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Abstract:- The purpose of this study is to examine the 

calculation of the moment of inertia in stiffening rings 

in pressure vessel cones, focusing on the application of 

the Steiner theorem and the correction of equations in 

the PD5500 and EN Pressure Vessel Codes. The study 

involves a critical analysis of the existing methods for 

calculating the moment of inertia, highlighting the 

errors and limitations in the current equations used by 

engineers. The research also proposes a new approach 

that involves the direct application of the Steiner 

theorem without the need for additional tools such as 

AutoCAD. The study finds that the third and fourth 

terms of the equation in the British pressure vessel code 

(PD5500) have errors due to the absence of the cosine 

term, which leads to an underestimation of the moment 

of inertia. By correcting this equation, this study 

provides a more accurate method for calculating the 

moment of inertia. This research is original in its 

critical examination of the existing methods for 

calculating the moment of inertia in stiffening rings in 

cones. It not only identifies the errors in the current 

methods but also proposes a more accurate and efficient 

approach without the need for additional tools. The 

findings of this study have practical implications for 

engineers who design pressure vessels under external 

pressure. The corrected equation and the proposed 

method can help engineers perform these calculations 

more accurately and efficiently, providing safer vessels. 
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I. INTRODUCTION 
 

Pressure vessels are vital components in numerous 

industries that play a crucial role in the safe storage, 

transportation, and transfer of compressed gases and 

liquids. These vessels consist of hollow cylindrical or 

spherical shells specifically designed to withstand different 

pressures. Due to the increasing manufacturing expenses 

resulting from rising costs of materials and energy, there is 

a growing trend in specifying thinner vessel walls to reduce 

weight and costs (Chen et al., 2018). While this leads to 

lower capital expenditures, it also magnifies the need for 
reliable structural analysis during design. Thinner shells are 

more prone to deformations such as buckling if not 

properly reinforced. This underscores the heightened 

importance of reliable structural analysis during the design 

phase. 
 

Engineers frequently employ ring-stiffening 

techniques to mitigate the risk of buckling in pressure 

vessels, providing additional structural support. Stiffeners, 

structural elements attached around a vessel's 

circumference, enhance its integrity under pressure loads. 

Proper sizing and positioning of these rings are crucial to 
preventing catastrophic failures (Spagnoli, 1997). Rasti et 

al. (2016) focused on the welding of stiffener rings to 

aluminum cylinders and found that welding generates 

residual stresses and distortions, impacting structural 

integrity. Fairushin et al. (2021) explored the use of locally 

rib-reinforced nozzle assemblies as an alternative to 

reinforcing rings, emphasizing their technological 

advantages. Limam et al. (1995) investigated the buckling 

behavior of thin-walled pressure vessels under complex 

loading conditions and examined the effects of axial 

stiffeners. 
 

A fundamental parameter in stiffener sizing is the 

moment of inertia. This property represents an object’s 

resistance to bending and twisting forces based on its mass 

distribution. A higher moment of inertia equates to greater 

structural strength. Calculating the moment of inertia 
accurately is critical for engineers performing stress 

analysis on stiffened pressure vessels to ensure they 

withstand rated pressures safely throughout their design life 

(Wickline et al., 2003). 
 

The design of pressure vessel walls adheres strictly to 

the guidelines provided by industry Codes. These Codes, 

serving as technical manuals, contain the necessary 

mathematical formulas for calculating and sizing pressure 

vessels. It is crucial to rigorously follow their application in 

vessel calculations, given the hazardous nature of pressure 

vessels. The most frequently employed codes include 

ASME VIII (ASME 2021), the European Standard EN 

13445 for Unfired Pressure Vessels (European Standards 

2021), the British Code PD5500 (BSI 2021), and the 

German Code AD2000 (AD2000-Merkblatt 2021). 
 

While reviewing international pressure vessel codes 

for guidance on calculating the moment of inertia, the 

authors identified apparent shortcomings. Two major 

pressure vessel codes, the US ASME VIII and the German 
AD2000, only mention that the moment of inertia of the 

cone-stiffener cross-section should be calculated without 

providing further details (refer to Table 1). In contrast, 

other primary standards such as the European EN13445 and 

British PD5500 codes provide a formula for moment of 

inertia calculation. 
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While conducting a comprehensive review of 

international pressure vessel codes to gather guidance on 

the calculation of moment of inertia, it became evident that 

certain shortcomings exist. Notably, two prominent 

pressure vessel codes—ASME VIII and the German 

AD2000—merely mention calculating the moment of 
inertia for cone-stiffener cross sections without providing 

sufficient details. In contrast, standards such as European 

EN13445 and British PD5500 offer more comprehensive 

formulas for this crucial calculation. However, the formulas 

provided by EN13445 and PD5500 only apply to T-type 

cone stiffeners and not to other geometries commonly 

encountered in practice (Kumar et al., 2018; Zhu et al., 

2015). To address these limitations and present a more 

comprehensive approach, the authors of this scientific 

paper aimed to develop a generalized methodology for 

calculating the moment of inertia in stiffening rings within 
pressure vessel conical sections. 

 

 

 

 

 

 

 

 

II. THEORETICAL BACKGROUND 
 

Accurate calculation of the moment of inertia is 

essential to ensure the structural integrity and safety of 

pressure vessels. The moment of inertia, a property of an 

object, describes its resistance to changes in rotational 

motion. In the context of pressure vessels, determining the 
moment of inertia is particularly crucial for assessing the 

stiffness and strength of stiffening rings in conical sections. 

These rings play a vital role in maintaining the structural 

integrity of the pressure vessel, especially under external 

loads and pressure fluctuations. 
 

To accurately calculate the moment of inertia in 

stiffening rings in pressure vessel conical sections, the 

authors reviewed existing codes and handbooks for 

guidance. Additionally, the authors conducted a thorough 

analysis of the geometric properties and structural behavior 

of stiffening rings in conical sections. Recent 

improvements in the EU pressure vessel Codes for cones 

have focused on providing more detailed guidance for 

stress analysis, as well as improving accuracy and 

consistency in design calculations. Table 1 compares the 
cone section stiffener calculation methods provided in 

ASME VIII, AD2000, EN13445, and PD5500.  

Table 1: Comparison of Cone Section Stiffener Calculation Methods in Pressure Vessel Codes 

Component ASME VIII EN13445-3 AD2000 PD5500 

Cone sections UG-32, UG-33, UG-36 & Appendix 1 7.6 & 8.6 B2 3.5.3 & 3.6.3 

Stiffener calculation None MoA formula None MoA formula 
 

The primary concern identified in calculating cone 

sections under external pressure lies in the limitation of the 

formulas provided by EN13445 and PD5500. These 

formulas are only applicable to a specific type of stiffener, 

namely the tee-type as illustrated in Figure 1. 

Consequently, a comprehensive investigation was 

necessary to determine accurate methodologies for 

calculating the moment of inertia of other cross-sections of 

stiffeners on conical parts, as depicted below. Through 

extensive analysis, the application of Steiner's Theorem 

emerged as a suitable approach to effectively address this 

issue. 

 

 
Fig. 1: Tee-type stiffener cross-section. The inclined parallelogram represents the cone section, the vertical rectangular section 

represents the web of the tee-type stiffener and the horizontal rectangular section represents the flange of the tee-type stiffener 
 

The EN13445 and PD5500 codes exclusively furnish 

a moment of inertia formula for tee-type stiffeners, as 

depicted in the following equation. It is crucial to 

acknowledge, however, that the formula stipulated in these 

codes possesses limitations in its applicability. Notably, it 

does not encompass other varieties of stiffeners frequently 

employed in pressure vessel conical sections. 
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Where Af represents the area of the flange, Aw is the 

area of the web, If is the second moment of area of the 

flange about its own centroid, and Iw is the second moment 

of area of the web about its own centroid. The remaining 

geometric parameters are illustrated in Figure 1. 
 

Steiner's Theorem, also recognized as the parallel axis 

theorem, offers a methodology for determining the moment 

of inertia of an object concerning an axis parallel to, and at 

a specified distance from, the object's centroid or principal 

axis. When utilized in conjunction with axis transformation 

equations, it establishes a comprehensive framework that 

empowers engineers to precisely calculate the moment of 
inertia for various geometries. The application of Steiner's 

Theorem and axis transformation equations facilitates the 

accurate computation of the moment of inertia for complex 

stiffener geometries. This approach is particularly valuable 

for the precise evaluation of the moment of inertia in 

pressure vessel conical sections featuring stiffening rings. 
 

According to the Steiner theorem, a tee stiffener cone 

section can be represented by three distinct simple shapes: a 

parallelogram representing the cone wall, and two 

rectangles – one for the web of the stiffener and one for the 

flange of the stiffener. For each of these shapes, it is 

necessary to calculate the moment of inertia to its center of 

gravity, as well as its area and the distance between the 

axes of the center of gravity of the shape and the axis of 

calculation. Along with determining the angle between the 
center of gravity axis and the axis of calculation, a 

comprehensive set of equations is established to calculate 

the total moment of inertia of the stiffener in relation to the 

cone axis, as stipulated by the pressure vessel code. 
 

𝐼 =  𝐼𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 +𝐴𝑑2 

𝐼𝑥 ′ =  𝐼𝑥 cos
2 𝜃 + 𝐼𝑦 sin

2 𝜃-𝐼𝑥𝑦 𝑠𝑖𝑛 2𝜃 

𝐼𝑦′ =  𝐼𝑥 sin
2 𝜃 + 𝐼𝑦 c𝑜𝑠

2 𝜃-𝐼𝑥𝑦 𝑠𝑖𝑛 2𝜃 

𝐼𝑥 ′𝑦′ =  
1

2
(𝐼𝑥 − 𝐼𝑦) sin2𝜃  +𝐼𝑥𝑦 𝑐𝑜𝑠 2𝜃 

 

Where, 

 I is the moment of inertia about any axis. 

 Icentroid is the moment of inertia about a parallel axis 

through the centroid. 

 A is the area of the shape. 

 d is the distance between the two axes. 

 θis the cone angle 
 

III. METHODOLOGY 

 

The methodology employed in this study involves 

utilizing Steiner's Theorem and axis transformation 

equations to calculate the moment of inertia in stiffening 

rings within conical sections of pressure vessels. The initial 

phase of the analysis entails identifying various shapes 

constituting the stiffening ring, such as the cone wall, the 

stiffener's web, and flange. This identification process is 

followed by assigning each term in the PD5500 moment of 
area formula to the tee-section geometry. A closer 

examination of the PD5500 moment of area formula 

reveals the connection between Steiner's theorem and the 

formula itself. 
 

A more in-depth examination of the PD5500 moment 

of area formula reveals the connection between the Steiner 

theorem and the formula itself. Specifically, the first term 

of the PD5500 formula represents the flange's parallel 

transformation moment of inertia, while the second term 

represents the web's parallel transformation moment of 

inertia. The third and fourth terms signify the parallel 

transformation of the two symmetrical pieces of the cone 

section. The remaining terms denote the primary moments 

of area with respect to each component's centroid (term 5 

for the flange, term 6 for the web, and terms 7 and 8 for the 
cone sections). 

 

To illustrate the calculation methodology, consider the 

geometrical details of a specific case outlined in Table 2. 

Assume that a tee-type stiffener is positioned on a cone 
section at a fifteen-degree angle with a thickness of 20 mm. 

The web portion of the stiffener measures 91 mm in length 

and has a thickness of 9 mm, while the flange is 15 mm 

thick and spans a length of 200 mm. Calculating simply, we 

find that the flange area totals 3000 mm², while the web 

area is 819 mm². In terms of centroid position (center of 

mass), it can be determined that this point lies 

approximately 41.12 mm away from the axis under 

consideration. 

 

Table 2: Geometry parameters of tee-type stiffener example 

Geometrical feature Symbol Value 

Cone Angle (degrees) θ 15° 

Cone thickness (mm) e 20 

Cone length (mm) Le 400 

Flange cross-section (mm x mm) ef x Lf 15 x 200 

Web cross-section (mm x mm) ew x Lw 9 x 91 
 

Applying the Steiner theorem and the Code formula 

results in a distinct calculation of the moment of inertia for 

both the flange and the web. 

For Flange (If): 153×200/12 = 56,250 mm4 

For Web (Iw): 913×9/12 = 565,178 mm4 
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The positional values for the flange, the web, and the 

cone (see Figure 1) are calculated. By applying the Code 
formula, a specific moment of inertia for the entire cross-

section is determined. 
 

 Positional values: 

Xf: 78.09 mm Xs': 57.56 mm 
Xs´´: 3.97 mm Xw: 25.09 mm 

 

 Applying the Code formula: 

  𝐼𝑐 = 3,000 × 78.092 + 819 × 25.092 + 4,000 ×
66.682 + 4000 × 6.122 + 56,250 + 565,178 +⋯ =
34,780,742.28 𝑚𝑚4 

 

From the previous calculation, it is evident that both 

the PD5500 and EN13445 Codes apply the Steiner theorem 

to formulate the moment of inertia calculation. After a 

comprehensive examination of the formula specified in the 
code and its comparison with the geometry, it has been 

determined that the pressure vessel Code simplifies cone 

section geometry by representing it as a rectangle (Figure 

2). Despite the calculation being intended for the cone's 

central axis (axis X), this simplification remains valid and 

does not result in significant errors as long as the cone 

angle remains within a few degrees. Under this approach, 

the conical section is represented by its actual 

parallelogram-shaped geometry, and Steiner's theorem is 

applied again to calculate the moment of inertia. The 

application of the Steiner theorem to these shapes yields 

different results, as illustrated in Figure 2.  

 

 
Fig. 2: (Left) Simplified cone section geometry representation by Code and (right) and the actual geometry as proposed in this 

study along with their respective moment of area equations 
 

Through a detailed analytical examination of the 

application of Steiner’s theorem in pressure vessel codes, 

differences have been identified in the treatment of conical 

sections. Specifically, it was observed that terms three and 

four of the Code formula omit an essential cosine factor 

associated with the true parallelogram cross-section shape 

of cones. These terms are indicative of the Cone Section 

parallel transformation. 
 

The implication of this simplification is the 

underestimation of the moment of inertia due to the absence 

of the cosine term. In order to rectify this issue, a 

modification is proposed, involving the direct application 

of Steiner’s theorem. This modification utilizes the accurate 

geometry as defined by the cone angle, rather than relying 

on a simplified rectangular approximation. Furthermore, it 

is noteworthy that the formula provided by the British and 
European codes is exclusively valid for tee-sections. 

Consequently, current design practices involve meticulous 

cross-section design, with designers utilizing CAD tools 

such as AutoCAD's MASSPROP function (see 

MASSPROP 2023 in the Help section) to calculate the 

accurate moment of inertia. 
 

IV. RESULTS AND DISCUSSION 
 

After thoroughly examining the disparities between 

the Code formula and the suggested approach, we 

conducted a comprehensive quantitative analysis to 

compare their performance. The comparison was executed 

by utilising the geometric parameters outlined in Table 2. 
The proposed approach replaces the British/European 

formula with a direct application of the Steiner theorem. By 

considering all aspects of the cone section's geometry, 

including its mitered cone edges, we achieve significantly 

more accurate results. 
 

In the methodology section, an example is considered 

wherein a cone angle of 15° is examined. The utilization of 

AutoCAD's MASSPROP function enables the calculation 

of the moment of inertia based on actual measurements 

conducted by engineers employing this well-established 

engineering tool. A comparison between the calculated 
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moment of inertia and that obtained using the Code formula 

reveals an absolute relative error exceeding 2%. However, 
by employing the proposed solution, which yields results 

analogous to those obtained through advanced CAD tools 

like AutoCAD but without the approximation errors 

introduced by existing formulas or algorithms commonly 

employed elsewhere, the respective absolute relative error 

is lower than 0.006% (see Table 3 and Table 4). Based on 
these outcomes, it can be confidently stated that this study 

presents an analytically exact solution comparable to what 

industry-standard software offers. 

 

Table 3: Moment of Area calculation for the tee-type stiffener according to Steiner theorem for the geometry example described in 

Table 2 

Stiffener part Area A c.m X X² AX AX² Inertia I 

Web 819.00 45.50 2,070 37,265 1,695,535 565,178 

Flange 3,000.00 98.50 9,702 295,500 29,106,750 56,250 

Σ { Α } = As 3,819.00 mm² Sums: 332,765 30,802,285 621,428 

c.m = Xs = Sum AX / As = 87.13 mm  

Is = Sum AX² + Sum I - C Sum AX 2,428,632 mm4 
 

Table 4: Entire cross-section calculation for the cone-stiffener composite geometry according to geometry example described in 

Table 2. 

Part Area A Centroid X X² AX AX² Inertia I 

Cone,top 4,141.10 -16.44 270 -68,089 1,119,525 1,139,007 

Cone,bottom 4,141.10 37.15 1,380 153,832 5,714,518 1,139,007 

Tee-stiffener 3,819.00 107.84 11,629 411,839 44,412,484 2,428,632 

Sum: 12,101.21  497,583 51,246,527 4,706,647 

C = Sum AX / Sum A = 41.118 mm  

I = Sum AX² + Sum I - C Sum AX 35,493,361 mm4 

 

 
Fig. 3: Difference in the composite geometry moment of inertia calculation between the PD5500/EN13445 formula and the exact 

solution, expressed as absolute relative error 
 

To demonstrate the significance of the proposed 

improvement in the calculation of moment of inertia, 

detailed CAD models of sample stiffened cones were 

developed across a range of typical design angles, from 2 to 

45 degrees. The moments of inertia for these models were 

then calculated. The proposed method was applied, and the 

results were compared to the Code formula. Figure 3 

illustrates the absolute relative error of the Code formula 

compared to the analytical solution, which is identical to 

the proposed solution. For the same tee-section stiffener, 
the two approaches exhibit an exponential difference in 

moment of inertia calculations for cone angles between 2° 

and 45°. For cone angles up to 10°, the absolute relative 

error between the two approaches is less than 1%. 

However, for larger cone angles, the Code formula severely 

underestimates the moment of inertia, by up to 50% for a 

45° cone angle. This underestimation results in increased 

material costs and pressure vessel weight. To exemplify the 

material increase required for a cone angle of 20°, in order 

to match the moment of inertia provided by the proposed 

solution, the conventional approach would need to increase 

either the cone thickness, flange thickness, or flange length. 

Specifically, the cone thickness would need to increase by 

6.8%, the flange thickness by 8.87%, and the flange length 

by 10.6%. 
 

V. CONCLUSIONS 
 

In conclusion, this scientific paper has presented a 

method for calculating the moment of inertia in stiffening 

rings within pressure vessel conical sections. By employing 

the proposed analytical solution, accurate results can be 

obtained without introducing the approximation errors 

commonly associated with existing formulas or algorithms. 

The analysis of the proposed method, applied to a range of 

sample stiffened cones, demonstrated its superiority 

compared to the industry-standard Code formula. The 

proposed method exhibited a significant improvement in 

the accuracy of moment of inertia calculations for cone 

angles ranging from 2° to 45°. The absolute relative error 
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between the proposed method and the analytical solution is 

nearly zero, while the Code formula severely 
underestimated the moment of inertia, resulting in an 

absolute relative error of up to 50% for a cone angle of 45°. 

These findings underscore the importance of using the 

proposed method to avoid unnecessary material costs and 

weight increase in pressure vessels. With the proposed 

method, vessel geometries can be represented more 

accurately, enabling engineers to achieve performance 

targets more optimally without compromising safety 

margins through proper stiffener sizing. 
 

VI. GRANT INFORMATION/FUNDING 
 

This work has been co‐financed by the European 

Union and Greek national funds through the Operational 

Program Competitiveness, Entrepreneurship and 

Innovation, under the call RESEARCH – CREATE – 

INNOVATE(project code: T2EDK-04885). 
 

 
 

REFERENCES 
   

[1]. AD2000-Merkblatt. Pressure vessel equipment - 

Equipment for detecting and limiting pressure and 

temperature. 2021 

[2]. ASME. BPVC section VIII-division 1-rules for 

construction of pressure vessels. American Society of 
Mechanical Engineers, 2021. 

[3]. BSI. PD 5500:2021 Specification for unfired pressure 

vessels. BSI British Standards Institution, 2021. 

[4]. Chen, X., Fan, Z., Chen, Y., Zhang, X., Cui, J., 

Zheng, J., and Shou, B. Development of lightweight 

design and manufacture of heavy-duty pressure 

vessels in China. Volume 1B: Codes and Standards, 

2018. 

[5]. Eswara Kumar, A., Krishna Santosh, R., Ravi Teja, 

S., and Abishek, E. Static and dynamic analysis of 

pressure vessels with various stiffeners. Mater Today: 

Proceedings2018, 5(2), 5039–5048. 
https://doi.org/10.1016/j.matpr.2017.12.082 

[6]. European Standards. Standards EN 13445:2021 for 

Unfired pressure vessels all parts, 2021. 

[7]. Fairushin, A. M., Tokarev, A. S., Karetnikov, D. V., 

and Zaripov, M. Z. Study of efficiency of application 

of locally reinforced fitting units with stiffening ribs. 

IOP Conference Series. Mater Sci Eng2021, 1047(1), 

012177. https://doi.org/10.1088/1757-

899x/1047/1/012177 

[8]. Help MASSPROP. Autodesk.com, 2023. 

https://help.autodesk.com/view/ACD/2023/ENU/?gui
d=GUID-CAA51229-293E-4A0C-BFF3-

93226252CF13 

[9]. Limam, A., Alexis, D., and Jullien, J. F. Experimental 

and numerical simulations of buckling problems in 

lightweight structures. In Computational Mechanics 

1995 (pp. 1279–1284). Springer Berlin Heidelberg. 

[10]. Rasti, A., Sattarifar, I., Salehi, M., and Karimnia, V. 

Stress analysis of welded joints in internal stiffener 

rings in an aluminum cylinder. Proceedings of the 

Institution of Mechanical Engineers Part L J Mater 

Des Appl2016, 230(1), 121–130. 

https://doi.org/10.1177/1464420714549064 

[11]. Spagnoli, A. Buckling behaviour and design of 

stiffened conical shells under axial compression. 
Imperial College, 1997. 

[12]. Wickline, J., Cousins, T., and Seda-Sanabria, Y. A 

study of effective moment of inertia models for full-

scale reinforced concrete T-beams subjected to a 

tandem-axle load configuration, 2003. 

https://www.semanticscholar.org/paper/1265a18849b

3f99dad7e4b7fdbd47ebf5adb53ab 

[13]. Zhu, S., Yan, J., Chen, Z., Tong, M., and Wang, Y. 

Effect of the stiffener stiffness on the buckling and 

post-buckling behavior of stiffened composite panels 

– Experimental investigation. Compos. Struct.2015, 

120, 334–345. 
https://doi.org/10.1016/j.compstruct.2014.10.021. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

http://www.ijisrt.com/
https://doi.org/10.1088/1757-899x/1047/1/012177
https://doi.org/10.1088/1757-899x/1047/1/012177
https://help.autodesk.com/view/ACD/2023/ENU/?guid=GUID-CAA51229-293E-4A0C-BFF3-93226252CF13
https://help.autodesk.com/view/ACD/2023/ENU/?guid=GUID-CAA51229-293E-4A0C-BFF3-93226252CF13
https://help.autodesk.com/view/ACD/2023/ENU/?guid=GUID-CAA51229-293E-4A0C-BFF3-93226252CF13
https://doi.org/10.1016/j.compstruct.2014.10.021

