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Abstract:- Nanoparticle coating have great potential in 

biochemistry and medical science. It can provide 

biocompatibility, prolonged blood circulation and 

possibly resolve the drug resistance cancer problem. This 

article delves into the intricate realm of protein corona 

formation on nanoparticles, nanoscale metal-organic 

frameworks (nMOFs) as drug delivery systems, and the 

challenges associated with nanomedicine. It explores the 

impact of preparation techniques on the precision and 

interpretation of biomolecular/protein corona, shedding 

light on methods, causes of methodological problems, 

and typical misunderstandings. Additionally, the article 

investigates the potential of genetically engineered 

biomimetic nanoparticles for altering intracellular 

localization and enhancing payload delivery. It discusses 

the importance of accurate characterization, stability, 

and controlled release of nanoparticles for effective drug 

delivery. Furthermore, it explores antibacterial coatings, 

silver nanoparticle coatings, and coatings made of 

magnetic nanoparticles, offering insights into their 

applications and biocompatibility. This holistic 

examination underscores the critical need for 

methodological precision in nanomedicine, with 

implications for diagnostics, therapeutics, and future 

research endeavor’s. 
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I. INTRODUCTION 
 

The protein corona is an ever-evolving biomolecular 

shell that develops on the surface of nanoparticles (NPs) as a 

result of their interactions with biological fluids [1, 7]. Aside 

from enhancing the precision and reliability of procedures 

for creating the protein corona produced on NPs, boosting 
these attributes can also considerably enhance 

reproducibility and transparency in nanomedicine while 

reducing misunderstandings [4]. The approaches employed 

should, in turn, rely on the intended usage. In this section, 

let's concentrate on how preparation techniques affect the 

precision and interpretation of biomolecular/protein corona. 
 

Among a variety of nonmaterial, nanoscale metal-

organic frameworks (nMOFs) have shown promise as drug 

delivery systems [12, 14]. Nanoscale metal-organic 

frameworks are a relatively novel family of hybrid porous 

materials with organized pore structure, substantial specific 

surface area, and a profusion of modification sites [33]. 

They are made of metal ions or clusters connected by 

organic ligands. Because they can reach extraordinarily high 

drug loading capacities (LC) and interact with multiple 

molecules as required to perform varied activities, nMOFs 

have a lot of potential as drug transport carriers [39, 45]. 

Furthermore, the regulated release, biodegradability, low 

toxicity, and superior biocompatibility properties of the 

nMOFs are a result of the reversible coordination between 

the ligands and metal ions inside [216, 231].  
 

The majority of therapeutic payloads must localize to 

subcellular compartments other than the endosomes in order 

to exhibit action, making effective endosomal escape 

following cellular uptake a significant problem in the field 

of Nano delivery [323]. By inducing membrane fusion 

during endocytosis, viruses can easily transfer their genetic 

material to the cytoplasm of host cells in nature. The 

hemagglutinin (HA) protein on the surface of the influenza 
A virus bonds the viral envelope with the surrounding 

membrane at endosomal pH levels [325, 342]. Here, 

endosomal escape-capable biomimetic nanoparticles were 

created employing a membrane coating made from cells that 

were made to produce HA on their surface. These virus-like 

nanoparticles demonstrated successful delivery of an mRNA 

payload to the cytosolic compartment of target cells during 

in vitro testing, leading to the production of the encoded 

protein. In both local and systemic administration situations, 

the mRNA-loaded nanoparticles considerably boosted the 

levels of protein expression when given in vivo [210]. 
Therefore, we draw the conclusion that expressing viral 

fusion proteins on the surface of nanoparticles coated in cell 

membranes via genetic engineering techniques is a workable 

method for modifying the intracellular localization of 

encapsulated payloads [325]. 
 

II. METHODS FREQUENTLY USED TO PRODUCE 

PROTEIN CORONA 
 

The following steps make up the general procedure for 
creating a protein corona: gathering and preparing NPs; 

gathering biological fluids; combining NPs and fluids; 

incubating for a predetermined amount of time at a 

predetermined temperature; isolating protein corona-coated 

NPs; purifying to remove excess and loosely attached 

proteins; and characterizing the protein corona using 

proteomics methods [17 – 25]. The five basic techniques 

used to isolate protein-coated NPs are field flow 

fractionation, gradient centrifugation, size exclusion 

chromatography, and centrifugation based on centrifugation. 

The most often employed of these for the collection of 
corona-coated NPs is centrifugation [37, 40].  
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III. METHODOLOGICAL PROBLEMS IN PROTEIN 

CORONA 
 

Protein corona data mistakes can initially be caused by 

inadequate knowledge of the procedures used to collect and 

store biological fluids (such as serum or plasma) [22, 45]. 

This is primarily because the stability of proteins and other 

macromolecules inside bodily fluids is affected by collection 

and storage techniques. The collection and storage process 

involves a variety of variables, all of which might alter the 

composition of the bio fluid. For instance, the anticoagulant 

agents employed with blood products can modify the protein 

corona composition by changing the biomolecular contents 
of plasma [51]. Another illustration is the long-term 

(multiyear) preservation of biological fluids, which can have 

a major impact on the quantity of several proteins, 

metabolomes, and lipids and alter the protein corona's 

composition [16, 49]. Therefore, strict biological fluid 

quality monitoring and reporting are crucial for protein 

corona analysis.  
 

The accuracy of corona analysis and interpretations for 

both diagnostic and therapeutic reasons can be considerably 

impacted by preparation techniques. As a result, these 

techniques ought to reduce the introduction of protein 

contamination and contaminants [62]. The 

targeting/therapeutic efficacy or diagnostic capability of the 

protein corona may be harmed by failing to account for 

potential impurities and contamination. False-positive and/or 

false-negative results may also result from failing to account 

for potential impurities and contamination. For instance, 

recent research showed that protein contamination during 

size-exclusion chromatography for corona-coated NP 

collection is common due to coelution of unattached 
proteins [66 – 71]. 

 

Corona impurity is a further source of protein 

contamination. It has recently been shown that the protein 

corona layer may contain a large quantity of tiny, 
agglomerated contaminants unrelated to the corona 

composition using a combination of imaging and simulation. 

These contaminants may significantly skew the results of 

proteomics analysis, including different kinds of mass 

spectrometry [12, 72]. Additionally, it was stated that the NP 

concentration is critical in the development of these 

contaminants in the corona composition, indicating that 

lower NP concentrations would produce more reliable 

results. It is crucial to stress that each particle in a Nano-

population may differ from the others according to its 

particular synthesis condition [76]. 

 

 
Fig. 1: General process of preparation of protein corona and common sources of errors and manipulation [80] 
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IV. MISUNDERSTANDINGSOURCES IN PROTEIN 

CORONA 
 

In addition to the technological difficulties outlined 

above, there are other prevalent reasons that lead to 

variability in protein corona data and incorrect interpretation 

of proteomics results. For instance, using stable yet 

polydisperse NPs to prepare protein coronas can cause the 

results of proteomics to be misinterpreted [83]. The primary 

reason is that changes in NP size can have a big impact on 

how the protein corona is made up. Low polydispersity 

index (PDI) values, such as those between 0.2 and 0.3, are 

thought to be an appropriate homogeneous population for 
polymeric and lipid-based Nano carriers in order to prevent 

this type of misunderstanding [89]. 
 

One of the most effective ways to lessen the likelihood 
of incorrect interpretation of proteomics results is by careful 

assessment of the size and polydispersity of the NPs used to 

produce protein corona (particularly related mixture and 

purification procedures). For instance, after being put to the 

biological fluid, a perfectly stable and monodisperse NP 

could become unstable. Additionally, characterization of the 

size and polydispersity of the NPs after collection and 

purification of the protein corona and comparison to the 

NP's original characteristics (i.e., prior to mixture with 

biological fluids) are helpful in identifying potential errors 

in proteomics data, if appropriate techniques are available 

[91 – 102]. 
 

V. REDUCING METHODOLOGICAL ERRORS IN 

PROTEIN CORONA 
 

Preparing protein corona-coated NPs without the 

common causes of scientific errors mentioned above can 

greatly increase reproducibility and transparency, making it 

easier to conduct future meta-analyses of protein corona 

results [105]. In order to guarantee the authenticity of 
proteomics results, the scientific community should pay 

more attention to the accuracy of the described procedures 

and characterizations of the various processes of protein 

corona creation. It is notable that successful clinical 

translation of nanomedicine products for both diagnostic and 

therapeutic uses depends critically on the validity and 

precision of proteomics analysis of the corona [23, 89]. The 

following suggestions are meant to reduce methodological 

mistakes made throughout various protein corona 

preparation procedures. 
 

Before, during, and after the formation of the protein 

corona, NPs in solution should be characterized 

appropriately (e.g., by dynamic light scattering or 

differential centrifugal sedimentation), in accordance with 

their standard protocols [e.g., by the International 

Organization for Standardization (ISO) for dynamic light 
scattering]. This will ensure that the NPs remain stable and 

monodisperse throughout the experiment [108]. A simple 

method to reduce the likelihood of protein contamination 

through the creation of large aggregates is to compare the 

size and distribution of NPs before and after the formation 

of the protein corona. It is interesting that protein 

entrapment between NPs is facilitated by the fact that, from 

a physical perspective, nanoscale objects "experience" 

water-based solutions as highly viscous fluids (for example, 

molasses) [113 – 117]. The entrapped proteins will be read 

as data in the proteomics analysis if the size and 

polydispersity of the NPs are not accurately and properly 

characterized during the creation of the protein corona 

[120]. 
 

Protein impurities may be more likely to occur inside 

the corona shell when concentrated NPs (>0.5 mg/ml) are 

used to prepare protein coronas. When it is possible, new 

cutting-edge procedures that are appropriate for the NPs 

being used should be used because these types of 

contaminants are difficult to identify using standard 
methods. If high concentrations of NPs (>0.5 mg/ml) are 

employed, potential contaminants must be taken into 

account with controls and replication [122 – 128].  
 

VI. TF-COATED (TRANSFERRIN)ACID-

RESISTANT MOFS 
 

Although the initial in vitro release test produced 

encouraging results, the issue of poor protein permeability in 
the intestinal epithelial cell layer needed to be resolved, and 

there was still a lack of in vivo study evidence to 

demonstrate whether successful INS (insulin subcutaneous 

injection) absorption was possible [131]. As far as we are 

aware, there hasn't been any research on MOF (Metal 

organic frameworks) -based nanosystems safeguarding INS 

from a harsh environment while enhancing INS penetration 

efficacy to finally produce a superior hypoglycemic impact 

[134]. 
 

Additionally, the Tf-coated acid-resistant MOFs oral 

delivery nanosystem may quickly enter intestinal cells, 

escape from lysosomes for deeper penetration, which is 

sufficient for quick and effective intestinal transportation 

and finally delivering a positive therapeutic impact [138]. 

Additionally, the creation of such a nanosystem is 
straightforward, inexpensive, and scalable because it is 

based on a single-step solvothermal reaction using 

accessible starting materials. This study demonstrated the 

significant potential of effective oral protein delivery by 

using the targeted protein-coated acid-resistant nMOFs for 

oral INS injection [140, 143]. 
 

VII. CREATION AND EVALUATION OF PROTEIN 

DELIVERY NANOSYSTEMS BASED ON NMOF 
 

The simple one-step solvothermal approach produced 

nanoparticles with consistent, regular octahedron forms. 

After loading the INS, the NPs' shape and particle size saw 

minimal alteration. The regular octahedron has relatively 

acute hydrodynamic diameters and angles. The angles of 

NPs became blunted when varied amounts of Tf were 

painted on the surface by physical adhesion [146 – 151]. 
 

Following Tf coating, the morphology of NPs 

gradually transformed from a conventional octahedron to a 

spherical, and their size grew. After loading with INS and 

additional decorating with Tf, the zeta potentials of NPs 

increased from +25 to +35 mV and almost reached +40 mV. 

UV-visible (UV-vis) spectroscopy was used to confirm that 

the rhodamine B isothiocyanate (RITC)-labeled INS was 
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successfully immobilized in NPs. Additionally, the optical 

images and confocal laser scanning microscopy (CLSM) 

results showed that the RITC-labeled INS was dispersed 

across the crystals [154, 155]. Due to the positively charged 

nature of NPs and INS in the acidic loading process (pH 4), 

hydrophobic interactions rather than electrostatic 

interactions were primarily responsible for the INS 

encapsulation [160]. 
 

VIII. TF-COATED NMOFS' IN VITRO STABILITY 

AND PROTEIN PROTECTIVE ABILITIES 
 

By observing the changes in size and morphology 

under various conditions and over varying time periods, it is 

possible to assess the in vitro stability of the nanosystems. 

Due to the excellent acid-proof stability of the nanoparticle, 

no discernible change in particle size was seen when various 
formulations were distributed in a simulated stomach pH 

environment [164]. In contrast, the nanoparticle started to 

cluster together and dissolve if the particle size increased 

significantly under physiological conditions. The 

deconstruction was significantly delayed after Tf decoration, 

proving that Tf decoration gave the nanosystem slow-release 

performance under physiological settings [166]. 
 

IX. SUSTAINED AND CONTROLLED INS 

RELEASE KINETICS 
 

As a successful oral delivery Nano carrier, has 

demonstrated that it is capable of providing enough 

protection for INS against challenging circumstances. In 

addition, it was necessary for the acid-resistant nMOFs to 

release INS steadily under physiological circumstances. 

Effective release kinetics has been provided by the release 

profiles of INS in simulated GI environment and simulated 

physiological circumstances [168 – 174].  
 

To mimic the state of medications taken orally, the 

continuous release of INS in various conditions was also 

assessed. Under acidic to neutral pH conditions in the 

stomach and intestine, hardly any INS was released. 

However, started to disassemble and release INS after being 

incubated in a neutral PBS environment [177]. While the 
percentage of released INS was only about 80% in PBS, the 

INS was virtually entirely released within 10 hours. In line 

with the stability finding, Tf marginally reduced the rate of 

INS release and hampered the disintegration [178]. The 

aforementioned findings showed that phosphate in PBS, as 

opposed to pH, specifically stimulated the release of INS 

from Tf-coated nMOFs, which had a significant sensitivity 

to the environment.  
 

X. ANALYSIS OF BIOCOMPATIBILITY AND 

LONG-TERM SAFETY 
 

Live/dead imaging was used to examine the 

biocompatibility of the nanosystems in vitro [181]. Even at 

concentrations of 500 g/ml, all samples showed low 

cytotoxicity (cell viability >85%) on three separate cell 

lines, which was further supported by live/dead labeling. NP 

was incubated with erythrocytes for 4 hours to test for 

possible cell membrane breakdown; however there was no 

sign of hemolysis. When the concentration reached 1 mg/ml, 

the hemolysis rate was 3.23%, demonstrating that NP 

seldom damaged cell membranes [183 -185]. 
 

While this was going on, when the cell monolayer was 

exposed to NP, there was no noticeable drop in 

transepithelial electrical resistance (TEER), which supported 

the integrity of the tight connections. Examine the possible 

long-term toxicity of the nanosystem by an extensive in vivo 

experiment, which is motivated by the low toxicity of 

single-dose [188]. After receiving treatment twice daily for 

seven days straight, the mice's small intestinal tissue showed 

finger-like villi, demonstrating the intestine's structural 

integrity. In addition, the organs and small intestine tissue 
showed no obvious structural damage [192]. The 

aforementioned findings supported the nanosystem's strong 

biocompatibility. 
 

XI. TF-MEDIATED INCREASED CELLULAR 

INTERNALIZATION AND TRANSEPITHELIAL 

ACTIVITY 
 

Human colon adenocarcinoma (Caco-2) cells are 
currently being used to research the transportability of drugs 

across the intestinal barrier to forecast drug absorption. 

These cells have a structure and function that is comparable 

to small intestinal epithelial cells [195 – 198]. This study 

investigated whether Tf-coated nMOFs could cross the 

intestinal epithelium by TfR-mediated endocytosis and 

successfully evade the lysosome for deeper penetration 

using Caco-2 cells as an in vitro model [200]. 
 

XII. IMPROVED PENETRATION EFFICIENCY 
 

After the Tf-coated nMOFs were discovered to be 

efficient at the cellular level in previous in vitro 

experiments, this research further validated the ability to 

transport across the small intestinal ex vivo since the 

intestinal epithelium layer has been considered the most 

difficult barrier to the oral absorption of Nano carriers [202, 

204]. 
 

XIII. CELL MEMBRANE-COATED 

NANOPARTICLES 
 

To maximize the therapeutic potential of drug 

payloads, it is critical to achieve the correct subcellular 

localization [206]. Delivery of Nano therapeutics to the 

cytosol, which contains cellular machinery that is the target 

of many treatments, has long been a significant obstacle. 

Notably, the endolysosomal pathway, which cells frequently 

use to trap and destroy foreign particles, presents a challenge 

for Nano delivery vehicles. After merging with lysosomes, 

where nanoparticles can be destroyed by acids and enzymes, 
endosomes go from being weakly acidic early endosomes to 

being more acidic late endosomes. The proton sponge 

strategy, in which nanoparticles are made with buffering 

properties that enable them to break endosomes via osmotic 

swelling, is one option to avoid this process [34, 209]. 
 

Alternately, you may create leaky endosomes by 

destabilizing the cell's plasma membrane during endocytosis 

and before it forms. Using nanoparticles that can move 

directly over the plasma membrane and into the cytosol due 
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to their structure and charge allows for the complete 

avoidance of the endosomal pathway [211 -215]. 

Unfortunately, many of these traditional methods of 

cytosolic administration have a history of cytotoxicity, 

making clinical application challenging [217]. 

 

 
Fig. 2: Cell membrane coated nanoparticle [220] 

 

XIV. CYSTOLIC DELIVERY OF MRNA 
 

The majority of viruses need their genetic material to 

be delivered into the cytosol in order to replicate. In order to 

avoid being destroyed, several viruses have developed ways 

to get out of the endosomal compartment [222]. The 

hemagglutinin (HA) protein found on the surface of the 

influenza virus aids in this function. After being expressed, 

HA undergoes proteolytic cleavage to transform into its 
mature form, yielding two subunits. The HA1 component 

enables the virus to bind to the target cells' plasma 

membrane and start endocytosis [225, 227]. Following 

endocytic absorption, the HA2 component goes through a 

conformational change brought on by a drop in pH that 

makes it easier for the viral envelope and endosomal 

membrane to fuse. 
 

XV. CELL MEMBRANE COATING 
 

Cell membrane coating is a newly developed top-down 

strategy for improving the bio interfacing properties of Nano 

carriers [230].  For instance, erythrocyte membranes have 

been exploited to increase the time that nanoparticles spend 

in the bloodstream, while cancer cell and platelet 

membranes have been used to deliver drugs to specific 

targets [232]. In more recent years, genetic engineering 

techniques have been used to create cell membranes that are 

enhanced with a particular surface marking, allowing 

researchers to specifically alter the functionality of cell 

membrane-coated Nano formulations. Complex surface 
proteins that would be impossible to include using standard 

synthetic techniques can be added to these designed 

nanoparticles [235 – 242].  
 

In this study, we designed a cell membrane-coated 
nanoparticle to show HA, resulting in a Nano carrier with 

increased cytosolic transport and endosomal escape 

capabilities that match those of a virus [236]. We chose to 

test our Nano formulation’s capacity to deliver model 

mRNA payloads both in vitro and in vivo given the growing 

interest in mRNA-based vaccinations [243]. Overall, the 

disclosed method is a strong method for increasing the 

usefulness of cell membrane-coated Nano carriers, 

especially for the administration of medications that need to 
be localized in the cytosol [245]. 

 

XVI. MODEL VIRAL PROTEIN FOR EXPRESSION 
 

Due of its potent ability to promote fusion, HA subtype 

H7 was selected as a model viral protein for expression. 

Furthermore, as H7 specifically targets 2, 3-linked sialic 

acid, we were able to test our platform in vivo using mouse 

models [245, 247]. The H7 expression plasmid was 

transfected into wild-type B16F10 cells (referred to as "B16-
WT") to create engineered cells (referred to as "B16-HA") 

that have a lot of the viral fusion protein on their surface. 

The functioning of the HA transgene was assessed in vitro 

using a cell-cell fusion investigation because B16-WT is 

known to express 2, 3-linked sialic acid.Two aliquots of 

B16-HA cells were divided, and each aliquot was stained 

with either Cell Trace Far Red or Cell Trace Violet [248 – 

253].  
 

The two dye-labeled aliquots were combined, the cell 

mixture was treated with L-(tosylamido-2-phenyl) ethyl 

chloromethyl ketone (TPCK) to induce HA maturation, and 

then endosomal pH was applied to encourage fusion 

activity. The cells were examined by flow cytometry after 2 

hours of incubation, and the results showed a sizable 

population of cells that were positive for both Cell Trace 
Violet and Cell Trace Far Red [251 – 257]. This 

demonstrated that the HA on the modified cells' surfaces 

was functional and capable of encouraging cell-cell fusion. 

In contrast, B16-WT cells exposed to the same experimental 

technique and examined using flow cytometry revealed a 

minimal proportion of double-positive cells [259, 261]. 

Please be aware that our research was unable to discriminate 

between fusion events between cells that were labeled with 

different dyes or detect events between three or more cells 

[265]. 
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XVII. NANOPARTICLES WITH MRNA LOADED 
 

The engineered B16-HA cells were harvested once HA 

expression was verified to have been successful, and their 

membrane was extracted as previously explained. Then, 

using a sonication procedure, the pure cell membrane was 

coated onto prefabricated poly (lactic-co-glycolic acid) 

(PLGA) nanoparticle cores. mRNA was added to the PLGA 

nanoparticle cores using a twofold emulsion technique with 

the help of the cationic lipid-like molecule G0-C14 [268 – 

272].  
 

The resulting mRNA-loaded nanoparticles coated with 

B16-WT and B16-HA membranes, referred to as "WT-

mRNA-NP" and "HA-mRNA-NP," respectively, had 

average diameters of around 185 nm and zeta potentials of 

about 20 mV. Negatively stained HA-mRNA-NP by 
transmission electron microscopy proved that the membrane 

was adequately deposited onto the polymeric cores [274 – 

278]. Western blotting analysis was used to check for the 

presence of HA on the isolated cell membrane and on the 

Nano formulations. Both the final HA-mRNA-NP 

formulation and the membrane made from B16-HA were 

visibly covered in HA [280, 281]. 
 

XVIII. EXPRESSION OF A VIRAL FUSION PROTEIN 

IN CELL MEMBRANE 
 

In this study, the surface of mRNA-loaded nanoparticle 

cores was coated with a cell membrane modified to produce 

a viral fusion protein. This allowed the resulting HA-

mRNA-NP formulation to replicate the ability of some 

viruses to achieve endosomal escape [285]. Influenza On the 

surface of mouse cells, a virus of the HA subtype H7 

attached to 2, 3-linked sialic acid, causing endocytic 

absorption. The reduced pH in the late endosomes caused 

the HA to induce membrane fusion, allowing the contents of 

the nanoparticles to be released into the cytosol [287, 289].  
 

We examined the modified cell membrane-coated 

nanoparticles' capacity to exit the endosomal compartment 

and stimulate the expression of two representative reporter 

genes in vitro in order to demonstrate our theory [291]. The 
HA-expressing nanoparticles greatly outperformed a control 

formulation created using the membrane of wild-type cells 

devoid of the viral transgene in both instances. In vivo tests 

revealed that CLuc-mRNA-loaded HA-mRNA-NP could 

considerably increase levels of the encoded protein in both 

local and systemic injection settings [293 – 298]. 
 

XIX. MRNA-BASED VACCINATIONS 
 

It would be ideal to have efficient means of delivering 
mRNA, especially considering the recent interest in mRNA 

vaccines brought on by the COVID-19 pandemic [302]. One 

of the main challenges in mRNA Nano delivery is 

endosomal escape since the payload needs to be in the 

cytosol to perform its biological function [308, 310]. Using 

naturally occurring viral fusion proteins, such as influenza 

virus HA, could offer a sophisticated answer to this 

problem, as we have shown here [303,305]. We were able to 

put HA in its natural context on the surface of nanoparticles 

using cell membrane coating technology in conjunction with 

genetic engineering, a feat that would otherwise be 

challenging using traditional functionalization techniques 

[307]. Future research will be needed to confirm the 

effectiveness of this method in particular mRNA 

applications, like vaccination and gene therapy. In the end, 

this kind of research may produce brand-new methods for 

regulating the subcellular localization of therapeutic 

payloads, hence enhancing the applicability of biomimetic 
nanomedicine [310]. 

 

XX. ORGANIC COATED NANOPARTICLES 
 

Using an eco-friendly Ag+ in situ reduction technique, 

a soy protein isolate Nano-silver hydrosol was created. The 

soy protein was then ultrasonically combined with 

polyacrylic resin to create a polyacrylate-nano silver 

antibacterial wood coating. The structural, antibacterial, and 
mechanical properties of the film were examined, as well as 

the structure of the soy protein isolate Nano-silver hydrosol 

[312 – 315]. The outcomes demonstrated that the silver 

nanoparticles (AgNPs) were equally dispersed throughout 

the emulsion and had good crystallinity. Escherichia coli, 

gram-negative bacteria, and Staphylococcus aureus, gram-

positive bacteria were used as models for the composite 

film's antibacterial performance. The diameter of the 

inhibitory zone grew from 0 to 30 mm and from 18 to 50 

mm for the two bacteria, respectively, with increased Nano-

silver content. Additionally, as the AgNPs content changed 

from 0.1 to 1%, the film's elastic modulus increased from 
8.173 to 97.912 MPa and its elongation at break fell from 

240.601 to 41.038%. Thus, a new technique for creating 

aqueous polyacrylate coatings with outstanding antibacterial 

properties [316 – 322]. 
 

XXI. ANTIBACTERIAL COATINGS 
 

Based on the types of antibacterial agents applied, 

antibacterial coatings can be categorized as natural 
antibacterial coatings, organic antibacterial coatings, 

inorganic antibacterial coatings, and composite antibacterial 

coatings [324]. Natural antibacterial compounds, like 

chitosan, have strong antibacterial capabilities and good 

biocompatibility but cannot be mass-produced because they 

start to carbonize and degrade above 160–180°C [326]. 

Organic antibacterial agents use small, poisonous 

compounds but have good performance, strong color 

persistence, and short-term antibacterial effects [326, 327]. 

Because they have the potential to be developed, researchers 

are looking into inorganic antibacterial agents more and 

more. Among them, AgNPs demonstrate low toxicity, great 
anti-fouling and broad-spectrum antibacterial efficacy, and 

strong adsorption capacities [329]. They combine the 

benefits of inorganic antibacterial materials and Nano 

antibacterial materials. As a result, these substances show 

promise as super antibacterial substances. Ag+ ions released 

over time are what give AgNPs their biocidal action, and the 

photocatalytic qualities of their surfaces can cause oxidative 

damage to nearby cells [330 – 334]. 
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XXII. SILVER NANOPARTICLE COATING 
 

The current techniques for making Nano-silver can be 

categorized based on their physical or chemical preparation 

[337]. Laser ablation, microwave reduction, quenching, and 

mechanical grinding are examples of physical preparation 

techniques [339, 340]. Physical methods offer excellent 

purity and a straightforward process, but they also require 

more equipment and have significant manufacturing costs 

[342]. A reducing agent, such as sodium borohydride or 

sodium zirconate, must be added to a silver precursor using 

chemical reduction procedures in order to convert the 

precursor into elemental silver, which then develops into 
silver particles. Because silver particles tend to clump 

together readily, stabilizers or dispersants like polyethylene 

glycol, mercaptan derivatives, aniline, long-chain amines, 

and surfactants are frequently used to prevent this from 

happening [343 – 346]. The reagents employed in traditional 

chemical procedures are toxic to both people and the 

environment, and some stabilizers and dispersants are even 

carcinogenic, yet they are low cost and high yield. The need 

for non-toxic preparation substances is therefore increasing 

[346, 348]. Researchers have focused a lot of attention on 

soy protein since it is safe, affordable, biodegradable, and 
environmentally friendly. Two significant soy protein 

constituents that predominate are soy glycinin (11S 

globulin) and glycinin (7S globulin) [350]. Additionally, 

specific amino acids from soy protein isolate (SPI), like 

tyrosine and cysteine, can be employed as reducing agents 

for metal ion precursors. Additionally, the SPI surface's 

amino and carboxyl groups have a great affinity for silver 

particles and can be employed to stabilize the silver particles 

[351, 353]. 
 

XXIII. COATINGS MADE OF MAGNETIC 

NANOPARTICLES 
 

Magnetic nanoparticles (MNPs) offer a lot of potential 

in biochemistry and medical research. Due to their strong 

magnetic characteristics, substantial surface area, durability, 

and ease of functionalization, iron oxide nanoparticles in 

particular have shown a potential effect in a variety of 

biomedical applications [355 – 357]. For their use in vivo, 

MNPs' colloidal stability, biocompatibility, and potential 

toxicity in physiological settings are essential considerations 
[359]. Numerous research articles in this regard 

concentrated on potential methods for coating MNPs to 

enhance their physical-chemical and biological features 

[362]. The review focuses on a practical method for 

producing biocompatible iron oxide nanoparticles that uses 

human serum albumin (HSA). HSA has numerous roles in 

numerous essential processes; however it is primarily a 

transport protein [363, 365]. None of the drugs in the blood 

pass without it because it is one among the most prevalent 

plasma proteins. It binds to the surface or forms a protein 

corona to affect the stability, pharmacokinetics, and bio 

distribution of several drug-delivery methods [367, 368]. 
 

 

 

 

 

XXIV. MAGNETIC NANOPARTICLES COATED WITH 

ALBUMIN BASED DRUG CARRIER 
 

The creation of albumin-based drug carriers is 

becoming more and more significant in the targeted 

administration of cancer therapy, which is why magnetic 

nanoparticles with albumin coating are used [370]. In light 

of this, HSA is a highly promising candidate for the 

theranostics and nanoparticle coating fields and can offer 

biocompatibility, longer blood circulation, and perhaps even 

a solution to the drug-resistant cancer problem [374, 376]. 
 

Magnetic nanoparticles (MNPs) have a wide range of 

uses, including as contrast agents in MRI, in material 

science, for magnetic transport, for magnetic fluid 

hyperthermia, for structural biology, for delivering drugs 

and genes, and for theranostics. Due to their great stability, 
cost effectiveness, and ideal MRI and hyperthermia 

characteristics, iron oxide MNPs are promising tags [382 – 

388]. 
 

The separation of MNPs from any liquids and the 
intended site is made simple by manipulation with an 

external magnetic field [391, 393]. Theranostics (treatment 

+ diagnostics) and targeted drug delivery are two areas 

where combining ways of induction local heating in the 

tumor location, anticancer medicines, and good monitoring 

by MRI has a tremendous promise [395, 396]. Magnetite, 

Fe3O4, is one of the most prominent ferromagnetic MNPs. 

However, Fe3O4 aggregates because of its high surface 

energy and instability under oxidation. Surface 

functionalization is therefore necessary for such MNPs 

[398]. The development of highly reactive oxygen species 

(ROS) in cell lines and animal models as a result of the 
incorrect coating causes instability in the bloodstream and 

immediate or delayed toxicity [399 – 402].  
 

XXV. DISCUSSION & CONCLUSION 
 

Protein coating often has reduced cytotoxicity of 

MNPs and is biocompatible, biodegradable, and less 

immunogenic. Human serum albumin (HSA) has recently 

been used in biotechnological applications, such as coating 
nanoparticles and creating materials that are inspired by 

living things [405]. Instead, the aforementioned protein 

coating contains albumin, one of the main proteins found in 

human plasma, which decreases unintentional blood 

component adsorption and improves tissue and cell targeting 

[408, 411]. 
 

Gp60, Gp30, Gp18, and FcRn receptor binding enables 

albumin-constructions transcytosis in the cells. Additionally, 

binding to the SPARC receptor and the increased 

permeability and retention effect (EPR) promote 

accumulation in a tumor [413 – 417]. Many 

pharmacological or naturally occurring ligand binding sites 

can be found in the albumin structure, which can be utilized 

for therapeutic loading. Here, the human serum albumin is 

coupled with coating characteristics for magnetic 
nanoparticles [420, 422]. This evaluation presents an 

overview of the available options for the first time and offers 

suggestions for potential future technological developments. 

Studies have been done on the structure of albumin, drug 
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binding sites, and its passive and targeted distribution, which 

show how versatile and biocompatible albumin [425, 428].  
 

It is also mentioned that albumin modification with 

reporter groups, medicines, and imaging residues may be 

employed to further coat MNPs. Such approaches are 

appropriate for the creation of theranostics or multimodal 

imaging smart platforms based on MNPs core [430]. MNPs' 

coating by albumin as a water solution, Biosystems stability, 

low toxicity, tailored distribution in vivo, and some physical 

property enhancements are their benefits. Researching MNP 

stability and coating techniques paves the path for 

bioinspired and multifunctional materials, probes, and 
devices [432 – 436]. 

 

The advantages of enzyme-assisted hydrolysis include 

minimal side effects, mild hydrolysis responses, and 
minimal amino acid degradation. Therefore, the soybean 

protein isolate's peptide bonds were broken while leaving 

the amino acid structure and configuration intact by using 

bromelain hydrolysis [440 – 445]. Tyrosine was used to 

decrease silver ions and stabilize elemental silver during the 

in-situ preparation of AgNPs, which were subsequently 

ultrasonically blended with a polyacrylic resin emulsion 

[452]. After that, the matching antibacterial coating was 

created by UV curing, and its antibacterial effectiveness was 

assessed [458]. This environmentally friendly formulation of 

Nano-silver hydrosolized soybean protein isolate for 

antibacterial wood coatings has promise and numerous 
development opportunities [460 – 463]. 
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