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Abstract:- This study explores the application of 

regression models and artificial neural networks (ANNs) 

in predicting Total Dissolved Solids (TDS) in 

groundwater within two distinct regions of Aligarh city - 

the Northern Area Samples (NAS) and the Southern 

Area Samples (SAS). It aims to identify the key 

predictors of TDS in both areas and to compare the 

effectiveness of the two modelling approaches. In the 

NAS, sulphate, bicarbonate, sodium, and chloride were 

found to be the major TDS predictors, with the strongest 

being sulphate. In contrast, the SAS showed sodium, 

magnesium, potassium, and chloride as the main 

predictors, with sodium as the most influential. The ANN 

models displayed strong validity with high R square 

values between observed and predicted neurons. The 

study concluded that the ANN predictive models for TDS 

produced more accurate results than multilayer 

regression models, thereby demonstrating their broader 

applicability in groundwater quality characterisation 

and predictive modelling. The findings of this study can 

contribute to more effective water resource management 

strategies, especially in areas heavily reliant on 

groundwater. 

 

Keywords:- Predictive Modeling, Water Resource 

Management, Urban Sprawl,  

 

I. INTRODUCTION 

 

Providing safe drinking water is a challenging task for 

the developing world. The task becomes more difficult in 

countries with a growing population, rapid urbanisation, 

rampant industrialisation, and extensive agricultural 

practices. Once groundwater quality deteriorates, its 
reclamation will be consequential to economic, industrial, 

and agricultural growth. Regular monitoring and 

characterisation of groundwater quality in areas with urban 

sprawling is necessary for sustainable development and 

management of shallow aquifers. Conventional graphs 

[1,2]), diagrams, and ratios [3,4]] are commonly used to 

characterise groundwater quality. The software-aided 

multivariate statistical tools smoothen the results of 

traditional graphical methods and give robust results. The 

advent of mathematical simulation added a predictability 

factor to the large set of groundwater quality data. 

Applicability of Artificial Neural Networks (ANN) 

increased significantly in all branches of sciences and 

engineering after the development of a mathematically 

rigorous theoretical framework by Rumelhart et al. [5]. The 

artificial neural network is gaining importance in 

groundwater quality studies. ANN mimics the human brain 

and acquires knowledge through the training process by 

assigning synoptic weight to the connections and values to 

the nodes. The ANN has applicability in hydrogeology 

because of its ability to solve complex problems of pattern 

recognition, association control, and non-linear modelling. 

Changes in groundwater chemistry take place from recharge 

to discharge zone. The local, intermediate, and regional 
groundwater zones bear different signatures depending on 

the groundwater's travel distance and depth [6]. Domestic 

and agricultural wastes, along with industrial effluent, 

impair the groundwater quality. Estimating these complex 

and non-linear parameters makes groundwater quality 

modelling problematic; thus, the application of ANN gains 

momentum. Kheradpisheh et al. [7] illustrated the use of 

back-propagation algorithms for modelling Cl, EC, SO4, 

and NO3 concentrations in the groundwater of the Bahabad 

plains of Iran. The study found it cost-effective and suitable 

for groundwater management practices. Khaki et al. [8] 
applied ANN to water quality parameters of five different 

locations in Langat Basin, in the southeastern part of 

Selangor state, Malaysia. Mean square error and sensitivity 

analysis showed the effectiveness of ANN in predicting 

TDS with low MSE values. Asadollahfardi et al. [9] showed 

the suitability of ANN in predicting the TDS of Talkheh 

Rud River water in northwest Iran. The study concluded that 

the Multi-layer perceptron is adequate for quick estimation 

of salinity. In India, the ANN model of Godavari River 

water quality from 2001-2012,  shows that the prediction of 

TDS is highly accurate and valid [10]. Sinha [11] showed 
the efficiency of ANN in predicting the water quality index 

using the physicochemical parameter of groundwater quality 

of the Jodhpur district in the water-stressed state of 

Rajasthan, India. Chowdhary [12] used ANN to predict the 

Total dissolved Solids in the groundwater of Nadia district, 

West Bengal, India. The architecture of the ANN model 

used the three input layers (specific conductivity, chloride, 

and TH), twenty hidden and one output layer. The model 

predicted TDS with a low value of RMSE. It further 

elaborates on the dominance of specific conductivity and TH 

over chloride and potassium in predicting TDS. Urban 

sprawling is a global phenomenon. Migration towards urban 
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centres searching for food and fibre in developing countries 

is unprecedented. The city sprawl is uncontrolled and 

unplanned. The application of ANN in predicting TDS of 

groundwater around the township of one million people is 

chosen for the present study with the following objectives. 

Develop the regression models and compare the models to 

find effective variables. Find the best topology for Artificial 

Neural networks. Find the suitability of the best predictive 
model for spatio-temporal sets of water quality data.  

 

II. MATERIAL AND METHODS 

 

Study Locale: The study was conducted in Aligarh 

city, located within the Ganga-Yamuna interfluves in the 

Ganga basin, India. Situated in a subtropical climatic zone, 

the city's geographical coordinates range from 27 28' to 28 

10'N in latitude and 77 0 29’00” to 78 36’00” E  longitude. 

The area typically receives an average rainfall of 802 mm 

annually and experiences temperatures ranging from 4°C in 

winter to 42°C in summer. With the general direction of 

groundwater flow from northwest to the southeast, the city 

relies entirely on groundwater as no surface water bodies are 

in the vicinity for domestic and industrial uses. 

 

Sample Origin and Data Acquisition: The samples 

studied were collected from the outskirts of Aligarh city, a 

region anticipated to experience rapid urbanisation and 
densification (Fig. 1). The data used in the study were 

extracted from two areas, referred to as the northern area 

samples (NAS) and southern area samples (SAS), 

consisting of fifty observations. from ten distinct locations 

each. A total of hundred samples were collected and used in 

the study. Data collection took place from September 2016 

to January 2017 through the use of hand pumps tapping into 

shallow aquifers. The IBM SPSS Statistics 20, Inc., was 

employed for regression analysis and for constructing 

Artificial Neural Network (ANN) models. 

 

 
Fig 1 Location Map of the Study Area. 

 

Aquifer Systems: The area hosts three to four 
interconnected aquifer tiers, leading to increased 

vulnerability of the underlying hydrogeologic setups. The 

primary aquifer, semi-confined to unconfined in nature, 

extends up to 120 mbgl and is comprised of thick alluvial 
sediments with interspersed layers of sand, clay, and silt 

[13] (Fig 2). 
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Regression Models: Based on the least squares method, 

these models are effective statistical tools for identifying 

relationships between dependent and independent variables. 

Regression analysis facilitates understanding the significant 

variance by eliminating the less interesting variation in one 

variable. It also aids in predicting the value of one variable 

given the knowledge of others [14]. 

 
Artificial Neural Networks (ANNs): Drawing 

inspiration from the functioning of the human brain and 

nervous system, ANNs are nature-mimicking data mining 

techniques. Initially used for tasks like recognizing familiar 

faces and handwriting, the current applications extend to 

predicting water resources, water quality, and water levels. 

ANN processes information similarly to natural neural 

networks comprising billions of interconnected neurons. The 

typical ANN structure consists of input, hidden, and output 

layers, with weighted interconnections between the neurons. 

Stimulation at the input layer initiates data processing, 

leading to output generation [15]. 
 

The use of ANN is especially relevant for non-linear 

data distribution. It is advantageous because it can handle 

noise, outliers, small sample sizes, and accommodating non-

compensatory models. The ANN algorithm initially learns 

through a training process using the feed-forward-backwards 

propagation algorithm [16]. 

In contrast to the pre-imposed assumptions of linear 

regression analysis, the neural network establishes 

relationships between dependent and independent variables 

during the learning process. If the variables are linearly 

related, the model adjusts accordingly. On the other hand, if 

the relationship is non-linear, the model assumes, corrects, 

and aligns appropriately. The feedforward architecture 

model comprises an input, hidden, and output layers. 
 

The multilayer perceptron technique (MLP), a subset 

of ANN, has shown superior results compared to the Radial 

basis function analysis. Used primarily for classification, 

prediction, and recognition, MLP's architecture includes 

input, hidden, and output layers. Groundwater quality 

variables were assigned a scale measure, whereas months 

and locations were designated nominal or categorical. The 

total dissolved solids were taken as the target or dependent 

variables, while the rest were treated as covariates. The 

model allocated 70% of the samples for learning and 30% 

for testing. Running the MLP ten times for learning reduced 
errors and improved prediction accuracy [17]. This ten-fold 

cross-validation technique also helped prevent overfitting 

and obtain an average of root mean square errors (RMSE) 

[18]. 

 

III. RESULTS AND DISCUSSIONS 

 

Table 1. Result summary of Regression Analysis for NAS. 

 

In this study, the multiple regression model was 
employed with Total Dissolved Solids (TDS) serving as the 

estimator, while all the cations and anions functioned as 

predictors. As indicated in Table 1,  which outlines the 

model summary, the R square value suggests that the model 

can account for approximately 78.9% of the variance using 

the major ions as response variables.  

 

As a rule of thumb, if the t-value falls between -2 and 

+2, it signifies a weak relationship. However, in this 

analysis, a t-value greater than 2 was observed for chloride, 

sodium, and bicarbonate, indicating a strong relationship as 
corroborated by their respective p-values. 

 

The model yields a negative intercept value (constant). 

However, this should not be a cause for concern, as it simply 

implies that the estimated value of TDS will be less than 

zero when the concentrations of all major ions are zero. 

 

Taking into account 50 observations across eight 
variables, the multiple linear regression model for NAS can 

be expressed in Equation 1 as follows: 

 

TDS = -12.058 - 0.362x (calcium) + 0.587x 

(magnesium) + 0.915x (sodium) + 0.535x (potassium) + 

0.157 x(carbonate) + 0.513x (bicarbonate) + 1.049 

x(chloride) + 0.569 x(sulphate)--------------(1) 

 

For the Southern Area Samples (SAS), the regression 

model yielded an R square value of 0.824 (Table 2). This 

implies that the predictive model accounts for a substantial 
proportion of the variance, with 82.4% of the variance being 

explained by the model itself. The coefficients of the model 

reveal that the variables magnesium and sodium display t 

values >2, with a significance level of <0.05. These two 

variables, therefore, make a significant contribution to 

explaining the results within this model. 

 

Model Unstandardized coefficientents t R R- Square Adjusted R Square  Significance 

(constant -12.058 -0.119 0.888 0.789 0.747 0.906 

Calcium -.362 -0.332 - - - 0.741 

Magnesium .587 0.510 - - - 0.613 

Sodium .915 2.836 - - - 0.007 

Potassium .535 1.557 - - - .127 

Carbonate .157 .305 - - - .762 

Bicarbonate .513 2.961 - - - .005 

Chloride 1.049 2.826 - - - .007 

Sulphate .569 1.665 - - - .103 
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Table 2  Result Summary of Regression Analysis for SAS 

Model Unstandardized coefficients t R R Square Adjusted R Square Significance 

(constant -180.373 -1.534 .908 .824 .789 .133 

Calcium 4.894 1.989 - - - .053 

Magnesium 2.551 2.638 - - - .012 

Sodium 1.537 4.788 - - - .000 

Potassium .913 1.838 - - - .073 

Carbonate .440 .310 - - - .758 

Bicarbonate .212 .880 - - - .384 

Chloride .620 1.996 - - - .053 

Sulphate .400 .834 - - - .409 

 

The multiple regression equation for the SAS, 

formulated from 50 samples across eight variables, is 

outlined in Equation 2 as follows: 

 

TDS = -180.373 + 4.849 x (calcium) + 2.551 x 

(magnesium) + 1.537 x (sodium) +0.913 x (potassium) 

+0.440 x (carbonate) +0.212 x (bicarbonate) +0.620 x 
(chloride) + 0.4 x (sulphate) ---------------------(2) 

 

The presence of chloride and bicarbonate in the NAS 

suggests that there is a recharge from a mixture of regional 

and local flow systems. Conversely, the SAS show no 

dependence on the bicarbonate variable, indicating that the 

groundwater quality of these samples carries signatures 

typical of a discharge area. 

 

Table 3 provides the results of the ten ANN models 

created for the purpose of cross-validation. The average 

Root Mean Square Error (RMSE) values for the training and 

testing phases are 0.2494 and 0.2972, respectively. With 

these values falling under 0.5, it suggests a strong fit for the 

model. The correlation between the predicted and observed 

values for each model, as included in Table 3, returns an 
average R square value of 0.84. This indicates the model's 

ability to predict TDS with an accuracy of 84%. Figure 2 

shows the plotted RMSE values for the ten generated 

Multilayer Perceptron-ANN (MLP-ANN) models, both for 

training and testing, demonstrating promising results. 

 

 

 

 
Fig 2 RMSE of Training and Testing Models for NAS 

 

Table 3 Result Summary of ANN Model for NAS 

Training Testing  

Total 

samples 

 

R square of Predicted 

Vs Observed TDS 
N Network 

Sum of square 

error (Training) 

RMSE 

(Training) 
N 

Sum of 

square error 

Root mean 

square of errors 

36 1 1.272 0.1879 14 0.809 0.2403 50 0.90 

38 2 4.385 0.3396 12 0.286 0.1543 50 0.80 

34 3 3.605 0.3256 16 0.923 0.2401 50 0.79 

32 4 4.588 0.3786 18 1.421 0.2809 50 0.76 

38 5 3.688 0.3115 12 0.461 0.1960 50 0.83 

35 6 0.766 0.1479 15 3.722 0.4981 50 0.88 

34 7 1.324 0.1973 16 1.551 0.3113 50 0.89 

32 8 0.902 0.1678 18 1.577 0.2959 50 0.88 

37 9 0.918 0.1575 13 4.718 0.6024 50 0.83 

35 10 2.751 0.2803 15 0.35 0.1527 50 0.87 

 Mean 2.420 0.2494 Mean 1.582 0.2972  0.84 

 Std Dev 1.546 0.0865 Std Dev 1.4879 0.1460   
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Sensitivity analysis allows us to determine the 

predictive strength and importance of each input neuron in 

the ANN model. The normalised importance of input 

neurons is calculated by dividing the relative importance of 

each neuron by the maximum neuron [19]. Table 4 reveals 

that in predicting TDS, the order of importance is as 

follows: sulphate (100%), bicarbonate (89.39%), sodium 

(79.48%), chloride (66.85%), magnesium (49.96%), location 

(40.89%), months (37.53%), potassium (31.56%), calcium 

(18.53%), and carbonate (15.31%). It can be concluded that 

sulphate, originating from anthropogenic activities, is the 

strongest predictor for TDS in the NAS. The dominance of 

sulphate also indicates the source of groundwater as an 

intermediate recharge zone. Sampling locations and months 

have a negligible impact on TDS prediction in this context. 

 

Table 4 Results of Sensitivity Analysis for NAS 

 
 

For SAS, applying the same ten-fold cross-validation process of MLP, we observe an average RMSE of 0.2 and 0.363 for 

training and testing, respectively (Table 5). The standard deviation of RMSE is 1.546 and 0.1469 for training and testing. The 

mean R square value for observed versus predicted is 0.853. Figure 3 shows the plot of the RMSE training and testing values 

against the models, visually indicating the validity of the ten models used in the ANN cross-validation. 

 

 
Fig 3 RMSE of Training and Testing Models for SAS. 

 

Table 5 Result Summary of ANN Model for SAS 

Training( Testing   

N Network 
Sum of square 

error (Training) 

RMSE 

(Training) 
N 

Sum of 

square error 

Root mean 

square of errors 

Total 

samples 

R square of Predicted 

Vs Observed TDS 

36 1 1.634 0.2130 14 2.438 0.4173 50 0.841 

38 2 1.835 0.2197 12 1.355 0.3360 50 0.864 

34 3 0.878 0.1606 16 3.134 0.4425 50 0.831 

32 4 1.369 0.2068 18 2.352 0.3614 50 0.823 

38 5 1.766 0.2155 12 0.814 0.2604 50 0.892 

35 6 1.632 0.2159 15 3.238 0.4646 50 0.824 

34 7 2.539 0.2732 16 0.569 0.1885 50 0.871 

32 8 0.323 0.1004 18 2.848 0.3977 50 0.863 

37 9 1.137 0.1752 13 2.707 0.4563 50 0.858 

35 10 1.616 0.2148 15 1.397 0.3051 50 0.87 

 Mean 1.4729 0.20  2.0852 0.363  0.853 

 Std Dev 0.5986 0.046  0.9726 0.091  0.023 

 

http://www.ijisrt.com/


Volume 8, Issue 11, November – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                           ISSN No:-2456-2165 

 

IJISRT23NOV1570                                                                www.ijisrt.com                   1512 

The sensitivity analysis helps to assess the predictive strength of input neurons. As outlined in Table 6, the sensitivity 

analysis results for the ten-fold cross-validation ANN for SAS show that the normalised importance percentages suggest that TDS 

predictability is primarily controlled by sodium (100%), magnesium (87.74%), potassium (66.69%), Chloride (51.23%), Sulphate 

(47.11%), location (41.90%), bicarbonate (33.81%), calcium (29.17%), month (24.71%), and carbonate (15.32%). 

 

Table 6 Result Summary of Sensitivity Analysis for SAS 

Neural 

networks 
Locations Months Calcium Magnesium Sodium Potassium Carbonate Bicarbonate Chloride Sulphate 

NN 1 0.30 0.07 0.018 0.54 1 0.51 0.25 0.21 0.2 0.13 

NN 2 0.44 0.4 0.47 0.5 0.66 1 0.08 0.57 0.9 0.77 

NN 3 0.348 0.264 0.075 0.782 1 0.501 0.084 0.162 0.43 0.472 

NN 4 0.444 0.274 0.317 0.701 0.707 1 0.261 0.289 0.489 0.147 

NN 5 0.788 0.334 0.358 0.626 1 0.479 0.095 0.878 0.604 0.643 

NN 6 0.283 0.152 0.445 1 0.761 0.183 0.096 0.163 0.137 0.844 

NN 7 0.198 0.109 0.157 0.621 1 0.329 0.169 0.094 0.164 0.458 

NN 8 0.294 0.181 0.278 0.725 1 0.509 0.122 0.262 0.041 0.24 

NN 9 0.235 0.113 0.102 1 0.648 0.325 0.133 0.115 0.833 0.085 

NN 10 0.252 0.21 0.272 1 0.766 0.861 0.019 0.145 0.578 0.235 

Average 

Importance 
0.36 0.21 0.2492 0.7495 0.8542 0.5697 0.1309 0.2888 0.4376 0.4024 

Normalised 

importance 
41.90% 24.71% 29.17% 87.74% 100.00% 66.69% 15.32% 33.81% 51.23% 47.11% 

Ranking 6 9 8 2 1 3 10 7 4 5 

 

IV. CONCLUSION 

 

Comparing the regression models for the Northern 

Area Samples (NAS) and Southern Area Samples (SAS) 

reveals distinctive controlling variables within these two 

geographically separate locations over the same periods. The 
primary differentiating factor between these two sets of 

sampling locations is the presence of a township. In the 

NAS, sodium, bicarbonate, and chloride serve as major 

predictors, while in the SAS, magnesium and sodium are 

more influential. 

 

The presence of bicarbonate in NAS is indicative of 

groundwater that has travelled a short distance after 

recharge. Sodium enters the system and displaces calcium 

and magnesium from the subsoil, thus releasing them into 

the groundwater, suggesting an ion-exchange reaction. The 
heightened sodium levels can escalate soil salinity, 

potentially undermining crop yields. This phenomenon 

aligns with field observations noting soil salinity issues in 

patches southeast of the town. 

 

The Artificial Neural Network (ANN) models for both 

the NAS and SAS datasets demonstrate robustness and 

strong validity, boasting high R square values between 

observed and predicted neurons. The calculated Root Mean 

Square Error (RMSE) for both NAS and SAS models is less 

than 0.5 for both the training and testing validation phases, 

underlining the reliability of the models. 
 

The Multilayer Perceptron (MLP) models highlight the 

strong predictive strength of input neurons for both the NAS 

and SAS. Sensitivity analysis and subsequent ranking 

transformation of variables for NAS indicate that sulphate, 

bicarbonate, sodium, and chloride are dominant TDS 

predictors in the model. For SAS, the key TDS predictors 

are sodium, magnesium, potassium, and chloride. The 

prevalence of chloride in the SAS signals anthropogenic 

influence and the existence of a regional discharge zone. 

 

Interestingly, MLP models yield better predictive 

results for TDS than the regression models, demonstrating 
their broader utility for predictive modelling and 

groundwater quality characterisation. In conclusion, ANN 

predictive models for TDS provide more accurate results 

than multilayer regression models. Thus, ANNs can serve as 

not only a tool for predictive modelling but also a superior 

approach for hydrochemical characterisation. 

 

It is interesting to note that for both NAS and SAS, 

location and month showed a lesser degree of influence on 

the TDS prediction. These findings provide a valuable 

understanding of groundwater quality and can guide 
effective management strategies to maintain the 

sustainability of this vital resource in areas that rely heavily 

on groundwater. Further studies could extend these models 

to predict other groundwater quality parameters or apply 

them to different regions or environmental contexts. 

Additionally, it could be beneficial to explore the effects of 

different anthropogenic activities on groundwater quality 

more explicitly. Lastly, incorporating temporal changes in 

these models could yield insightful results, capturing 

seasonal variations in groundwater quality. 
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