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Abstract:- The capacity to predict the seemingly 

ambiguous transition from mild cognitive impairment 

(MCI) to progressive cognitive decline is a critical 

concern in cognitive research. Advancement in 

computational systems has contributed to more robust 

potential to apply innovations in this sector. This study 

uses a multilayer perceptron (MLP) neural network 

approach to investigate and compare the utility of various 

neuropsychological tests to predict a 3-year progression 

from MCI. The MLP neural network is developed using 

the open database from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). The data were based on 

a sample of 246 subjects with MCI whose diagnostic 

follow-up was available for at least the full 3-year period 

after the initial baseline assessment during the initial 

project period, i.e., ADNI-1. Classification results and 

analysis demonstrated that the combined features from 

all three neuropsychological tests outperformed a single 

test and the pairwise tests with an accuracy of 89.43%, a 

sensitivity of 89.19%, a specificity of 89.63%, and the 

area under the receiver operating characteristic curve 

(AUC) of 0.934. 

 
Keywords:- Mild Cognitive Impairment; Artificial Neural 

Network; Neuropsychological Testing. 
 

I. INTRODUCTION 

 

Dementia is the umbrella term used to describe a decline 

in cognitive ability that has a significant impact upon an 

individual’s functioning related to the undertaking of the tasks 

of everyday life. Globally, approximately 47 million 

individuals are currently living with dementia [1], while 24 

million are living with Alzheimer’s disease (AD) [2]. As the 

mean age of the global population increases, so do rates of 

AD, and it is currently predicted that prevalence will increase 

four-fold by 2050 [2]. Caring for those with AD is resource 

intensive, with $305 billion spent on the care of those with 

disease in the U.S. in 2020 [3]. Before the development of 

diagnosable AD, patients experience mild cognitive 

impairment (MCI) that can have an impact upon their 

everyday functioning. Identification of MCI is crucial because 

it represents the earliest clinically detectable stage of a 

potential progression toward various dementias, including AD 

[4]. However, not all MCI patients transition to AD, thus it is 

essential that we develop an effective method that can 

accurately distinguish between MCI subjects who will 

progress to AD and those who will remain stable/show 

improvement.  

 

The availability of large biomedical datasets has 

increased in recent years, accompanied by advances in the 

field of artificial intelligent (AI) technologies. In combination, 

these developments have improved and increased our ability 

to diagnose AD [5], [6]. Current research has tended to focus 

upon the utility of different combinations of biomarkers to 

predict the conversion of AD in MCI patients. Such 

biomarkers include brain imaging data, cerebrospinal fluid 

(CSF) specimens, genotyping, and neuropsychological tests 

[7], [8]. Neuropsychological tests also appear to be feasible 

and effective for disease prognosis, while also being relatively 

inexpensive to administer. The undertaking of 

neuropsychological tests includes the investigation of 

cognitive processes and functioning involved in 

corresponding tasks such as thinking, planning, walking, 

remembering, talking, seeing, and feeling [3]. A decline in the 

cognitive functioning, required to undertake these tasks, has 

the ability to drastically reduce an individual’s quality of life 

and is linked to higher rates of morbidity and mortality [9], 

[10]. Therefore, the presence of multiple cognitive deficits 

suggests that the efficacy of using a combination of 

neuropsychological tests from various domains to characterize 

the patterns developed due to cognitive impairments and 

enable improved clinical diagnosis [11]–[13]. 

 

Based on the subsequent diagnosis status at follow-up 

assessments, MCI patients can be divided into two subgroups: 

(1) subjects diagnosed with MCI who remain stable (defined 

as stable MCI (sMCI)) and (2) subjects who progress to AD 

(defined as progression MCI (pMCI)). The current study 

sought to develop fully connected multilayer perceptron 

(MLP) neural networks to predict whether an MCI patient 

would progress to AD during a 3-year follow-up period (i.e., 

sMCI vs. pMCI) based on the itemized scores from three 

neuropsychological tests contained within the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database. Initial 

results were compared with the state-of-the-art models used 

within more complex methodologies. 

 

The paper is organized as follows. Section II presents the 

data and the methodology of the MLP. Section III presents the 

results of the modeling. Section IV evaluates and discusses 
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the results from our research. The final section derives 

conclusions from the study and proposes directions for future 

work. 

 

II. MATERIALS AND METHODS 

 

Analyses were implemented utilizing Python and several 

associated libraries such as Scikit-learn, Pandas, Numpy, 

TensorFlow, and Keras [14], [15]. The following steps were 

undertaken to construct the classifiers and optimize their 

performance. A summary of all the steps involved in building 

a classification model is represented in Fig. 1. 

 

 
Fig. 1. Steps involved in building a classification model. 

 

A. ADNI Database 

The ADNI database (http://adni.loni.usc.edu/) is a 

longitudinal multicenter study designed to develop clinical, 

imaging, genetic, and biochemical biomarkers for the early 

detection and tracking of AD progression.  Briefly, the 

database includes subjects recruited from over 50 sites across 

the U.S. and Canada and draws on a broad range of academic 

institutions and private corporations. Led by Principal 

Investigator Michael W. Weiner, MD, the project began in 

2003 and has been extended to different phases. The first 

phase of ADNI (ADNI-1) was completed in 2010, followed 

by ADNI-GO, ADNI-2, and ADNI-3. These four protocols 

have recruited over 1,900 adults between the ages of 55 to 90 

years. The sample includes those that are cognitively normal 

(CN), living with MCI, and individuals with AD. The follow-

up duration of each group is described in the protocols for 

ADNI-1, ADNI-GO, ADNI-2, and ADNI-3 (www.adni-

info.org). 

 

B. Subjects 

In this study, we used the baseline visit data from 391 

participants with MCI recruited during the initial project 

period (ADNI-1). Patients who were diagnosed with MCI at 

all visits during the 3-year follow-up period were included in 

the sMCI group. Patients whose diagnosis changed to AD 

during the follow-up period were included in the pMCI group. 

In total, 135 participants were in the sMCI group and 111 in 

the pMCI group; 145 were lost to follow-up. 

 

 

Participants were aged between 55-90, in good overall 

health and had no evidence of cerebrovascular disease. 

Further inclusion criteria included having at least six years of 

education or work history and fluency in either English or 

Spanish. Every subject, along with their partners, completed 

the informed consent process. The study protocols underwent 

review and approval by the Institutional Review Board at each 

ADNI data collection site. Table I displays the characteristics 

of the sMCI and pMCI subjects involved in this study. The 

mean test score was computed by averaging the scores from 

all the question in one test (see section C) 

 

TABLE I.  BASELINE VISIT CHARACTERISTICS OF SUBJECTS 

RECRUITED DURING ADNI-1. 

 

Characteristic sMCI (n=135) pMCI (n=111) p-value 

Age, year 74.28  1.27 74.61  1.26 0.72 

Education, years 15.66  0.50 15.77  0.56 0.76 

Sex, male/female 94/41 72/39 0.43 

ADAS-Cog score 15.48  1.00 20.81  1.00 3.7010-12 

MMSE score 27.64  0.29 26.67  0.31 1.0910-5 

FAQ score 1.90  0.51 5.86  0.94 6.5410-13 

Values are shown as mean and the 95% confidence interval or gender ratios. 
The p-values for differences between sMCI and pMCI are based on one-way 

ANOVA test. ADAS-Cog = Alzheimer's Disease Assessment Scale-
Cognitive subscale; MMSE = Mini-Mental State Examination; FAQ = 
Functional Activities Questionnaire.  

 

Before creating a neural network model, a one-way 

ANOVA test was performed to determine if the differences in 

the mean between the two groups (sMCI and pMCI) are 

statistically significant. From Table I, the mean differences 

between test scores are all statistically significant, while the 

mean differences in the demographic variables are not 

statistically significant (p-value > 0.05). 

 

C. Neuropsychological Data 

Three neuropsychological assessments from the ADNI-1 

baseline visit, containing Alzheimer's Disease Assessment 

Scale-Cognitive subscale (ADAS-Cog) [16], Mini-Mental 

State Examination (MMSE) [17], and Functional Activities 

Questionnaire (FAQ) [18], were used. The scores of 

individual questions were assessed (Table II), there were 13, 

30, and 10 itemized scores in ADAS-Cog, MMSE, and FAQ, 

respectively. The Q13 in ADAS-Cog was not used by default. 

Each score was derived as a summary result for a set of 

answers given for that test and was then included as a feature 

in the machine learning task.  

 

D. Designing Experiments for Classification 

The MLP neural networks were constructed utilizing: (1) 

the original set of features from each individual 

neuropsychological test (described above); (2) the original set 

of 43 features from ADAS-Cog and MMSE; (3) the original 

set of 23 features from ADAS-Cog and FAQ; (4) the original 

set of 40 features from MMSE and FAQ; and (5) the set of the 

53 features from the three neuropsychological tests combined. 

We trained seven MLP models to perform classification 

between sMCI vs. pMCI for both the individual, pairwise, and 

combined tests. 
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TABLE II.  NEUROPSYCHOLOGICAL ASSESSMENTS EMPLOYED 

IN THIS STUDY. 

 

Neuropsychological Tests 

ADAS-Cog Registration (3) 

Q1. Word recall Attention and calculation (5) 
Q2. Word recognition Recall (3) 

Q3. Object naming Language (8) 
Q4. Recall test instructions Visual construction (1) 
Q5. Orientation FAQ 

Q6. Commands Q1. Manage finances 
Q7. Clarity of language Q2. Complete forms 

Q8. Comprehension Q3. Shop 
Q9. Word finding Q4. Perform games of skill or hobbies 
Q10. Ideational praxis Q5. Prepare hot beverages 

Q11. Constructional praxis Q6. Prepare a balanced meal 
Q12. Delayed word recall Q7. Follow current events 

Q14. Number cancellation Q8. Attend to TV, books, or magazines 
MMSE Q9. Remember appointments 
Orientation (10) Q10. Travel out of the neighborhood 

 

E. Data Preprocessing 

The baseline dataset in ADNI-1 comprises of 400 

subjects diagnosed with MCI. The count of MCI subjects with 

missing values was notably low (9 out of 400) and we, 

therefore, chose to remove those subjects without using a 

replacement technique. Therefore, the dataset (n=391) used in 

our study is free of any missing values. In total, 135 

participants were in the sMCI group and 111 in the pMCI 

group; 145 were lost to follow-up. In statistics, a common 

practice involves discarding cases with missing values if they 

represent less than 5% of the total samples, provided the 

overall sample size is substantial enough.  

 

Feature normalization was executed through standard 

scaling, achieving a mean of Zero and a standard deviation of 

one. Feature normalization accelerates and stabilizes the 

optimization process [19]. Machine learning algorithms 

typically possess one or more hyper-parameters that 

significantly influence the model’s performance. Hyper-

parameters can be adjusted until the optimal model is found, a 

process known as hyper-parameters optimization/tuning. It is 

important to find and select the best hyper-parameters because 

they determine how learning of the algorithm is performed 

and controlled. In this study, prior to fitting the training data 

to each model, a grid search was performed to acquire the 

optimal set of hyper-parameters for the MLP networks. The 

grid search operates by systematically exploring a defined 

subset of hyper-parameters to identify the most optimal 

combination for a given network [20]. The best hyper-

parameters are chosen based on the area under the receiver 

operating characteristic curve (AUC) calculated for each 

combination of parameters. 

 

The evaluation of the predictive model was performed 

using cross-validation (CV) with stratified K-Fold. Data was 

divided into five subsets with consistent ratios between 

classes in each fold. In each fold, 80% of the data was utilized 

for training while the remaining 20% was allocated for 

testing. The sensitivity, specificity, accuracy, and AUC were 

calculated from the 5-fold CV. 

 

F. Multilayer Perceptron (MLP) 

The MLP is a feed-forward artificial neural network 

employing the back-propagation algorithm for weight updates 

[21]. The term “feed-forward” relates to the information from 

the input nodes going through the hidden nodes and moving 

forward to the output nodes. Each node is a neuron 

(processing unit) with a non-linear activation function. MLP 

has several advantages to perceptrons, in that it is able to 

identify linearly indivisible data, a task not possible using 

perceptrons [22]. 

 

The architecture of MLP is comprised of an input layer, 

one or more hidden layers, and an output layer as shown in 

Fig. 1. Within the current study, we adopted a three-layer 

architecture MLP neural network to perform the classification 

tasks. The dimension of the input vector, in the input layer, 

depends on the number of input features. We adopted a single 

hidden layer, and then performed hyper-parameter tuning 

using a different number of hidden neurons to define the 

optimal number of neurons in the hidden layer. The output 

layer has only one neuron since it only has two classes (sMCI 

and pMCI) within it. 

 

The rectified linear unit (ReLU) was selected as the 

activation function for the input and hidden layers [23]. As 

ReLU is a linear function and it takes a value of zero for all 

negative values, it can be defined as [24]: 

 

                               𝑦 = 𝑚𝑎𝑥(0, 𝑥)                                   (1) 
 

We also used the sigmoid function as the activation 

function for the output layer to obtain output between 0 and 1 

for prediction of probabilities. The sigmoid function follows 

an s-shaped curve and can be defined as [25]: 

 

                            𝑆(𝑥) =
𝑒𝑥

𝑒𝑥+1
                                      (2) 

 

The optimization of the networks was performed using 

the adaptive moment estimation (Adam) algorithm. This is an 

adaptive learning rate optimization algorithm designed for 

training neural networks and has demonstrated high efficiency 

[26]. The maximum number of epochs was set to 250 to 

ensure the training set loss function converges within a 

tolerance of 10−4. Both the L1 and L2 regularization were 

added to each layer to reduce the possibility of overfitting. 

Early stopping and learning rate shrinkage (with a minimum 

learning rate of 5×  10−4) was performed to monitor the 
validation loss function. Binary cross entropy was used as the 

loss function. The weight ratio between the two classes in the 

loss function was treated as one of the tunable hyper-

parameters. After getting the probability for each sample from 

the trained network, and in order to get the highest AUC, we 

treated the threshold for classifying each sample to sMCI or 

pMCI as a hyper-parameter. Practically, one can tune the 

thresholds and the class weights to improve the score of other 

metrics, such as overall accuracy, or True Positive Rate (TPR) 

such that Positive Predict Value (PPV) meets an agreed upon 

requirement. Our work shows the tuned results for the AUC 

as an example (discussed in Section III). 
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G. Performance Assessment 
For classifier assessment, sensitivity, specificity, and 

accuracy were calculated for each model (equations 3, 4, and 

5 below, respectively). Sensitivity, referred to as recall, 

assesses the proportion of true positive subjects identified by 

the test among all subjects identified as positive. The values of 

sensitivity are expressed within the 0 to 1 range, with higher 

values indicative of a higher value of true positives and a 

lower value of false negatives. Specificity gauges the true 

negative rate by measuring the proportion of actual negative 

subjects among the total number of subjects testing negative. 

As with sensitivity, values closer to one are preferable. 

Accuracy is the ratio of correctly classified subjects to entire 

subjects and represents one of the most important metrics in 

machine learning. Formulas are given below, where: TP = 

True Positives; TN = True Negatives; FN = False Negatives; 

FP = False Positives. 

                          Sensitivity =
TP

TP + FN
                                   (3) 

 

                            Specificity =
TN

TN + FP
                                  (4)               

                                               

                         Accuracy =
TP + TN

TP + TN + FP + FN
                        (5)           

                                 

 

 

TABLE III.  MULTILAYER PERCEPTRON (MLP) CLASSIFICATION PERFORMANCE USING DATA FROM EACH INDIVIDUAL TEST, THE 

ORIGINAL SET OF FEATURES FROM ADAS-COG AND MMSE, THE ORIGINAL SET OF FEATURES FROM ADAS-COG AND FAQ, THE 

ORIGINAL SET OF FEATURES FROM MMSE AND FAQ, AND THE COMBINED-TEST TO CLASSIFY SMCI VS. PMCI. THE SENSITIVITY, 

SPECIFICITY, ACCURACY, AND AUC WERE CALCULATED FROM 5-FOLD CV USING THE DEFAULT SETTING FOR CLASS WEIGHT (1:1) 

AND PROBABILITY THRESHOLD (0.5). THE PERFORMANCE WITH THE OPTIMAL HYPER-PARAMETER TUNING IS SHOWN IN BOLD FONTS 

(OPTIMAL VALUES FOR CLASS WEIGHT AND PROBABILITY THRESHOLD). 

 
Fig. 2. The ROC curves using data from each individual test, the original set of features from ADAS-Cog and MMSE, the original 

set of features from ADAS-Cog and FAQ, the original set of features from MMSE and FAQ, and the combined-test with 

multilayer perceptron (MLP). AUC score shown in the legend box. 

 

Based on the predicted probabilities for each of our 

participants, we assessed and plotted the Receiver Operating 

Characteristic (ROC) curve and calculated the Area Under the 

Curve (AUC). ROC/AUC is the most widely used metrics for 

evaluating a binary classifier, and is considered to be a 

reliable metric when a dataset has unbalanced counts for 

different target classes. For ROC curves, plotting involves an 

x-axis measuring the False Positive Rates (FPR) and a y-axis 

measuring the True Positive Rates (TPR). As the AUC moves 

closer to one, the performance of a predictive model in 

relation to reliability is assessed to be improving – with one 

being indicative of a perfect model performance.   

                                 

Case Dataset 
Probability 

Threshold 

Class 

Weight 
Sensitivity % Specificity% Accuracy % AUC 

sMCI vs. pMCI 

ADAS-Cog (13) 
0.5 1:1 63.39 79.56 72.29  6.95 0.795 

0.43 1:0.83 81.25 70.07 75.10   7.30 0.829 

MMSE (30) 
0.5 1:1 52.21 78.99 66.93  6.82 0.677 

0.56 1:1 44.25 92.75 70.92   8.54 0.790 

FAQ (10) 
0.5 1:1 65.18 78.68 72.58  2.22 0.793 

0.43 1:0.66 66.96 81.62 75.00   3.37 0.805 

ADAS-Cog + MMSE (43) 
0.5 1:1 75.00 87.83 77.11  8.23 0.848 

0.3 1:1.83 98.21 52.55 73.09   5.97 0.898 

ADAS-Cog + FAQ (23) 
0.5 1:1 63.06 88.15 76.83  5.46 0.828 

0.46 1:1.33 81.98 79.26 80.49   5.81 0.891 

MMSE + FAQ (40) 
0.5 1:1 68.75 86.76 78.63  7.41 0.850 

0.6 1:1.33 67.86 89.71 79.84   6.98 0.885 

Combined-Test (53) 
0.5 1:1 79.28 85.19 82.52  4.04 0.900 

0.46 1:1.16 89.19 89.63 89.43 10.28 0.934 
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III. RESULTS 

 

Table III summarizes the MLP classification 

performance obtained from using each individual test (13 

from ADAS-Cog, 30 from MMSE, and 10 from FAQ), the 

original set of features from ADAS-Cog and MMSE (43 

features), the original set of features from ADAS-Cog and 

FAQ (23 features), the original set of features from MMSE 

and FAQ (40 features), and the combined-test of 53 features 

from the three neuropsychological tests to predict whether an 

MCI patient, who classified as MCI at the baseline visit, 

would progress to AD during follow-up. The average 

classification performance using the standard class weight 

(1:1) and probability threshold (0.5) is presented, alongside 

the model’s performance with an optimal setting (highlighted 

in bold). Each optimal setting was determined by tuning class 

weight and threshold binarizing within the neural network to 

increase the performance via grid search tuning. As displayed 

in Table III, the model utilizing combined features, from the 

three tests, demonstrated superior performance compared to 

models using single test and the pairwise tests features. In 

particular, the combined-test model, with optimal parameters, 

obtained an AUC value of 0.934, which indicates high 

accuracy (few false negative and false positive cases). The 

models using pairwise tests outperformed the models using 

single test features, which also stresses that the combination 

of neuropsychological tests from various domains could 

improve classification performance. 

 

Fig. 2 plots the ROC curves using MLP for each 

individual test, pairwise tests, and the combined-test. The 

AUC values suggest that the best model is the combined-test 

model, followed by the ADAS-Cog + MMSE, ADAS-Cog + 

FAQ, MMSE + FAQ, ADAS-Cog, FAQ, and MMSE. 

 

IV. DISCUSSION 

 

Utilizing data from three neuropsychological tests, our 

current study constructed several, fully connected MLP neural 

networks to classify whether an MCI patient was likely to 

progress from MCI to AD during a 3-year follow-up period. 

 

Despite there being other neuropsychological tests, the 

three included in the current study were selected for the 

following reasons. Firstly, since a prominent feature of AD is 

memory impairment, ADAS-Cog and MMSE were selected 

as appropriate tests for this study. Secondly, ADAS-Cog and 

MMSE are tests of global cognitive function and, therefore, 

cover several domains outside of memory [27]. Thirdly, 

though designed for subjects with AD, the ADAS-Cog test 

demonstrates efficacy when used as a measure for trials of 

interventions in subjects with MCI [28] and is widely used as 

a cognitive scale in clinical trials [29]. Finally, as functional 

changes are noted earlier in the dementia process [30], [31], 

data on function from the FAQ test were also included. The 

FAQ has been found to be consistently accurate and 

demonstrates good sensitivity and specificity [18], [32]. The 

FAQ also has the ability to distinguish between different 

cognitive groups and, in particular, distinguish MCI from mild 

AD [33], [34]. 

 

Discriminating and classifying sMCI versus pMCI is a 

particularly difficult and challenging task because their shared 

key features often appear to overlap and have a number of key 

similarities [35], [36]. Our classification results outperformed 

earlier research in this area, including the work of Grassi et al. 

[37] by 11% accuracy. Within their study they utilized clinical 

and neuropsychological test scores, cardiovascular risk 

indexes, and a visual rating scale for brain atrophy. The 

increased efficacy of our model to distinguish between these 

two groups supports its potential use. 

 

Our approach used only neuropsychological tests and 

appears to have outperformed more complex study 

methodologies – including those which used biomarkers such 

as brain imaging and CSF. The use of such biomarkers can be 

prohibitively expensive and/or invasive and, because of this, 

is often not offered in the clinical setting. 

 

In comparison to the previous research conducted by 

Pang et al. [38] and Massetti et al. [39], our approach focused 

solely on neuropsychological tests and achieved a notable 

accuracy of up to 89% in predicting outcomes. Pang et al. [38] 

utilized a variety of clinical variables from the National 

Alzheimer's Coordinating Center (NACC) dataset to predict 

transitions from normal cognition to MCI and from MCI to 

AD using machine learning classifiers such as Support Vector 

Machines (SVM), Logistic Regression (LR), and Random 

Forest (RF). Their findings revealed that for the prediction of 

progression to AD within 3 years, neuropsychological tests, 

memory, community affairs, and judgement subitems played a 

significant role, whereas for the 2-year follow-up, biomarkers 

were more influential. The highest accuracies, ranging from 

80% to 85%, were achieved using the RF model for both 2-

year and 3-year prediction periods. 

 

Massetti et al. [39] on the other hand, utilized data from 

the ADNI and Alzheimer’s Disease Metabolomics 

Consortium (ADMC) datasets to predict MCI-to-AD 

transitions. They employed the RF algorithm on a dataset of 

587 MCI subjects, considering neuropsychological test scores, 

AD related cerebrospinal fluid (CSF) biomarkers, peripheral 

biomarkers, and structural MRI data as variables. Their results 

indicated an accuracy of 86% in predicting the MCI-to-AD 

transition, with neuropsychological test scores, MRI data, and 

CSF biomarkers identified as the most crucial features. 

 

Additionally, Diogo et al. [40] focused on early 

detection of AD using MRI scans from ADNI and Outcome 

and Assessment Information Set (OASIS) databases. Their 

study included 570 subjects from ADNI and 531 subjects 

from the OASIS dataset, aiming to classify healthy controls 

(HC), MCI, and AD using an ensemble machine learning 

model. Morphometric and graph theory features were 

extracted from MRI scans for analysis. Their classification 

tasks employed various machine learning techniques such as 

linear SVM, decision tree, random forest, extremely 

randomized tree, linear discriminant analysis, logistic 

regression, and logistic regression with stochastic gradient 

descent learning. The study achieved a balanced accuracy of 

90.6% for HC vs. AD classification and 62.1% for HC vs. 

MCI vs. AD classification. 
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In the context of these comprehensive studies, our 

approach stands out due to its singular reliance on 

neuropsychological tests, which suggests that a focused 

approach on these tests might offer a more streamlined and 

effective predictive model compared to the integration of 

broader variable ranges, as demonstrated by previous 

research. It is important to consider the distinct datasets, 

methodologies, and prediction timeframes employed in these 

studies, which may contribute to the variability in accuracy 

and feature importance observed across the research findings. 

Further exploration and validation of our approach could 

provide valuable insights into its applicability and significance 

in predicting cognitive transitions. 

 

Our classification model achieved a more optimal 

performance-related result compared to earlier research that 

often utilized more complex methodologies [37]–[40]. Our 

study demonstrates the potential of incorporating 

neuropsychological tests into regular physical examinations 

for seniors. At the same time, early detection of AD becomes 

feasible when these tests are used in combination with deep 

learning. This study also validates that utilizing a combination 

of a multiple neuropsychological tests and assessments 

improve the accuracy of clinical diagnosis in AD. This 

approach is currently used in practice, since a physician can 

miss a diagnosis due to the utilization of a single test, or one 

that is not sensitive to differences between MCI and AD. 

Moreover, early detection of MCI is critical to putting in place 

treatment regimens able to slow cognitive decline and reduce 

its impact upon quality of life. 

 

V. CONCLUSIONS AND FUTURE WORK 

 

The AD is a progressive disorder that incorporates a 

range of symptoms, and its insidious nature means that it 

develops over time, often beginning with very mild symptoms 

that can easily be mistaken or ignored. Consequently, there is 

a pressing need to develop accurate and reliable early 

prediction models capable of detecting potential changes from 

mild cognitive impairment (MCI) to AD in a timely manner. 

In this pursuit, the current study employed MLP neural 

networks, which demonstrated good results by achieving an 

accuracy rate of close to 90%. This result highlights the 

potential of deep learning-enabled classifiers to effectively 

discriminate between individuals at varying risk levels for AD 

progression. Such advancements in artificial intelligence-

driven methodologies can significantly aid in identifying 

individuals who are in the early stages of AD, thus allowing 

for more timely interventions and personalized treatment 

strategies. 

 

The implications of these findings are substantial. 

Firstly, early detection of AD can lead to early interventions 

that may help slow down the disease's progression and 

improve the quality of life for affected individuals. Moreover, 

the accurate identification of individuals at higher risk of AD 

could enable more targeted research and clinical trials, 

ultimately facilitating the development of novel therapeutics 

to combat the disease. 

 

While the current study's results are promising, further 

research is warranted to validate and refine the findings, 

especially in diverse clinical settings. Future investigations 

could explore larger and more diverse cohorts to ensure the 

generalizability of the predictive model. Additionally, 

longitudinal studies can shed light on the model's performance 

over an extended period, helping to ascertain its long-term 

accuracy and reliability. 

 

In conclusion, the development of an accurate early 

prediction model for AD is of paramount importance in 

tackling this devastating disease. The success of the MLP 

neural network in discriminating between groups at different 

stages of AD risk represents a significant step forward in this 

endeavor. With continued research and refinement, these 

innovative AI-driven approaches hold immense potential in 

revolutionizing how we diagnose and manage AD, ultimately 

making a positive impact on the lives of millions of 

individuals and their families worldwide. 
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