
Volume 8, Issue 11, November 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23NOV059 www.ijisrt.com 50

Bridge Gateway for Solid Works to URDF and

Integration with Robot Operating System

Raghul T.; Nagalaxman G.; Anbarasi M. P.

Robotics and Automation PSG College of Technology Coimbatore, India

Abstract:- Unified Robot Description Format (URDF)

integration of mechanical designs from SolidWorks,

a well-known computer-aided design (CAD) software,

into the Robot Operating System (ROS) ecosystem is

essential for seamless robotic simulations and control. In

order to bridge the gap between SolidWorks CAD

models and ROS-compatible URDF files, this paper

presents a thorough methodology for the

conversion process. Exporting SolidWorks models,

comprehending the structure and syntax of URDF,

defining links, joints, visual, and collision properties, and

integrating transformational and inertial data are all

necessary steps in the procedure. Within the URDF

framework, particular focus is placed on precisely

positioning joints and defining their axes of motion. The

resulting URDF files make it possible to precisely

represent robotic structures, making it easier to

simulate, analyze, and control robotic environments that

are powered by ROS. Case studies and useful insights

demonstrate. This conversion process' accuracy and

efficiency demonstrate how it can be used in a variety of

robotic applications.

Keywords:- SolidWorks, URDF, ROS, CAD, Robot,
Modelling, Simulation, Interoperability, Integration,

Conversion.

I. INTRODUCTION

The process of converting a SolidWorks model to the

Unified Robotic Description Format (URDF) involves

converting engineering designs from SolidWorks, a popular

computer-aided design (CAD) software, to a format that
Can be used in simulation and robotics applications. URDF

is a widely used XML format to describe the structure and

properties of robots, commonly used in ROS (Robot

Operating System) to control and simulate robots. Here we

are going to build a Solidworks model and integrate it in

ROS using URDF and thereby making the 6 DOF robot to

perform the operation.

Solidworks is one of the model designing software

which is used widely. The parts required for our design are

made separately using Solidworks [1] and we mate all the

parts we had designed before and made the final design of

the product as 6 Degrees Of Freedom Robot [2], likewise

we are able to design any model we want to design using

Solidworks. This is in contrast to existing modeling

approaches, which the robot manipulators consider

extensions of the standard and modified Denavit-Hartenberg
(DH) conventions [3] or the Product of Exponential (PoE)

formulation [4].

We aim to achieve simplicity in implementation for

obtaining an assembled modular robot description as a

Unified Robot Description Format (URDF) file, which can

be easily utilized for applications with software tools from

Robot Operating System (ROS) [5] libraries. Robot

modeling knowledge and a lot of time are needed when

configuring the modular robot control for every new

assembly in order to take into consideration the dynamics
and kinematics of the new system. To avoid this we create

the Unified Robot Description Format (URDF) file for

robots automatically by utilizing the kinematic and

dynamic descriptions that are stated in accordance with the

URDF of the individual modules that make up the

manipulators[6,7].

The building and simulating a six-degree-of-freedom

(DOF) robotic arm specifically for harvesting coconuts, as

well as collaborative robots for use in research and assistive

robots like wheelchairs and home robots, as well as search

and rescue robots for dangerous situations. For the robotic

arm [8], a kinematics-based solution has been created that

facilitates use and operation. The Robot Operating System

(ROS) was used in the development of the robotic control

interfaces that were presented in the study. RVIZ was
utilized for the design and visualization of the 6-DOF

articulated robotic arm. The robotic arm's ease of

manipulation with the end effector was made possible by the

kinematics.

ROS, an open source Robot Operating System An

overview of ROS, an open-source robot operating system, it

offers a structured communications layer on top of the host

operating systems in a heterogeneous compute cluster. and

we see how ROS relates to existing robot software

frameworks, and briefly overview some of the available

application software which uses ROS[9]. This paper

explains how to create a custom URDF file and covers the

mechanics and electronics used in the OpenDog. To port it

to ROS and run path planning algorithms on the same, a

custom URDF built on the OpenDog model that is currently
available is required. To do this, more independent packages

and launch files are made for the model's visualization and

simulation. Rviz is used to visualize the movement

simulations that are carried out in Gazebo[10]. The structure

of this paper was subsequently followed as Assembly on

Guide for Robot model is described in Section 2, and

Positioning of Joints and Movement of Axis are described in

Section 3, The URDF module is presented in Section 4,

Robotic Arm Package and working in Ros are described in

Section 5 and 6, Followed By Conclusion in section 7.

http://www.ijisrt.com/

Volume 8, Issue 11, November 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23NOV059 www.ijisrt.com 51

II. ASSEMBLY ON GUIDE FOR ROBOT MODEL

The process of creating an assembly guide for a robot

model in SolidWorks entails delineating the steps and

procedures required to assemble the various components

using the SolidWorks CAD software. Presented below is a

generalized framework for such a guide:

 Initiate SolidWorks and generate a new assembly

document.

 Import the necessary CAD files for the robot

components.

 Position the base component in the assembly by mating

it to the origin.

 Place subsequent components in their respective

positions using appropriate mates, such as coincident

and concentric.

 Utilize mates to constrain the relative motion between

components, including parallel, perpendicular, and
distance mates.

 Ensure proper alignment and connection of components

using mates for rotational and translational degrees of
freedom.

 Incorporate screws, bolts, nuts, and other fasteners using

the Toolbox feature in SolidWorks.

 Position and mate the fasteners appropriately within the

assembly.

 Verify that all components move and interact as intended

within the assembly.

 Make necessary adjustments to ensure smooth

functioning of the robot model.

 Generate exploded views to illustrate the assembly

process.

 Annotate the exploded views to provide a clear

understanding of the assembly sequence.

 Create detailed drawings of the assembled robot model.

 Annotate the drawings with part numbers, dimensions,

and other relevant information as shown in Fig 1.

Fig. 1: Assembling parts of Manipulator

III. POSITIONING JOINTS AND AXIS OF

MOVEMENT

In SolidWorks, positioning the joint at position 0 and

determining its axis of motion is fundamental to accurately
representing the robot model. Here are the steps to achieve

this in SolidWorks:

A. Positioning mismatch:

In SolidWorks, joints are often created during assembly
to define the relationships between components. To zero a

joint, follow these steps:Open your assembly in SolidWorks.

Select the "Mate" command:Go to the "Assembly" tab in

Order Manager. Click "Mate" or use the keyboard shortcut

"M."Choose the right type of companion for your joints:For

rotating joints (e.g., swivel joints), select "Concentric" or

"Coincident" depending on the specific joint

configuration.Select the desired faces or axes for the joint

parts and assemble them to align the joint in the 0

position.These procedures will help you make a mate that

accurately aligns the components of your joint, zeroing the
joint and enabling precise movement or contact between the

pieces. This procedure is essential to guaranteeing that your

assembly will perform as intended, particularly in dynamic

systems or mechanisms.

B. Create motion axis:

To create a joint's axis of motion, you can use reference
geometry to define the rotational or translational axis.

Follow these steps:Open the component part file associated
with the assembly. Create reference axis:Go to the

“Reference Geometry” drop-down menu under the

“Features” tab.Select "Axis".Choose the appropriate

references for the axis: Select two cylindrical or planar faces

or any suitable reference aligned to the desired axis of

motion.Click "OK" to create the axis. Save the section file.

Return to the congress. When defining a joint, select the

axis you created as the rotation or translation axis of the

joint. Make sure the axis is aligned with the desired axis of

movement of the joint. Inspect the joint to verify its joint
movement along the specified axis. By following these

steps, you can position the joint at position 0 and precisely

define its axis of motion in SolidWorks, providing a clear

representation of the kinematics of the robot model as

shown in Fig 2.

http://www.ijisrt.com/

Volume 8, Issue 11, November 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23NOV059 www.ijisrt.com 52

Fig. 2: Assembled Manipulator

IV. THIRD PARTY TOOL FOR EXPORTING

"SW2URDF" is not a standard or built-in tool in

SolidWorks. Instead, you can refer to custom scripts or

third-party tools developed by the community to help

convert SolidWorks models into URDF files. Here's a

general approach to exporting a SolidWorks model to a

URDF file using a custom script or tool (assuming

"sw2urdf" is a custom script or tool):

 Install and configure the “sw2urdf” tool: Make sure the

"sw2urdf" tool is installed and configured in your

SolidWorks environment. Typically this involves

downloading a script/tool from a trusted source and

following the installation instructions as shown in Fig 3.

 Prepare your SolidWorks model: Open your SolidWorks

model and make sure it is properly organized, including

the necessary joints, links, and components that define

the robot's structure. Use "sw2urdf" to export: Run the

"sw2urdf" script/tool from SolidWorks. This tool will

guide you through the process of exporting a

SolidWorks model to a URDF file.

Note: Specific export steps and options may vary

depending on the script/tool you are using.

 Follow the export instructions: Follow the instructions

provided by the “sw2urdf” tool to customize export

settings, including match type, name, link properties, and

other necessary settings.

Fig. 3: SW2URDF tool on Solidworks

 Create URDF file: Once you have configured the export

settings to your liking, proceed with creating the URDF

file using the "sw2urdf" tool.

 Validate URDF files: Open the created URDF file to
ensure that it accurately represents the robot model and

its kinematics. Make any necessary adjustments or

corrections.

 Import into ROS:After creating and validating the URDF

file, import it into ROS and test it in a simulated

environment to ensure it works as expected.

Third-party tools to export Solid Works models to

URDF:

 Sw2URDF Solid Works to URDF exporter: The

"sw2urdf" (Solid Works to URDF) project is a third-
party tool that allows you to export Solid Works models

in URDF format. This tool typically consists of a

combination of SolidWorks macros and Python scripts.

 Exporter ROS Industrial Universal Robot Description

Format (URDF): ROS Industrial provides a set of tools,

including scripts and Python packages, that can help

convert SolidWorks models to the URDF format. It is

part of the ROS ecosystem and is widely used for

http://www.ijisrt.com/

Volume 8, Issue 11, November 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23NOV059 www.ijisrt.com 53

robotics applications.

 ROS URDF export plugin for SolidWorks: Some
community members have developed custom plugins or

scripts for SolidWorks that allow model export to the

URDF format. These plugins may have different features

and capabilities.

V. ROBOTIC ARM PACKAGE IN ROS

After creating the URDF file for the robot arm using

SOLIDWORKS, a ROS package folder will be created.

Copy this package folder as is to your ROS workspace (e.g.
catkin_ws/src) without renaming it. If you don't have ROS
installed, follow the instructions for your specific ROS

distribution. ROS Melodic on Ubuntu 18.04. Open a

terminal. Update system package list to upgrade and install

new packages: sudo apt-get update

 Access your personal folder disk ~Create a new

 Catkin workspace (you can name it anything you want,

e.g. moveit_workspace):

 mkdir -p moveit_workspace/src

 Access the workspace: cd moveit_workspace

 Initialize the Catkin workspace: initialize kitten

 Create a Catkin workspace: build kittens

Source the setup.bash file to configure the workspace

to use: development source/setup.bash Copy the ROS
package and configure MoveIt.In the next section, copy the

ROS package into the Catkin workspace and configure it for

use with MoveIt to simulate a robotic arm in ROS.

 Intersection:Nodes are individual software processes that

perform specific tasks. Multiple nodes can operate

simultaneously and communicate with each other

through ROS.

 Objects:Nodes communicate with each other by

publishing and subscribing to topics. Topics are called

buses on which nodes can send and receive messages.

 Posts:Messages are data structures used to communicate
information about ROS topics. They are defined in

message files and have a specific format.

 Service:The service allows nodes to send requests and

receive responses, allowing more complex interactions

between nodes.

 Act:Actions are similar to services but are designed for

tasks that take longer to complete. They help set goals,

provide feedback, and report results.

 Kitty:Catkin is the official build system for ROS. It helps

create packages and manage their dependencies.

 Package:Packages in ROS are organizational units that
contain nodes, configuration files, and other resources

needed for a specific task.

 Launch file:Launch files are XML files used to launch

multiple ROS nodes with specific settings and

configurations.

 RViz:RViz is a powerful 3D visualization tool in ROS

used to visualize sensor data, robot models, and other

information.

 Move it:MoveIt is a popular ROS package used for

motion planning, manipulation, and control of robotic

arms.

VI. WORKING IN ROS

Navigate to the src folder of your ROS workspace.

Create a new package (replace your_package_name with an

appropriate name). In your new package, create an urdf

directory to store your URDF files. Place your URDF files

(e.g. robots.urdf) inside the urdf folder. category. Navigate
to the root of your package (replace your_package_name

with your package's actual name). Open the CMakeLists.txt

file to edit it. Add the necessary lines to the CMakeLists.txt

file to create the URDF file. Open the package.xml file for

editing. Add the appropriate dependencies to your package,

including urdf. Build your Catkin workspace from the

workspace root directory. Find the install script to display

your package in the current terminal session. You can now

use URDF files and any buttons or programs associated

with your package.Configure a URDF (Unified Robot

Description Format) file generated from SOLIDWORKS for
use in ROS and Gazebo.

Export your robot arm model from SOLIDWORKS to

a URDF file. Place the URDF file and associated meshes (if

any) into a folder in your ROS. wrap. Let's say you have a
package named your_package_name. Open the URDF file

“your_robot.urdf”; in a text editor. Make sure all file paths

to meshes are relative and point correctly to the meshes in

the meshes/ directory. Update URDF to include required

ROS and Gazebo components, such as global properties and

sensor plugins. Make sure all joints and connections are

placed correctly. with precise properties, such as inertia,

joint boundaries, joint type, etc., to accurately represent the

robot arm. For compatibility with Gazebo, add Gazebo

specific tags in the URDF to define physical properties and

other details related to the simulation. Create a Gazebo

launch file (for example: your_robot_gazebo.launch) in your
package to launch URDF in Gazebo. Launch URDF in

Gazebo using the launch file you created, Launch URDF in

Gazebo using the launch file you created.Create a YAML

file to configure the ROS generic trajectory controller to

control the joints of the robot arm including specifying the

necessary parameters for the controller. Below is an

example of a YAML configuration for a typical robot arm

with general trajectory control. Creating the ROS

initialization file to initialize the URDF, buttons, and

controllers of the robot arm includes defining the necessary

buttons, parameters, and controllers. Load the robot's URDF
description from a file using the param tag. Start the

General Status Editor to publish general statuses.

Create a robot model in Gazebo using URDF

descriptions. Start Controller Manager. Load the controller
configuration using the rosparam tag, in specifying the path

to your common path controller configuration YAML file.

Start the pipeline controller using the controller manager.

Remember to replace "your_package_name" and

"your_robot.urdf" with the name of the appropriate package

and URDF file for your specific robot arm. Also, adjust the

path according to your file structure. You will also need to

create a YAML file for the joint trajectory controller

configuration (e.g. Joint_trajectory_controller.yaml) and

adjust the launch file accordingly. Launch this file using

roslaunch your_package_name your_launch_file.launch to

http://www.ijisrt.com/

Volume 8, Issue 11, November 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23NOV059 www.ijisrt.com 54

launch the URDF, buttons, and controllers of your robot

arm. To create a Catkin workspace and launch the robotic
arm in Gazebo using a launch file, follow these steps: Go to

your Catkin workspace, root folder, create workspace, create

launch file "e.g. launch_robot_arm_gazebo.launch". in your

ROS package (your_package_name) to launch the robot arm

in Gazebo. Launch the robot arm in Gazebo using the

created launch file. Make sure to replace

"your_package_name", "your_robot.urdf", and

"your_world.world" with the appropriate values for your

robot arm and environment. This launch file loads the

URDF, starts Gazebo with an empty world, creates the robot

model in Gazebo, starts the global state editor, and loads and

starts the global path controller.

Adjust settings and paths based on your specific robot

and setup.Use the MoveIt Setup Assistant to create a URDF

model control package imported from SOLIDWORKS that
includes configuring the robot's motion planning and control

capabilities. Make sure MoveIt is installed. If not, install it

using the following command. (sudo apt-get install ros-

melodic-moveit) Replace melodic with your ROS version if

you are using a different version. Launch the MoveIt setup

wizard. Click “Create new MoveIt configuration”. to start a

new configuration. Click "Import File" and select the URDF

file you exported from SOLIDWORKS. Determine the

robot's semantic information such as robot name, end

effector link, and group name. Set calendar groups for

MoveIt. This often includes joints used for movement

planning. Set agent information last, if any. Proceed to the
next steps and create the self-collision matrix and the

allowed collision matrix if needed. Calibrate your robot

drive system, configure the kinematic solver and charge

controller if applicable. If your robot has virtual joints,

configure it accordingly. Configure all of your robot's

passive joints, if any.

Configure scene planning settings based on your

robot's requirements and environment. Determine the final

impact pose for your robot, if applicable. Save

configuration. Click “Create Package” to create a MoveIt

configuration package. The MoveIt Setup Wizard will create

a MoveIt setup package. You will find the package in the

specified directory. After creating the package, you can

launch MoveIt with the

command(roslaunch_your_generated_moveit_config_packa
ge_moveit_planning_execution.launch).Replace the given

your_generated_moveit_config_package with the actual

name of the package generated by the MoveIt Setup

Assistant. You now have a MoveIt configuration package

for your robotic arm, imported from SOLIDWORKS

URDF, ready for motion planning and control. You can use

the MoveIt RViz plugin or the MoveIt Python or C++ API to

plan and execute movements for your robotic arm.

You can use the MoveIt Setup Assistant to create a

Unified Robot Description Format (URDF) package
imported from SOLIDWORKS by following these general

instructions. MoveIt is a powerful motion design framework

used with ROS (Robot Operating System) to control robotic

arms and other robotic systems.Install and configure ROS

and MoveIt: First, make sure you have ROS and MoveIt

installed on your system. You can follow the official ROS

and MoveIt installation instructions for your specific ROS

distribution.Import URDF from SOLIDWORKS: Make sure

the URDF file is exported from SOLIDWORKS before

continuing.

Create a new ROS package: Open a terminal and

navigate to the ROS workspace (usually catkin_ws/src)

where you want to create a new package.Use the

catkin_create_pkg command to create a new ROS package

containing the MoveIt definition: hit catkin_create_pkg
my_robot_moveit_config Run the MoveIt Setup Assistant:

Run the MoveIt Setup Assistant with the following

command: hit roslaunch moveit_setup_assistant

setup_assistant.launch Download the URDF: In the MoveIt

Setup Assistant, use the Download button to download the

SOLIDWORKS URDF file. Set the robot location and

design group: Set the starting position of the robot using the

setup wizard. This helps MoveIt understand the constraints

and kinematics of the robot and joints.

Create a design group for your bot. This determines

which parts of the robot you want to control. Collision

Matrix: Configure collision detection between different

parts of the robot. Self collision control: Set self-collision

checking parameters. Kinematics and controls:Define

kinematic solvers for your robot. Determine which drivers

you intend to use and configure them.

Create a configuration package:After completing all

the necessary settings in the MoveIt Setup Assistant, click

"Generate Package". a button Build and get a workspace:
Build the package in your ROS workspace directory (eg

catkin_ws) and get the setup.bash file: hit cat_do source

devel/setup.bash Run MoveIt in Rviz: You can view and

control your bot in Rviz using the following command: hit

roslaunch my_robot_moveit_config demo.launch You now

have a ROS package (called "my_robot_moveit_config" in

this example) that contains all the necessary configuration

files and startup files of MoveIt to control the movement of

your robot and #039; You can customize and refine the

configuration according to your robot system as shown in

Fig 4.

http://www.ijisrt.com/

Volume 8, Issue 11, November 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23NOV059 www.ijisrt.com 55

Fig. 4: Moveit Setup-Assistant on ROS

To verify the MoveIt processing package created for

the URDF of the custom robotic arm, follow these steps to

ensure that the manipulation attributes are set and working

correctly.Run the manipulation demo: The MoveIt package

you create should contain a startup file to run the MoveIt

manipulation demo. With this demo, you can interactively

design and execute the movements of a robotic arm. Run the

demo: hit roslaunch my_robot_moveit_config demo. launch
Replace my_robot_moveit_config with the name of your

specific MoveIt configuration package. RViz visualization:

RViz should open to provide a GUI for your robot arm. You

should see your robot model, environment and various

interactive characters.

Choose and plan a destination: In RViz, select the

"Movement Planning" tab. This tab allows you to interact

with the robot and power booster and plan moves. You can:

Choose an exit booster or a specific link in your bot. Set the

target position and final effect of your bot. You can click on

"2D Pose Estimate" and "2D Nav Goalandquot; To set a

destination in RViz. Plan your move: Once you have set

your goal, you can click the "Plan" button. the RViz button

to calculate the business plan. MoveIt uses motion planning

algorithms to find the appropriate path for your robot to
reach the target position. View the plan: You can see the

planned movement by clicking andquot;Execute and quot;

button RViz.

The robot and your model simulate the intended

movement to reach the target position. Follow the collision

check: During design and implementation, MoveIt must

perform collision checks to ensure that the robot does not

collide with obstacles in its environment. Verify that

collision detection works as expected. Handling extensions:

Check if you have defined handling plugins or handlers.

You can interact with these plugins in RViz to define

capture strategies or other manipulation tasks. Custom

Power Amplifier and Gripper Control: If you have a custom
end effector or gripper for your robot arm, make sure you

can control and visualize its movements and interactions in

RViz. Performance and Durability: Make sure the handling

package is working efficiently and reliably. Experiment with

different target positions and scenarios to ensure

manipulation design and execution.Additional testing and

validation:Depending on your specific robot and

application, perform additional tests to verify special

capabilities such as pick and place functions, object

manipulation, or other manipulative tasks that your robot is

designed for as shown in Fig 5.

Fig 5: MoveIt processing package on ROS

http://www.ijisrt.com/

Volume 8, Issue 11, November 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23NOV059 www.ijisrt.com 56

Creating a new ROS controller for the MoveIt

rendering package for a custom robotic arm requires
defining a controller for your specific hardware and

connecting it to the MoveIt motion design framework.

Below are the general steps to create a new ROS controller.

Hardware User Interface:First, you must develop a hardware

interface that communicates with the controllers of the

robot armind#039;. This interface usually involves writing

ROS nodes that send your bot and #039; commands to

motors or servos.ROS controller configuration: Create a

configuration file for your new controller. This file defines

the device interface and controller parameters. You usually

use the ROS Management Framework for this.

Create a .yaml file with the controller and

parameters.Joints This example sets up a pose controller for

the robot and joints.Implementation of ROS

controller:Enable the ROS controller code that turns MoveIt
commands into control actions for your robot arm.

Normally, you would write a ROS node to manage this

translation. Here's a simplified Python Run the file: Create a

startup file to start the ROS controller node. Integration with
MoveIt: To integrate your new controller with MoveIt, you

need to update the MoveIt configuration package (created

using the MoveIt Configuration Assistant) to configure

your new controller for robot connections.Testing: Test your

controller by running it with the MoveIt app. Make sure it

can correctly receive and execute the move plans created by

MoveIt. Calibration and tuning: Refine the controller and

perform the necessary calibrations to ensure it moves the

robot accurately. Security: Check your controller to avoid

unexpected behavior and ensure safe operation of the robot

arm. Documentation: Document our controller and its

integration into the custom robot arm for future reference.
Keep in mind that the details of how to implement a

controller will depend on your robot's hardware, control

system, and the type of controller you want to create (such

as position, velocity, or force control) as shown in Fig 6.

Fig. 6: File configurations on ROS

To load a full Move It manipulation simulation of a

custom robot arm to create a new startup file, you must

specify the components and configuration required for the

simulation.

Below is a simplified example startup file to get you

started: Create startup file: Create a new launch file in your

ROS package and launch directory, e.g.

manipulator_simulation.launch Specify the launch file: Run

the boot file specifying the boot description. You can use

the launch tag to specify the launch file #039 name and

package as follows: xml andlt; launchgt; andlt;!--

Information about packages and startup files --andgt; andlt;

arg name= and quot; robe_description and quot;
default=andquot;$(find_your_package_name)/urdf/my_robo

t.urdfandquot; /andgt; Replace package_name with the

actual name of your ROS package and your_robot.urdf with

the URDF file of your custom robot arm. Run Robot State

Publisher:You want to run robot_state_publisher to publish

the robot and state in /robot_description. This allows MoveIt

to take advantage of the robot's kinematic and dynamic

capabilities. Run the MoveIt Setup Assistant: If you have

previously used the MoveIt Setup Assistant to create

configuration files for your robot, you can download those

settings.we define a MoveIt configuration package

(your_robot_moveit_config) and an SRDF file that defines

the robot's self-collision matrix and design groups.

Run the MoveIt RViz plugin: You can visualize the

robot in RViz and interact with MoveIt using the MoveIt

RViz plugin. Specify the configuration package to

download. xml andlt; node name=and quot; moveit_rviz and

quot; pkg=andquot; rvizand quot; type= and quot; rviz and
quot; args=andquot;/launch/moveit.rvizandquot;andgt; Start

the simulation node: Start the simulation node of your robot

armand#039;. The details depend on the simulator you are

using (eg Watchtower, V-REP, etc.). xml andlt;node name=

and quot; my_robot_simulations and quot;

http://www.ijisrt.com/

Volume 8, Issue 11, November 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23NOV059 www.ijisrt.com 57

pkg=andquot;your_robot_simulation package andquot; type

= and quot; your_robot_simulation_nodesquot;
output=andquot;screenandquot;andgt; andlt;/nodeandgt;

Replace your_robot_simulationpackage and

your_robot_simulationnode with the actual simulation

package and node names.Run the MoveIt design and

implementation nodes:Run the MoveIt nodes that handle the

planning and execution of the move.

Include safety measures and additional components:

Depending on your specific configuration, you may need to

add additional components such as security controls,

detection modules, and more. Test the launch file: Run the

startup file with roslaunch to run the MoveIt simulation for

the custom robot arm. hit roslaunch your_pact_name

manipulator_simulation.launch.This startup file is the

starting point for running a custom MoveIt robot arm

simulation. You may need to modify and extend this to suit
the configuration and simulation of your particular bot #039.

To verify that the MoveIt action package was created for

your URDF custom robotic arm, follow these steps to test

and understand the generated package.

Navigate to the folder where the MoveIt configuration

package was created. Inside the created package you will

find various folders and directories. Below is a breakdown

of the main folders and their

contents: configuration: Contains YAML files for

configuring MoveIt and setting up MoveIt configuration,

including kinematics.yaml, joint_limits.yaml,

ompl_planning.yaml, etc.launch: Contains launch files for

launching MoveIt buttons and configuring MoveIt paths.

Important files may include move_group.

launch, demo. launch, etc.stitches:Contains

your robot meshes, if any.see: Contains RViz
configuration files for visualizing your robot and planning

movements.script: Contains scripts that can be used to

control robots using MoveIt. src:Contains source code files

that may have been created or added for custom control

logic.urdf:Contains the URDF file for your robotic

arm.configuration:Contains configuration files for

controllers and planners.

Open and examine the YAML configuration files in

the configuration folder to understand the configuration of

the robot control and scheduling settings. Check the

joint_limits.yaml file to see the joint limits specified for

your robot. Open and examine the launch files in the launch

folder. For example, the move_group.launch file configures

the MoveIt's MoveGroup button. Find the launch files that

start the necessary components of MoveIt, such as scene
planning, path execution, and RViz visualization. Open and

examine the RViz configuration files in the rviz folder to

understand how your robot is displayed in RViz. Check out

Planning_execution.launch or similar launch files to

understand how RViz is integrated with MoveIt. Explore

any scripts or source code files contained in the scripts and

src folders to understand any custom logic or controllers that

may have been created or added. By exploring the contents
of the generated MoveIt manipulation package, you will

better understand how to configure MoveIt for your URDF

custom robotic arm.

Creating a new ROS controller for the MoveIt
manipulation package involves defining a ROS controller

that interfaces with MoveIt to control the robotic arm.

Create a new ROS package to contain your controller.

Navigate to your packages folder. Create a new C++ source

file for your controller (e.g. Joint_position_controller.cpp)

in your package's src directory. Open the file and add the

necessary include and control logic. Open the

CMakeLists.txt file in your package. Add the following

lines to bind your controller execution. Create your ROS

package. Run your controller. It represents a simple generic

position controller.

Adjust and extend the code based on your specific

robot arm and control requirements. You may also need to

connect to MoveIt for trajectory planning and execution. To

create a launch file that loads the full MoveIt driver
simulation for the custom robotic arm, we will configure the

necessary components including MoveIt, Gazebo, RViz, and

the controller. Create a new launch file, for example

moveit_simulation.launch. #41; in your package. Open the

launcher file to edit it. Determine your launcher file

structure and import the necessary components. Customize

the launch file based on your specific robot arm and

requirements:Update your_moveit_config_package with the

name of the MoveIt configuration package you

created.Update your_world.world with the appropriate

Gazebo world file.Replace your_robot with your robot

model name.Adjust the path to your URDF file accordingly.
Launch the MoveIt simulation using the generated launch

file. Replace your_package with the actual name of your

package. This launch file will launch MoveIt for motion

planning, Gazebo for simulation, and RViz for visualization.

The robot model will be created in Gazebo and you can

use MoveIt to plan and execute movements for your robotic

arm in a simulated environment. Adjust the launch file as

needed to fit your robot arm's specific configuration and

environment.To launch the final MoveIt driver simulation of

your custom robotic arm in RViz and Gazebo. Create a new

launch file “e.g. custom_robot_simulation.launch”; in your

ROS package.

 your_package with the actual name of your ROS

package.

 your_world.world with the appropriate Gazebo world
file.

 your_robot with your robot model name.

 your_moveit_config_package with the name of your

MoveIt configuration package.

http://www.ijisrt.com/

Volume 8, Issue 11, November 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23NOV059 www.ijisrt.com 58

Launch the MoveIt simulation with Gazebo and RViz

using the generated launch file. This launch file will start
Gazebo for simulation, create the robot model in Gazebo,

launch RViz for visualization, and launch MoveIt for

motion planning. You will have a simulated environment in

which you can plan and execute movements for your

personalized robotic arm using MoveIt combined with
Gazebo and RViz. Adjust launch file paths and settings to

suit your specific robot arm configuration and environment

as shown in Fig 7 & Fig 8.

Fig 7: Robotic arm Motion planning in Rviz

Fig. 8: Robotic arm in Rviz and Gazebo

VII. CONCLUSION

Exporting SOLIDWORKS models to URDF for ROS

is an important step in robotics research and development.

This integration improves collaboration and accelerates the

development lifecycle by providing a standardized platform

for simulating, planning, and controlling robotic systems.

The methods presented in this article provide researchers

and practitioners with an effective method to integrate

SOLIDWORKS-designed robot models into ROS, opening

the door to further advances in the robotics field. This

structured conclusion provides an overview of the article's

objectives, methods, findings, and results. implications,
summarizing the importance of exporting SOLIDWORKS

models to URDF for ROS in robotics research.

REFERENCES

[1.] Guiyun Huang , Yong Li , Jian Cui, Research on

Modeling of Cutting Parts Based on Solidworks

[2.] Congguo shi, Weizhen wu, Xun Qiao Jianshe Huang,

” Secondary development of Solidworks Based

Parts”

[3.] Nainer, M. Feder and A. Giusti, ”Automatic

Generation of Kinematics and Dynamics Model

Descriptions for Modular Reconfigurable Robot

Manipulators”, in IEEE 17th International

Conference on Automation Science and Engineering,

2021, pp. 45-52.
[4.] I.-M. Chen and G. Yang, “Automatic model

generation for modular reconfigurable robot

http://www.ijisrt.com/

Volume 8, Issue 11, November 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23NOV059 www.ijisrt.com 59

dynamics,” J. Dyn. Syst., Meas., Control, vol. 120,

pp. 346–352, 1998.
[5.] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,

J. Leibs, R. Wheeler, A. Ng, ”ROS: an open-source

Robot Operating System'', in Proc. ICRA Open-

Source Softw. Workshop, 2009.

[6.] P. Vyavahare, S. Jayaprakash and K. Bharatia,

”Construction of URDF model based on open source

robot dog using Gazebo and ROS,” 2019 Advances

in Science and Engineering Technology International

Conferences (ASET), 2019, pp. 1-5, doi:

10.1109/ICASET.2019.8714265.

[7.] Maddalena Fedder a b,Andrea Giusti a,Renato

Vidoni b, An approach for automatic generation of
the URDF file of modular robots from modules

designed using Solid Works

[8.] Rajesh Kannan Megalingam, Raviteja Geesala,

Ruthvik Rangaiah Chanda, Nigam Katta ,Multimode

Control and Simulation of 6-DOF Robotic Arm in

ROS.

[9.] Morgan Quigley, Brian Gerkey , Ken Conley , Josh

Faust , Tully Foote , Jeremy Leibs , Eric Berger , Rob

Wheeler , Andrew Ng, ROS: an open-source Robot

Operating System

[10.] Pratik Vyavahare, Sivaranjani Jayaprakash, Krishna
Bharatia,Construction of URDF model based on open

source robot dog using Gazebo and ROS.

http://www.ijisrt.com/
https://ieeexplore.ieee.org/author/37086839093
https://ieeexplore.ieee.org/author/37086836011
https://ieeexplore.ieee.org/author/37086838797
https://ieeexplore.ieee.org/author/37086838797

