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Abstract:- This article presents a discussion about the 

methods used in experimental statistics, which considers 

a case study in which we have experimental units with 

unequal sample sizes. For this type of experimentation, 

non-observation of certain assumptions underlying the 

carrying out of the associated tests is observable, forcing 

the researcher to opt for alternative methods. With the 

aim of comparing the average pedagogical performance 

of students from different groups of students, a database 

was considered, made available in three groups of 

students according to the distances travelled to school. 

Given the observable violation of the assumptions of 

equality of variances and normality, for the analysis and 

discussion of the results, some non-parametric tests were 

described, for multiple comparisons and post-hoc tests, 

which are pairwise comparisons of means.  
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I. INTRODUCTION 

 

In several areas of knowledge, research focuses on 

experimental techniques, such as agricultural sciences, 
health sciences, and others. Experimental statistics, in most 

cases, is focused on comparing average performance in two 

or more groups (treatments), using the conventional test 

(F−statistics), assuming that some relevant assumptions are 

satisfied (Douglas [1]). In fact, the F−statistic, as the 

appropriate test for multiple comparisons, assumes that the 

observations in K treatments have a normal distribution and 

that equality of variances is observed in the K treatments. In 

certain fields of research, it is common for experimental 

units to not be balanced, and therefore, cases may be 

observed in which differences in treatment sizes are high 

(half or more), or even as small as possible. Experiments 
with unbalanced experimental units usually present certain 

problems in the analysis of variance (ANOVA) procedure 

(Brien [2]), since, in most cases, the underlying 

assumptions, such as normality and equality of variances, 

are not verified and it is very common that the assumptions 

underlying the test are influenced by these sample 

differences, or even caused by small deviations in variances. 

In variance analysis, the assumptions of normality and 
homoscedasticity are mandatory (Robert [3]), therefore, if 

the underlying assumptions have not been verified, the 

researcher can opt for data transformation methods (George 

[4]), or by using non-parametric methods, as a reasonable 

alternative (Ghosh [5]). Some authors propose the Kruskal 

and Wallis test (1952), Welch’s t-test (1947), Brown and 

Forsythe (1974), for multiple comparisons and the Gomes 

and Howell test (Roxton [6]) as a post-hoc test, as non-

parametric tests. alternatives. Because it is thought that 

certain studies with unbalanced treatments do not adhere to 

rigorous statistical standards (Rosenbaum and Rubin [7]). 

Data transformation correction methods are difficult to 
implement when treatments have different sample sizes, 

(George [4]). Non-parametric tests, as frequently used 

alternatives, are powerful tools for comparing treatments, as 

their procedure is based on comparing medians with the 

general average of treatments (Fernandez [8]). With the aim 

of comparing the average pedagogical achievement of basic 

education students in rural areas, this article carries out an 

analysis in experimental statistics, in k groups of students, 

bringing a discussion about the validation of the results, 

taking into account certain conditions of the data. 

 

II. ANALYSIS OF VARIANCE (ANOVA) 

 

In this chapter, methods for designing and analyzing 

one-factor experiments with an arbitrary number of factor 

levels (treatments) are developed. For an experiment that 

has been completely randomized, in which we have a single 

factor wanting to compare different treatments, then the 

response observed in each of the treatments is a random 

variable, (Douglas [1]). Analysis of variance can be 

classified as unidirectional when comparing three or more 

categorical groups and bidirectional when comparing several 

groups of two factors (Anindya [5]). Normally, one-way 
analysis of variance in its structure presents replications, 

while a two-way analysis can be with or without replications 

For a one-way analysis of variance, give a table (1) with the 

observations yij that represents the j−th observation taken 

under treatment i, then overall there will be n observations 

under the i − th treatment: 
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Table 1 Typical Data for a Single-Factor Experiment 

Trat 1 2 … n Total Average 

1 
11y  

12y  … 
ny1  .1y  

1y  

2 
21y  22y  … 

ny2  .2y  .2y  

… … … … … … … 

K 
1ky  2ky  … 

kny  .ky  .ky  

     
..y  ..y  

 

A. ANOVA Model 

The average model to describe the observations of an 

experiment is expressed as follows: 

 










nj

ki
y ijiij

,...3,2,1

,...,3,2,1
                                          (1) 

Where 

  

 ijy , represents the j-th observation 

 i  , represents the average of treatment i 

 

 Random Error ij  

The random error component includes all other sources 

of variability in the experiment, such as measurement errors, 
variability arising from uncontrollable factors, differences 

between experimental units (such as test material, etc.) to 

which treatments are subjected, and the general background 

noise in the process (such as variability over time, effects of 

environmental variables and others), (Douglas [1]). It is 

always convenient to think of errors as having a mean of 

zero, then: 

 

 










0ij

iijyE




                                                                    (2) 

 
Thus the model (1) is called Model of Means and an 

alternative way of writing a model (1), for the data is define 

as: 

 

iijy        Where    ki ,...,3,2,1                          (3) 

 

Then the model (1) can be written as follows: 

 










nj

ki
y ijiiij

,...3,2,1

,...,3,2,1
                                  (4) 

 

By (Robert [3]), for the model (4), the parameter µ 

becomes a common parameter for all treatments, designated 

as the general average, while τ is exclusively a parameter for 

ith treatment, called the effect of the ith treatment, and 

therefore the model (4), is called Effects Model (Douglas 

[1]). Therefore, both the Average Model and Effects Model 

are linear statistical models, since the response variable ijy  

is a linear function of the model parameters (Douglas [1]).  

 

Although both forms are useful, the Effects Model is 

widely mentioned in the experimental design literature, for 

the intuitive reason that µ, is a constant and the treatment 
effects i, represent the deviations from this constant when 

specific treatments are applied. Both the equation (1) and the 

equation (4) are also called single-factor ANOVA, in which 

the experiment is assumed to be carried out in random order 

so that the environment in which the experimental units are 

applied, be the same, then the experimental design is a 

completely casual design, (Robert [3]).  

 

The objective of the experiment will be to test 

hypotheses about treatment means and estimate them, 

assuming that errors are independent random variables and 

normally distributed with zero mean and constant variance 
within groups. Which implies that the observations have: 

 

 2, iiij Ny         Where    ki ,...,3,2,1       (5) 

 

B. Variance Analysis with Fixed Factors 

As can be seen in the table (5), in a model with a single 

factor, in which the total of observations under the ith 
treatments, the means of the ith treatments and the general 

average are represented. In this case, the interest of the 

analysis is to test the equality of the means of the k 

treatments, which can be described as follows: 

 

  iiijyE        Where    ki ,...,3,2,1           (6) 

 

Or by hypothesis test: 

 






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 kiH

H

ii

k

,...,3,2,1!:

...:

10
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


                                (7) 

 

In fixed effects models, the average of the ith treatment 

and two components is defined, such as in equation (6) and 

we generally consider µ to be the general average, by 

(Douglas [1]): 
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                                                        (8) 
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The effects of the treatment or factors can be 

considered as deviations from the general average, therefore, 

the hypotheses (7) can be represented in order to test the 

effects of the treatments: 

 






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kiH

H

i

k

,...,3,2,1,0!:

0...:

0

3210




                                 (9) 

 

C. Decomposition of the Sum of Total Squares 

The total identification of ANOVA indicates that the 

total variability of the data, which is measured by the 

corrected total sum of squares, can be partitioned into a sum 
of squares of the differences between the treatment means 

and the general mean, plus a sum of squares of the 

differences in observations within treatments in relation to 

the treatment mean. Therefore, the difference between the 

observed treatment means and the overall mean is a measure 

of the differences between the treatment means that may be 

due solely to random error. Considering the table (5), we 

have the following decomposition: 

 

 Sum of Squares between Treatments 

 

 
2

1

..



k

i

ijTratament yynSS                                         (10) 

 

 Sum of Squares within Treatments 

 

 
 


k

i

n

j

iijError yySS
1

2

1

.                                          (11) 

 

  Sum of Total Squares 

 

ErrorTratamentTotal SSSSSS                                        (12) 

 

  Degrees of freedom 

In estimating the sum of total squares, the total number 

of observations, kn = N, is considered, then in estimating the 
sum of average total squares, we admit the degree of 

freedom, N − 1 in estimating the sum of squares between 

treatments, if we consider the total number of treatments, k 

then in estimating the sum of squares between the average 

treatments, we admit the degree of freedom k − 1 and 

finally, there are n replicates within the k treatments that 

provide n − 1 degrees of freedom, to estimate experimental 

error. Due to the existence of k treatments, we have the 

degrees of freedom to estimate the sum of squares of the 

mean errors: 

 

  kNkknnk 1                                            (13) 

 

 Sum of Squares between Average Treatments 
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For cases where the means between treatments are 

equal, the equation (14), estimates the population variance 

or the variance of all treatments 
2  Douglas [1]. 

 

 Sum of Mean Squares within Average Treatments 
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                     (15) 

 

Likewise, the equation (15), is a pooled estimate of the 

common variance within each of the k treatments and also, 

if the means within the treatments are equal to the equation 

(15), estimates the population variance or the variance of all 

treatments
2 . Note that, if there is no difference between 

the treatment means, both TratamentMS  and ErrorMS  will be 

an estimate of the population variance  
2  , which implies τ 

= 0. Therefore, it can be noted that, for the hypothesis test 

(7), “if there is a difference between the means of the 
treatments, the expected value of the mean squares of the 

treatment will be greater than the population variance 
2  ”, 

(Robert [3]). By (Jean [9]), the hypothesis test (7) can be 

carried out by comparing the two estimates, which are, (14) 
and (15) , if there is equality between the Treatment 

averages these estimates will be equal. As can be seen, the 

identity of ANOVA provides two estimates of population 

variance
2 , one based on variability between treatments 

and the other based on variability within treatments 

(Douglas [1]). 

 

  2!  Tratamentji MSE                             (16) 

 

D. Statistical Analysis of Fixed Effects Model 

The hypothesis test presented (7), takes on that within 

the groups, the errors ij  are independent and have a normal 

distribution, with zero mean and constant variance, and the 

observations ijy  , are independent and normally distributed 

with mean i   and constant variance, then TratamentSS  , 

is a sum of the squares of the normally distributed random 
variable. In statistical analysis, it can be proven that if the 

null hypothesis is true, then (George [4]): 
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Table 2 ANOVA in Fixed Effects Models 

Source SQuar Degree QAverage F-Stat 

BetwenTrat 
TratmentSS  1k  

TratmentMS  0F  

InTrat 
ErrorSS  kN   

ErrorMS   

Total 
TotalSS  1N  … … 

 

Errror

Tratament

MS

MS
F 0

                                                           (17) 

 

If the null hypothesis is false, then by (Robert [3]), the 

expected value of the numerator in (17), will be greater than 

the variance, and therefore we reject the null hypothesis, that 

is, there are significant differences between the treatment 

averages, and then: 

kNkFF  ,1,0                                                                 (18) 

 

Note that, in the ANOVA table (2), the calculations 

presented can be obtained using already designed 

computational methods. 

 
E. Estimation of Model Parameters 

If we have two populations with means 1  and 2 , 

with variances 
2

1  and
2

2 , respectively, an estimator of the 

difference between 1  and 2  is provided by the statistic 

21 xx  Therefore, to obtain a point estimate of 21    

and calculate the difference 21 xx  , of the sample means. 

Clearly, we must consider the sampling distribution. The 

confidence interval for the means of two populations, 

considering unknown population variances, we use the 

sample means 2x  and 1x  of two independent random 

samples, respectively from approximately normal 

populations, in which, a confidence interval of 100(1 − α)% 

is given by:  

 

 For Approximately Normal Populations with Unknown 

but Equal Variance 
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 For Approximately Normal Populations with Unknown 

but Different Variance 
 

2
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1

1

,
2
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s
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s

n

s
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For an estimated model, the ANOVA model 

estimators, when estimating the confidence interval, note 

that the general mean is estimated by the general mean of 

the observations and that any treatment effect is just the 

difference between the treatment mean and the overall 

average (Robert [3]) 


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When estimating the confidence interval, it is assumed 

that the errors are normally distributed with zero mean and 

constant variance, each treatment mean (Robert [3]), and in 

violation of some assumptions we resort to non-parametric 

methods; 

 











N
NDy Ii

2

,


                                       (22) 

 

Thus, knowing the variance 
2  , estimate the 

confidence interval, using the normal distribution, and in the 

case of unknown variance, we use ErrorMS  as an estimator 

of the variance with t-student distribution, to test the 

difference in means between two treatments. 

 

F. Unequal Sample Size to ANOVA 

In several studies, such as in the areas of medicine, 

veterinary, social impact studies and others, it is possible to 

observe that in most cases, the researcher has been forced to 

carry out certain experimental statistics on treatments with 

different sizes. In the example of health sciences areas, it 

may be necessary to carry out analysis of different types of 

hepatitis transmission in patients diagnosed in a given 
period, in order to compare some attribute associated with 

the patient’s pathological history. If the diagnostic period is 

taken into account, the experimenter may have in his 

database differences in observations in different types of 

transmission. (Hepatitis A, Hepatitis B and Hepatitis C)1 . 

According to (Douglas [1]). ”in experiments with equal 

sample sizes, the power of the test is maximized”, but this 

concept is not analytically substantiated, due to the nature of 

the specific experiment. In the example of comparing the 

average grade in four second-year classes at the Faculty of 

Engineering, even if there are differences in the number of 
students, it does not take away the merit of the experiment, 

and in this example, random effects are negligible, as the 

treatments are exposed in similar environments. For 

treatments with unbalanced observations, the analysis of 

variance described in equations (10) and (11), small 

modifications to the sum of squares formula, must be made. 
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                                                                      (23) 

 

                                                             
1 Hepatitis is classified according to the type of transmission 
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 The literature mentions two advantages in experiments 

with a balanced design George [4]  

 

 The test statistic is relatively insensitive to small 

deviations from the assumption of homogeneity in 

treatments with an equal number of replicates.  

 Test power is maximized if samples are of equal size 

 

G. Model Validation 

The decomposition of variability in observations 
through an analysis of variance identification (12), is purely 

algebraic, therefore the use of the partition to formally test 

the absence of differences in treatment means, requires that 

certain assumptions be satisfied (Douglas [1]). The question 

of model validation would be that the observations are 

adequately described by the estimated model? Given the 

equation (4), then the errors are independent and normally 

distributed with zero mean and constant variance. 

 

 2,0  NDij                                                            (26) 

 

If these assumptions are not verified, the use of 

analysis of variance is not a reliable test for differences 

between treatment means (Johnson [10]). Violation of basic 

assumptions and model adequacy can simply be investigated 

by residual analysis (Robert [3]). The residuals are defined 

as observation j of treatment i, as follows: 

 

ijijij yy ˆ   Where  

  iiiij yyyyy  ....
ˆˆ                               (27) 

 

The expression (27), offers an attractive result that the 

estimate of any observation ijy  in the treatment, is just the 

average of the corresponding treatment (Edison [11]). 

Verification of the diagnosis can be easily done by graphical 

analysis of the residues, which can adopt other ways of 

treating several common anomalies, such as discrepant data 

(Ranghuthan [12]). For variance analysis, it is more 

effective to construct the graph of the residuals, in which, if 

the distribution of the underlying errors is normal, this graph 

will resemble a straight line, (Ranghuthan [12]). The use of 

non-parametric tests of adherence to the normal distribution, 
such as Pearson’s Chi-Square (QQ), Kulmogorov-Smirov 

(KS), Shapiro Walks (SW) tests and others, is more 

objective, (Jean [9]). Due to the fact that F-Statistic test is 

slightly affected by the assumption of normality, ANOVA 

or other procedures related to multiple comparisons are 

robust to the assumption of normality (Robert [12]), and it is 

still necessary to implement the Levene or Barttlet test as 

homogeneity tests (Anindya [5]). 

H. Data Transformation 

A practical method to solve the problem of violating 

the assumptions of normality and homoscedasticity, is the 

transformation of Box Cox, (George [4]) which is carried 

out through an exponent, lambda (λ) that varies between −5 

and 5, and can take any range within it. To perform the data 

transformation, all values of λ are considerable, and an 

optimal value of λ is selected, which results in the best 
approximation of a normal distribution curve (28). 
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For experimental data, the Box-Cox transformation 

presents certain constraints in cases where treatments are not 

balanced, or k treatments with differences in the number of 
observations. An analysis of variance, in which data 

transformation is not applicable as a way of solving the 

problem of normality and equality of variances, alternative 

non-parametric methods can be used (Anyndia [5]). 

 

III. NON-PARAMETRIC TESTS IN ANOVA 

 

A non-parametric test used to replace the t test is the 

Mann-Whitney test, considering a smaller number of 

observations within the groups and/or violating the 

assumption of normality (Kolmogorov-Smirnov and 
Shapiro-Wilk), in which homogeneity in the groups is 

assumed, using the Levene test (Edison [11]). The non-

parametric Kruskal and Wallis test is a reasonable 

alternative to the F statistic in multiple comparisons, when a 

violation of the relevant underlying assumptions is observed, 

(Walpole [13]). By (Douglas [1]), Kruskal and Wallis test, it 

is a non-parametric test, used to test the null hypothesis that 

the k treatments are identical in relation to the alternative 

hypothesis that some treatments generate a number of 

observations greater than the others. Although the procedure 

was designed to be sensitive to the test of differences in 
means, it is sometimes convenient to admit the Kruskal and 

Wallis test as a test of equality of means in k treatments, 

therefore, it is a non-parametric alternative to analysis of 

variance usual (Jean [9]). An interesting method for 

estimating confidence intervals simultaneously for r pairs of 

treatment means (post-hoc) is the Boferroni Method, 

(Douglas [1]) which allows the experimenter to construct a 

set of r simultaneous confidence intervals for pairwise 

differences in treatment means, in which the confidence 

level is at least 100 ∗ (1−r ∗α). For a not very large r, this is 

a very good method that leads to reasonably short 
confidence intervals. In the example of having 3 intervals 

with a significance level of 5%, the confidence level will be 

100*(1- 3*0.05)% = 85% (Douglas [1]). Other non-

parametric tests for comparing pairs of means are Fisher’s 

LSD procedure, Tukey’ HSD test and others, which consist 

of paired t tests, each with a significance chosen to control 

the experimental error rate. 
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A. Kruskal and Wallis Test Procedure (Rank−Test) 

The procedure used to implement the Kruskal and 

Wallis test starts by sorting the observations ijy  in 

ascending order and replacing each observation with its 

order. If there are observations with the same value, the 

average order is assigned to each of the linked observations, 

(Eduard [14]). So, let ijR  be, with the lowest rank it will be 

of the first order, where iR  is the sum of the orders in the 

ith treatment and the test statistic is: 
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For cases where there are no observations with the 

same value, we have: 
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Where: 

 

 N – Total number of observations. 

 in  - Number of observations in the ith treatment 

 
2S - Variance of sorted orders 

 iR  - The sum of orders classified in the ith treatment 

 

For a number of observations in the ith treatment that 

is reasonably larger, the test statistic (H) follows a chi-

square distribution with degrees of freedom k−1, under the 

null hypothesis of equality of means between the k 
treatments.´ 

 

1kQQH                                                                       (33) 

 

For the case in which the expression (33) is true, then it 

rejects the null hypothesis of equality of means between the 

k treatments. The Kruskal and Wallis test, which consists of 

replacing observations with their ordinary classifications, is 
called Transformation by Order, and is widely useful, since 

applying the common F test for classifications by order and 

not in original data, we would have as test statistics (34) 

(Conover [15]): 

 

kN

HN
k

H

F





1

1
0                                                            (34) 

 

It can be observed that both the Kruskal-Wallis (H) 

increases or decreases, F0 also increases or decreases, so the 

Kruskal-Wallis test is equivalent to the application of the 

usual analysis of variance in the classifications, (Douglas 

[1]). Violation of the assumption of normality may be 

caused by the effect of outliers, (Iman [16]), therefore, it is 
recommended that the usual variance analysis be performed 

on both the original data and the classifications and (George 

[4]) when both procedures give similar results, the 

assumptions of the analysis of variance are probably 

satisfied reasonably well, and the standard analysis is 

satisfactory. When the two procedures differ, the rank 

transformation should be preferred because the test is less 

likely to be skewed by non-normality and outlier 

observations. In such cases, the experimenter may want to 

investigate the use of transformations for non-normality2 

and also, examine the data through the experimental 

procedure to determine whether there are outliers 
(Fernandez [8]). Due to the need to check which pairs of 

groups have significantly different means, in multiple 

comparisons, we must analyze post-hoc tests, using non-

parametric tests to replace the t-test, given the possible 

violation of the assumption of normality. Considering the 

homogeneity in the groups, the Tukey or Bonferroni LSD 

test can be chosen, as they are more rigorous (Edison [11]).  

 

B. Non-Homogeneity Estimation  

One of the assumptions of ANOVA, in the equality of 

means, is the equality of variances, although it is tolerant for 
small variance deviations, when we have equal sample sizes 

in k treatments (Douglas [1]). The ANOVA test can produce 

very misleading results in the presence of severe 

heterogeneity or unequal sample size. In these cases, 

different analysis approaches are proposed, one of which is 

the Welch´s t−test (Satterthwaite [17]) test, which is slightly 

different from the usual test (17). The Welch test is used in 

one-factor Analysis of Variance, as a generalization of the 

Student’s t test, when the assumption of homoscedasticity is 

violated although it presupposes approximation to normality 

(Welch [18]). Considering k samples for the model (4), The 

F statistic proposed by Welch´s t−test is given by: 
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                (35) 

                                                             
2 By (George [4]), for unbalanced treatments, transformation 

methods are difficult to implement 
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Where:              
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The null hypothesis brings an approach to comparing 

the test statistics with degrees of freedom 1f  and 2f , as 

follows: 

 

21 , ffw FF    Such that  11  kf    and     
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Note that the value of 2f  is approximated by 

default to an integer. For k = 2 the procedure reduces to the 

Student’s t test with two samples. The Brown-Forsythe test 

is a statistical test for equality of group variances as Levene 

test (Antonio [19]) based on performing an Analysis of 

Variance (ANOVA) on a transformation of the response 

variable, therefore, it is the F statistic resulting from an 

ordinary one-way analysis of variance on the absolute 

deviations of groups or treatment data in relation to their 

individual medians (Brown and Forsythe [20]), assuming an 

approximation to normality. The test statistic for the null 
hypothesis (equality of means) is given by: 
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C. Variance Analysis and Adjacent Assumptions 

 

 In one-way analysis of variance, if the assumption of 

normality is not violated in k treatments, but there is a 

violation of equality of variances, the usual analysis of 

variance test, can still be used to compare k means, 

resorting to non-parametric tests or even implement 

transformation methods to correct the data (Douglas [1]) 

 The non-parametric test Kruskal and Wallis, is widely 

used when in k samples, the assumption of normality is 

not verified, but there is similarity of distribution and 

variances (Anindya [5]). 

 The non-parametric tests Welch’s t-test (35) and Brown 

and Forsyth test (36) present a reasonable alternative, 

considering a violation of the equality of variances 

(Brien [21]). Despite presenting very similar results, in 

the context of violating the assumption of 

homoscedasticity, if extremely high or low means are 

associated with small variations, the experimenter can 

use Welch’s t-test, and if extreme means are associated 
with variances larger, he can use Brown and Forsyth test, 

(George [4]) 

 The Games-Howell test is an improved version of the 

Tukey-Kramer test and is applicable in cases of violation 

of the assumption of equality of variances and is a t-test 

using Welch’s degree of freedom (Brien [2]). This 

method uses a strategy to control type I error for the 

entire comparison and is known to maintain the 

predefined significance level even when the sample size 

is different (Gearge [4]). However, the smaller the 

number of samples in each group, the more tolerant the 
type I error control is, and can be applied when the 

number of samples is greater than six (Brown [20]). 

 For k samples with a distribution extremely different 

from normality and strongly heteroscedastic, the 

procedure for transforming the data to another 

distribution is recommended, which can satisfy the 

assumption of normality and homogeneity (George [4]). 

If outliers are causing non-normality and non-

homogeneity, the researcher can correct the data, if he 

feel it has been reported incorrectly, such as using 

different units or missing decimals or decimals in the 
wrong place, can correct them or use non-parametric 

tests, which do not require assumptions (Conover [15]).   

 One-way ANOVA is considered robust to moderate 

variance deviations, but unequal sample sizes affect the 

robustness of the homoscedasticity assumption (Keppel 

[22]). In fact, there is no good rule of thumb for how 

unequal sample sizes need to be for heterogeneity to be a 

problem (Rusticus [23]). A formal idea, but not 

generalizable, is the fact that in the existence of K 

treatments with different sizes, the possibility of 

reducing the different sizes based on the treatment with 

the smallest observations is considered (Keppel [22]). 
Therefore, if we have equal variances in the groups and 

unequal sample sizes, there is no problem, and if the 

variances are unequal and equal sample sizes, there is no 

problem (Rusticus [23]). 
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 Example 

Data on the pedagogical performance of elementary 

school students, collected in a school in a rural area in the 

province of Sofala− Mozambique, were subjected to an 

experimental analysis, aiming to compare the average 

pedagogical performance of students from different 

locations.  

 

 
Fig 1 Data 

 

For the analyses, a prior classification of groups was considered list (figure 1) using the cluster method by computational 

methods already designed for this purpose (figure-2) (kmeans, gap−stat,..), taking into account the distances covered, through 

which three heterogeneous groups were estimated (Etherington [24]).  

 

 
Fig 2 Grouping by Kmeans 

 

 
Fig 3 Treatments 
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To an implementation of multiple comparison methods 

(ANOVA), to compare the average pedagogical 

performance, in the three groups (treatments), the data 

grouping procedure used, it is inevitable that the treatments 

would have different replicates or not equal sample sizes. 

Admit useful even if it is carry out experimental statistics in 

more than two classes at a given level of education, different 

treatment sample sizes will clearly be observed. 
 

Experiments carried out presenting different treatment 

sizes usually present anomalies in relation to the underlying 

assumptions for the analysis of variance procedure, such as 

equality of variances within treatments and normality. Data 

transformation methods, for data correction, are difficult to 

implement when we are dealing with experimental units 

with not equal sample sizes, therefore a need to use 

non−parametric methods for this purpose. As can be seen, 

the sizes of the treatments are different, with one of them 

having half the observations compared to the other (figure - 

4) and the estimated groups were named as being: 

 

 Shortest Distance 

 Medium Distance 

 Greater Distance 

 

 
Fig 4 Data Summary 

 

In the ANOVA model (figure – 5), the usual F Statistics test, concludes that there are differences between the treatment 

means, that is, there are significant differences in the average pedagogical performance between the treatments. Regarding the 

validation of the model, it is noted that the series of residues (figure – 6), presents some deviation from normality, which may be 

caused by the observation of atypical data that are in some way representative of the sample, or even by the nature of the data, 
which have different sizes of treatments. 

 

 
Fig 5 F-Statistic Test for ANOVA 

 

 
Fig 6 Small Deviations from Normality 
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Observing the level of asymmetry, graph (figure – 7) does not present serious situations of violation of the assumption of 

normality of the model's residuals, therefore, the idea that the samples have an approximately normal distribution is reinforced, 

despite the formal test (figure – 8), it is rejected normality. 

 

 
Fig 7 Histogram from Normality Residual 

 

 
Fig 8 Shapiro Wilk Test from Normality 

 
To test the equality of variations within groups and admitting doubts about the assumption of normality, both the Bartlet test 

and the Levene test can be used, therefore, the Levene was implemented as one of the most efficient and robust alternatives to 

non-normality, which considers the comparison of variability in relation to the median, in your procedure.  

 

 
Fig 9 Levene Test for Homogeneity 

 

The conventional F-Statistic test, obtained through one-factor analysis of variance to compare the means of independent 

normal populations (figure – 5), presents invalid results, given the violation of the assumption of equality of variances and 

presents results similar to Kruskal - Wallis (figure – 10) and Welch (figure – 11) non-parametric test, both reject the hypothesis of 

equality of means in the three groups (p – value < 5%).  
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Fig 10 Kruskal and Wallis Test 

 

 
Fig 11 Welch´s Test 

 

The Welch t-teste (Figure – 11), F-Statistic test 

(Figure – 5), and the Kruskal and Wallis test (Figure – 10), 

in addition to being unanimous in rejecting the hypothesis of 

equality of means, present similar results. This result shows 
that there is no serious violation of the relevant assumptions 

for the purpose, such as normality and equality of variances. 

, which can be influenced by the observation of atypical data 

considered representative of the sample. In general, if the 

assumptions of equality of variances have not been verified 

and assuming the approximation to normality, the researcher 

may choose to use non-parametric tests as a reasonable 

alternative for the intended inferences. 

 

Although the tests already used tend to reject equality 
of means in the three groups, and although it rejects the null 

hypothesis, the Brown Forsythe test (figure – 12) may be a 

reasonable preference due to its robustness, taking into 

account counts its procedure, which is compared with 

Levene's test. 

 

 
Fig 12 Brown Forsythe Test 

 

 
Fig 13 Games-Howell Test 

 

As has already been commented on the use of post-hoc 

tests, admitting heterogeneity between groups, the Games-

Howell test (figure – 13), shows that all pairs of groups are 

statistically different (p – value < 0.05), and therefore, the 
possible solutions in relation to public services, especially in 

the area of education, could be implemented considering the 

specific problems of each of the three groups 

 

 

 

Tools Used: RStudio, Python and Latex 
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