider the following finite difference approximation 

to the 1D wave equation:  

 

𝜗𝑗
𝑛+1 = 𝛼2𝜗𝑗+1

𝑛 + 2(1 − 𝛼2)𝜗𝑗
𝑛 + 𝛼2𝜗𝑗−1

𝑛 − 𝜗𝑗
𝑛−1 (15) 

 

We will use the substitution 𝜗𝑗
𝑛 = 𝜒𝑛𝑒

𝑖𝑗Δ𝑥𝜃 into the 

Equation 15, we conclude: 

  

𝑒𝑖𝑗Δ𝑥𝜃𝜒𝑛+1 = (𝛼
2𝑒𝑖Δ𝑥𝜃 + 2(1 − 𝛼2) +

𝛼2𝑒−𝑖Δ𝑥𝜃)𝑒𝑖𝑗Δ𝑥𝜃𝜒𝑛 − 𝑒
𝑖𝑗Δ𝑥𝜃𝜒𝑘−1(16) 

 

by using the double angle formula we have:  

 

𝜒𝑛+1 = 2(1 + 𝛼
2(cosΔ𝑥𝜃 − 1))𝜒𝑛 − 𝜒𝑛−1, 

 

Thus  

 

= 2(1− 2𝛼2sin2
Δ𝑥𝜃

2
)𝜒𝑛 − 𝜒𝑛−1 (17) 

 

If we now assume that has the following exponential 

form 𝜒𝑛 = 𝐺
𝑛 then Equation 17 reduces to the following 

quadratic equation:  

 

𝐺2 − 2𝛾𝐺 + 1 = 0 (18) 

 

 where 𝛾 = (1− 2𝜒2sin2
Δ𝑥𝜃

2
). The solutions of this 

quadratic equation are given by  

 

𝐺1,2 = 𝛾 ±√𝛾
2 − 1 (19) 

 

Now, since 𝐺1  and 𝐺2  are the roots of this quadratic 

we may conclude that  

 
(𝐺 − 𝐺1)(𝐺 − 𝐺2) = 𝐺

2 − (𝐺1 +𝐺2)𝐺 + 𝐺1𝐺2 = 0 (20) 

  

Comparing the last terms in the two quadratic 

Equations (18) and (20) we conclude 

  

𝐺1𝐺2 = 1 (21) 

 
However, for the stability of solutions for the form 

𝜒𝑛 = 𝐺
𝑛, we require that |𝐺1| ≤ 1 and |𝐺2| ≤ 1. Given the 

constraint (21), the only possibility, if the solutions are to be 

stable, is that |𝐺1| = |𝐺2| = 1. Thus 𝐺 must fall on the unit 

disk, which implies that  

 

|𝛾| ≤ 1 
 

Thus,  
 

|1 − 2𝛼2sin2
Δ𝑥𝜃

2
| ≤ 1 

 

 

Or  
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−1 ≤ 1 − 2𝛼2sin2
Δ𝑥𝜃

2
≤ 1 (22) 

 

So that  

 

−2 ≤ −2𝛼2sin2
Δ𝑥𝜃

2
≤ 0 (23) 

 

The second inequality in (23) is satisfied 

automatically, while the first leads to the condition 
 

𝛼2sin2
Δ𝑥𝜃

2
≤ 1 

 

Since the maximum value that sin2 (
Δ𝑥𝜃

2
) can achieve 

is 1 , we conclude that the condition for stability is  

 

𝛼 = (𝛿Δ𝑡/Δ𝑥) ≤ 1 (24) 

 

V. NUMERICAL EXPERIMENTS AND 

RESULTS 

 
To complement our theoretical explanation, we 

present some computational results of numerical 

experiments employing methodologies based on previous 

sections. Our approaches may be applied to more generic 

challenges based on the fundamental approach. However, 

making them efficient requires more extensive study with 

future ways anticipated. Since every finite difference 

formula is indeed a pde estimate, it would not yield the 

exact solution to such a pde. Rather, it provides a solution to 

a corresponding pde by performing a Taylor expansion of 

the terms in the finite difference equation around the (𝑖, 𝑛) 
grid point. Furthermore, with this extension, all time 

derivatives can be written as spatial derivatives, providing a 

simplified pde. This method has been discovered to 

determine the stability of advective-diffusive pdes and 

develop new extremely accurate numerical methods for the 

same equation. By sequentially differentiating the relevant 

pde and applying the results to eliminate undesirable time 

derivatives, the improved formula is produced. The 

method’s modified equivalent pde was described in earlier 

parts, and we will use it in the following instances. 

 
 Example 5.1  As the first example, consider the problem 

(1) with 𝜙1(𝑡) = 0, 𝜙2(𝑡) = 0 and unit function:  

 

𝜁(𝑥) = {
0,    𝑥 < 0
1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (25) 

 

The results for the finite difference schemes (10) and 
(14) are presented in Figures 1 and 2, respectively, using 

equation 𝜁(𝑥) as an initial condition and input values Δ𝑡 =
0.02 and Δ𝑥 = 0.04. Figure 1. shows that Lax-Friedrichs 

generates good inosculating outcomes; although their shock 

widths are substantially longer, this means that it takes 

much longer to make the step. The Leapfrogs scheme 

generates oscillations between 𝑥0 − 𝑐𝑡 and 𝑥0 + 𝑐𝑡, the 

error determined at 𝑡’s maximum value can be seen in 
Figure 5. 

 
Fig 1 The Result of the Lax-Friedrichs Scheme Using A 

Unit Function as the Initial Condition. 

 

 
Fig 2 The Results of the Leapfrog Scheme using a unit 

function as the initial condition 

 

 Example 5.2 Consider the problem (1) with 𝜙1(𝑡) = 0, 

𝜙2(𝑡) = 0 and 

  

ζ(x) = sin(πx)                           (26) 

 
In the figures 3 and 4, the initial condition 26 produces 

some oscillations on the left side. Modeling is made easier 

by the smoothness of the presented condition. Because Lax-

Friedrichs had a tendency to decrease or smooth out the 

wave’s size, it caused slightly more error than The Leapfrog 

schemes. Generally, on this initial condition, almost both 

schemes gave pretty excellent results. 
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Fig 3 The Results of the Lax-Friedrichs Scheme using 

smooth sinusoidal function initial condition. 

 

 
Fig 4 The results of the Leapfrog Scheme using smooth 

sinusoidal function initial condition. 

 

 Example 5.3  Use explicit and implicit methods to 

approximate the solution to the initial  boundary value 

problem 2 as 𝛿 = 2 with:  

 

𝜁(𝑥) = sin(2𝜋𝑥), 𝜐(𝑥) = 0, 0 ≤ 𝑥 ≤ 1 
 

𝜙1(𝑡) = 0,  𝜙2(𝑡) = 0, 0 < 𝑡 < 0.5. 

 

The exact solution of this equation is as follows.  

 

𝜗(𝑥, 𝑡) = cos4𝜋𝑡sin2𝜋𝑥. (27) 

 
Fig 5 (a)-(d) represent the errors in the previous figures, 

respectively. 

 

We may examine the absolute error of each finite 

difference method using the analytical solution equation 

(27). Table 1. discusses the results for (ℎ = 0.1 and ℎ =
0.01) using the explicit method provided in formula (10), 

while Table 2. shows the results for (ℎ = 0.1 and ℎ = 0.01) 
using the implicit method developed in formula (14). The 

absolute error was determined using the MATLAB software 

using the finite difference approaches mentioned. Both 

tables illustrate 2 runs, one being stable while the other is 

unstable. The explicit method solution is numerically better 

accurate than the implicit method, as seen in the tables 1 and 

2. 

 

 Example 5.4  Use the explicit and implicit methodS to 

approximate the solution to the initial boundary value 

problem 2 as 𝛿 = 2 with:  

 

𝜁(𝑥) = sin(𝜋𝑥) + sin(2𝜋𝑥), 𝜐(𝑥) = 0,  0 ≤ 𝑥 ≤ 1 

 

𝜙1(𝑡) = 0,  𝜙2(𝑡) = 0,  0 < 𝑡 < 0.5. 

 

Tables 3 and 4 show how the computational results 

derived by comparable finite difference techniques have 

been compared with the analytical solution at various values 

of ℎ, as well as the absolute error was reported at 𝑡 = 0.5. 
As seen in the tables, the results produced using the explicit 

approach have less accuracy than those in table 1, however, 

the explicit scheme has better accuracy overall based on the 

involved schemes. 

 

 
Fig 6 Plot of the exact solution in Example 5.3 

http://www.ijisrt.com/


Volume 8, Issue 5, May – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                                      ISSN No:-2456-2165 

 

IJISRT23MAY808                                                             www.ijisrt.com                                                              407 

Table 1 Results of explicit method 

𝐱 Exact value Absolute error as 𝐡 = 𝟎. 𝟏 Absolute error as 𝐡 = 𝟎. 𝟎𝟏 

0.00 0.00000000 0.0000e + 000 0.0000e + 000 

0.10 0.58778525 1.6110e − 001 5.5430e − 004 

0.20 0.95105652 2.6066e − 001 8.9687e − 004 

0.30 0.95105652 2.6066e − 001 8.9687e − 004 

0.40 0.58778525 1.6110e − 001 5.5430e − 004 

0.50 0.00000000 6.3435e − 006 6.2617e − 016 

0.60 -0.58778525 1.6109e − 001 5.5430e − 004 

0.70 -0.95105652 2.6067e − 001 8.9687e − 004 

0.80 -0.95105652 2.6066e − 001 8.9687e − 004 

0.90 -0.58778525 1.6110e − 001 5.5430e − 004 

1.00 -0.00000000 2.4493e − 016 2.44930e − 016 

 

Table 2 Results of Implicit Method 

 

 
Fig 7 Plot of the exact solution in Example 5.4 

 

Table 3 Results of Explicit Method 

𝐱 Exact value Absolute error as 𝐡 = 𝟎. 𝟎𝟏 Absolute error as 𝐡 = 𝟎. 𝟎𝟓 

0.00 0.000000 0.0000e + 000 0.0000e + 000 

0.10 0.58778525 2.4724e − 003 2.2237e − 001 

0.20 0.95105652 4.0004e − 003 3.5980e − 001 

0.30 0.95105652 4.0004e − 003 3.5980e − 001 

0.40 0.58778525 2.4724e − 003 2.2237e − 001 

0.50 0.00000000 3.6814e − 017 1.5509e − 016 

0.60 -0.58778525 2.4724e − 003 2.2237e − 001 

0.70 -0.95105652 4.0004e − 003 3.59800e − 001 

0.80 -0.95105652 4.00040e − 003 3.5980e − 001 

0.90 -0.58778525 2.4724e − 003 2.2237e − 001 

1.00 0.000000 2.41930e − 016 2.4493e − 016 

𝐱 Exact value Absolute error as 𝐡 = 𝟎. 𝟎𝟓 Absolute error as 𝐡 = 𝟎. 𝟏 

0.00 0.00000000 0.0000e + 000 0.0000e + 000 

0.10 0.27876826 5.5511e − 017 6.53726e − 002 

0.20 0.36327126 1.1102e − 016 1.0566e − 001 

0.30 0.14203952 2.2204e − 016 1.0538e − 001 

0.40 -0.36327126 2.2204e − 016 6.4546e − 002 

0.50 -1.00000000 5.5511e − 016 1.2857e − 003 

0.60 -1.53884177 8.8818e − 016 6.6992e − 002 

0.70 -1.76007351 2.2204e − 016 1.0746e − 001 

0.80 -1.53884177 6.6613e − 016 1.0717e − 001 

0.90 -0.89680225 2.2204e − 016 6.6166e − 002 

1.00 -0.00000000 3.6739e − 016 3.6739e − 016 
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Table 4 Results of Implicit Method 

𝒙 Exact value Absolute error as 𝒉 = 𝟎. 𝟎𝟏 Absolute error as 𝒉 = 𝟎. 𝟏 

0.00 0.00000000 𝟎. 𝟎𝟎𝟎𝟎𝒆 + 𝟎𝟎𝟎 𝟎. 𝟎𝟎𝟎𝟎𝒆 + 𝟎𝟎𝟎 

0.10 0.27876826 𝟔. 𝟎𝟔𝟕𝟏𝒆 − 𝟎𝟎𝟒 𝟐. 𝟒𝟔𝟒𝟔𝒆 − 𝟎𝟎𝟏 

0.20 0.36327126 𝟗. 𝟖𝟎𝟐𝟑𝒆 − 𝟎𝟎𝟒 𝟑. 𝟗𝟕𝟔𝟏𝒆 − 𝟎𝟎𝟏 

0.30 0.14203952 𝟗. 𝟕𝟔𝟓𝟗𝒆 − 𝟎𝟎𝟒 𝟑. 𝟗𝟒𝟔𝟖𝒆 − 𝟎𝟎𝟏 

0.40 -0.36327126 𝟓. 𝟗𝟔𝟏𝟑𝒆 − 𝟎𝟎𝟒 𝟐. 𝟑𝟕𝟗𝟒𝒆 − 𝟎𝟎𝟏 

0.50 -1.00000000 𝟏. 𝟔𝟒𝟕𝟎𝒆 − 𝟎𝟎𝟓 𝟏. 𝟑𝟐𝟔𝟑𝒆 − 𝟎𝟎𝟐 

0.60 -1.53884177 𝟔. 𝟐𝟕𝟒𝟔𝒆 − 𝟎𝟎𝟒 𝟐. 𝟔𝟑𝟏𝟕𝒆 − 𝟎𝟎𝟏 

0.70 -1.76007351 𝟏. 𝟎𝟎𝟑𝟐𝒆 − 𝟎𝟎𝟑 𝟒. 𝟏𝟔𝟏𝟒𝒆 − 𝟎𝟎𝟏 

0.80 -1.53884177 𝟗. 𝟗𝟗𝟓𝟗𝒆 − 𝟎𝟎𝟒 𝟒. 𝟏𝟑𝟐𝟏𝒆 − 𝟎𝟎𝟏 

0.90 -0.89680225 𝟔. 𝟏𝟔𝟖𝟗𝒆 − 𝟎𝟎𝟒 𝟐. 𝟓𝟒𝟔𝟔𝒆 − 𝟎𝟎𝟏 

1.00 -0.00000000 𝟑. 𝟔𝟕𝟑𝟗𝒆 − 𝟎𝟏𝟔 𝟑. 𝟔𝟕𝟑𝟗𝒆 − 𝟎𝟏𝟔 

 

VI. CONCLUSION 

 

In this paper, some finite difference schemes for 
addressing a one-dimensional hyperbolic pde with given 

initial conditions and under boundary conditions have been 

proposed. For one-dimensional wave equations with specific 

conditions, these approaches are carried out effectively. 

Whenever ℎ is small enough, the numerical tests performed 

using the methods provided in the article offer an accurate 

result and predict convergence to the exact solution. 

Unfortunately, the procedures described in this article are 

conditionally stable. Although the methodology is only 

demonstrated here for the one-dimensional case, it is 

possible to generalize to equivalent problems with just 
minor processing. Finally, we mention that one topic of 

future research will be to establish an equivalent approach 

for solving the two-dimensional wave equation. 
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