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Abstract:- Calculating and predicting the performance of 

cooling towers has posed a significant challenge for 

researchers in this field. Over time, various methods, 

including the utilization of artificial intelligence and 

algorithms, have been proposed to address this issue. In 

this study, experimental data pertaining to cooling tower 

performance has been employed to develop a novel model 

based on neural networks. The objective is to predict the 

performance of cooling towers and analyze performance 

trends in this particular type of structure. To achieve this, 

a multi-layer perceptron neural network is utilized due to 

its high capacity, with real data serving as input. 

Subsequently, the efficiency of the neural network model 

is assessed by comparing the results with real-world 

samples. The validation process involves predicting 

cooling tower performance, examining performance 

trends, and analyzing tower behavior under windy 

conditions. 
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I. INTRODUCTION 

 

Coolers or humid cooling towers are commonly utilized 

to increase humidity in the air and convert dry air into 

saturated air. This process aims to achieve an output 

temperature that closely matches the wet bulb temperature. 

Cooling towers are essential components in power plant 

cooling systems, as their efficiency directly impacts the 

overall power generation capacity. Environmental conditions, 

particularly crosswind conditions, significantly affect cooling 

efficiency. However, the impact of crosswind on 

conventional cooling tower designs has received limited 

attention. Researchers have been actively investigating 

cooling tower performance to develop efficient processes for 

predicting and enhancing tower functionality. The calculation 

of efficiency and performance is crucial in equipment 

provision, and researchers have proposed various algorithms 

and methods to address the challenges posed by the large 

volume and diversity of data and design methods in this field 

[1]. This study focuses on the application of artificial neural 

networks to predict the thermal performance of a cooling 

tower under crosswind conditions. A laboratory experiment 

was conducted on a model tower to collect sufficient data for 

training and prediction [2]. The use of artificial neural 

networks for predicting the thermal performance of a cooling 

tower in crosswind conditions was investigated in another 

study, which also involved a laboratory test on a wet cooling 

tower against natural flow to gather data for training and 

prediction [4]. The study analyzed an unfilled cooling tower, 

known as a shower cooling tower, due to the impracticality of 

using tower packing in applications where salt deposition and 

subsequent blockage occur [5]. A model based on a wavelet 

neural network was developed to predict the performance of 

the shower cooling tower, and data from an experimental 

shower cooling tower under steady-state conditions were 

used to train and test the proposed model [6]. Another study 

focused on predicting the performance characteristics of a 

cooling tower with reversible use under cross flow conditions 

for a heat pump heating system in winter using artificial 

neural network techniques [7]. The thermal performance 

evaluation of a cooling tower used in the heating, ventilation, 

and air conditioning industry to dissipate heat to the 

atmosphere was investigated using an artificial neural 

network model [8]. The reduction of cooling effectiveness 

during cooling tower operation was modeled using local 

linear wavelet neural networks, and the particle swarm 

optimization algorithm was employed to optimize the model 

parameters [9]. An artificial neural network model based on 

the Froude number level was developed to predict the 

performance parameters of a wet cooling tower under 

crosswind conditions, and data from testing the thermal state 

model were collected to complete the neural network [9]. The 

optimization of cold water temperature in forced draft 

cooling towers with different operating parameters was 

considered in a study that utilized the response level method 

and an artificial neural network to predict the cold water 

temperature [10]. Another study proposed a numerical and 

experimental scheme to enhance cooling tower performance 

by combining the particle swarm optimization algorithm with 

a neural network and considering packing density as a 

significant factor for improved accuracy [11]. The 

researchers collected data related to cooling tower 

performance in diverse conditions, which were used in 

various neural network design processes. Ultimately, a neural 

network based on a deep learning algorithm was developed 

and used to predict cooling tower performance. The 

effectiveness of the proposed system was verified by 

comparing the results of the designed neural network with 

experimental examples, which demonstrated the accuracy of 

the proposed system in predicting cooling tower 

performance. 

 

 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                International Journal of Innovative Science and Research Technology                                                 

                                                      ISSN No:-2456-2165 

 

IJISRT23SEP1328                                                              www.ijisrt.com                                                            2032 

II. WET COOLING TOWER 

 

Based on their performance and structural mechanism, 

cooling towers can be categorized into three main types: wet 

(evaporative), dry (air-cooled), and combined (a combination 

of the first two types). These three types differ significantly 

from each other, and the choice of which type to use depends 

on the prevailing weather conditions, with the wet and dry 

types being the most commonly selected. The wet cooling 

tower operates similarly to a conventional cooling tower, 

where evaporation occurs, allowing the water temperature to 

approach the wet temperature. In wet cooling towers, water 

circulates within the device through nozzles and is distributed 

to the heat transfer surfaces, known as packing. The driving 

force of the electromotor comes into contact with the water, 

causing it to evaporate. The water that evaporates absorbs 

latent heat from the remaining water flow, resulting in the 

cooling of the water. On the other hand, other cooling towers 

function as heat exchangers, aiming to lower the temperature 

of hot water. In these towers, direct contact between water 

and air occurs on the cooling surfaces, leading to the 

evaporation of a small amount of water flow (approximately 

0%). The heat required for this evaporation is obtained from 

the main water flow, causing the temperature of the 

remaining 99% of the water to decrease. Consequently, heat 

and mass transfer occur simultaneously in this type of 

cooling tower. The wet cooling tower, with its simultaneous 

heat and mass transfer, effectively cools the water during the 

return process. The cooling process in a wet cooling tower 

involves the high-temperature water entering and passing 

through the packing or cooling surfaces, coming into contact 

with the fresh airflow from the external environment, and 

subsequently accumulating in the pan or cool water storage 

tank after being cooled. In the fluid circulation cycle within 

the wet cooling tower, the water containing heat is directly 

exposed to the airflow, resulting in a decrease in water 

temperature for two reasons. 

 

In the context of heat transfer in a water-air system, 

there are two primary mechanisms at play. The first is direct 

heat transfer, which occurs as a result of the temperature 

disparity between the incoming hot water and the dry 

ambient air outside. This type of heat transfer is known as 

sensible heat transfer. The second mechanism is indirect heat 

transfer, which takes place through the evaporation of a 

portion of the water flow. This process utilizes the heat 

energy present in the water to facilitate the necessary energy 

for evaporation, known as the latent heat of evaporation. 

 

 Types of Wet Cooling Towers  

 

 Counter-Flow Wet Cooling Tower  

In the realm of heat transfer within a water-air system, 

two fundamental mechanisms are at play. The first 

mechanism involves direct heat transfer, which arises from 

the temperature difference between the incoming hot water 

and the surrounding dry ambient air. This particular form of 

heat transfer is commonly referred to as sensible heat 

transfer. The second mechanism, on the other hand, entails 

indirect heat transfer, which occurs through the evaporation 

of a fraction of the water flow. This process harnesses the 

heat energy inherent in the water to facilitate the requisite 

energy for evaporation, known as the latent heat of 

evaporation. 

 

 Cross-Flow Wet Cooling Tower  

In the context of cooling towers, the cross-flow type 9 

refers to a specific configuration where air is drawn from 

both sides of the tower, and the flow of incoming dry and 

cool air is perpendicular to the flow of falling water. This 

type of cooling tower typically has air inlets, known as 

louvers, on both sides. It is commonly used for open-circuit 

cooling, where the tower comes into direct contact with 

incoming dry air across all packing layers or heat exchange 

surfaces. 

 

 Cubic Wet Cooling Tower  

The cubic cooling tower 01 is an example of an open-

circuit cooler with a fixed water-spraying system. It is 

characterized by its cubic shape. The water distribution and 

spraying system in this type of cooling tower consists of a 

series of water spraying nozzles. These nozzles emit a spray 

of water that is directed onto the packing or cooling surfaces. 

The aeration system of the cubic cooling tower can be 

customized based on the specific type of fan or suction 

impeller, as well as the choice between an axial blower or 

centrifugal fan. 

 

 Conical Wet Cooling Towers  

The Rotary cooling tower, also known as the Round 

Cooling Tower, is characterized by its rotating and conical 

shape. It utilizes a water distribution system for spraying 

water. The circular cooling tower employs a sprinkler head or 

central water spreader to distribute water on the media 

packing surfaces in a rotating manner, ensuring flow 

distribution. The air circulation system of this industrial 

cooling model typically utilizes axial fans for induction 

suction. In the design of cooling towers, calculations are 

performed to determine cooling capacity, efficiency, and 

condensation water. These calculations serve as the 

foundation for selecting the appropriate cooling tower and 

estimating water consumption. Accurate calculations 

contribute to the optimal performance of the cooling tower 

and the efficient operation of other equipment that relies on 

the cooling system. The calculations are categorized into 

different aspects, such as determining the water outlet 

temperature, considering cooling capacity and operating 

conditions, and estimating water consumption for peripheral 

equipment in the water circulation system. 

 

 Cooling Tower Approach Temperature  

The distinction lies in the ambient wet cold water 

temperature, specifically in relation to the cooling tower 

outlet temperature, commonly referred to as the approach 

temperature. This approach temperature is determined by the 

difference between the cold tower bulb temperature and the 

bubble temperature in the surrounding environment. 

 

 Cooling Tower Disagreement  

Another essential factor in the calculation of the cooling 

tower is the inlet and outlet temperature difference in the 

cooling tower. In calculation) Range (the difference between 
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hot water temperature) inlet (and cold water temperature) 

output (called temperature or delta differences of efficiency 

and calculation of cooling capacity, inlet, and output 

temperature difference is of great importance.  

 

 Cooling Tower Efficiency  

One of the crucial aspects in the design and 

computation of the cooling tower is the determination of its 

efficiency. The efficiency of a well-performing cooling tower 

relies on various factors, including the calculation of the 

Range and Approach parameters. The efficiency of a cooling 

tower, similar to other design parameters, is influenced by the 

ambient temperature and humidity. It is worth noting that the 

power output of the cooling tower instrument was slightly 

below the optimal level. To calculate the efficiency of the 

cooling tower, the following equation was employed:  

 

𝜂 = 𝑅/(𝑅 + 𝐴) × 100                                                              (1) 

 

The difference between the temperature and above is 

the input relationship.  

 

 Concentration Cycle Calculations in the Cooling Tower  

Another significant parameter in the calculations of 

cooling towers is the Concentration Cycle (COC). COC, also 

known as the Cycle of Concentration, plays a crucial role in 

the design of water coolers. It refers to the ratio of 

conductivity in the main cycle to conductivity in the 

compensatory water cycle. The COC in a cooling tower can 

be determined using the following formula. 

 

 
 

One of the crucial aspects in the design and calculation 

of a cooling tower involves estimating the quantity of water 

consumed by the cooling tower under varying climatic and 

seasonal conditions. The term "UP" refers to the amount of 

cooling water consumed within a specific time frame. This 

fluid is lost through three distinct methods during a fluid 

circulation cycle. The calculation of compensatory water 

encompasses several parameters. In a wet cooling tower or 

circuit, a continuous input of water is necessary to establish a 

permanent cycle and maintain mass balance. The calculation 

of compensatory water in the cooling tower is influenced by 

three primary parameters, namely water evaporation and 

water droplet discharge. Essentially, the compensatory water 

is expended in the appropriate direction, depending on 

various functions within the cooling tower. Accurate 

calculation of compensatory water is crucial as it needs to be 

practically feasible during the warm seasons in the initial 

design phase. The calculation of compensatory water in the 

tower cooling process can be performed using three general 

methods. The first method involves estimating the 

compensatory water as 0.11 to 3% of the circulating water. 

Additionally, compensatory water can be calculated using 

online tools and engineering software such as SPX Calculator 

and Water. 

 

 Evaporation of Water in the Cooling Tower  

The primary factor contributing to water loss in the 

cooling tower is evaporation, which occurs when water 

comes into contact with the airflow generated by the cooling 

tower fan. This evaporation process results in a decrease in 

water temperature as heat is absorbed. The evaporative 

cooling process leads to the formation of compensatory or 

make-up water. The calculation of compensatory water in the 

cooling tower is greatly influenced by the rate of water 

evaporation. The amount of water evaporation is dependent 

on factors such as the temperature difference between the 

inlet and outlet, climatic conditions, and the specific 

installation environment of the cooling tower. Accurately 

determining the quantity of water evaporation in the cooling 

tank is crucial for obtaining reliable results in compensatory 

water calculations. The precise determination of water 

consumption is a critical aspect of cooling tower calculations 

and is achieved by utilizing the synthetic heat coefficient of 

evaporation. This parameter can be easily determined and 

plays a significant role in the calculation of compensatory 

water in the cooling tower. 

 

 Bludan Cooling Tower  

The second factor contributing to water loss in the 

cooling tower system is bleed off, which is necessary for 

maintaining the desired discharge current and preventing the 

accumulation of minerals. The calculation of cooling tower 

performance is crucial in ensuring effective cooling. The 

continuous or intermittent removal of a certain percentage of 

water, known as blowdown, is necessary to prevent the 

concentration of minerals from increasing in the cooling 

water. The total dissolved solids (TDS) and other unintended 

substances also play a role in determining the appropriate 

amount of blowdown. The calculation of cooling tower 

capacity depends on factors such as the quality of the inlet 

and outlet water, as well as the temperature and concentration 

cycle. If the concentration of soluble materials in the cooling 

tower exceeds the standard level, it can lead to sedimentation 

and reduced efficiency. Additionally, an increase in bleed off 

can result in excessive water consumption for compensation 

in the cooling process. Therefore, accurately adjusting the 

flow rate of water in the cooling tower is a critical factor in 

the calculation of compensatory water requirements. 

 

 Adjustment of the Cooling Tower Flow  

Manual Blow Down In such cases, a small discharge 

flank and valve are used to adjust the amount of cooling 

tower. Range (depends on. Automatic Blow Down Generally, 

to reduce the amount of discharge and coolers in the cooling 

tower, a smart TDS meter and sprinkler are used. TDS meter 

by increasing the concentration of water from the standard 

water, on the on-command) on It expresses to the valve for 

water drainage. By draining and concentrating water from the 

container of the cooling tower, the concentration of soluble 

materials is reduced, and the TDS meter is turned off after a 

specified time (of the command).  

 

 Drift or Throwing Water Droplets  

Drift (in the cooling tower) draws water droplets out of 

the sprinkler or waterfront by passing air. A very small 

percentage makes up for 3 % (compensatory water 

consumption). Drift Elminator (Drift Drift in the cooling 

tower) Drift Elminator (used to reduce drift consumption. 

Outside the coiling reaches approximately 1 ... droplet. 
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Numerical calculations of the cooling tower. The two 

main factors in the compensatory calculations of the cooling 

tower are the evaporation and imagination of water. The 

basic calculation of the water consumption is as follows: 

 

M=E+B+D                                                                            (3) 

 

Where M is compensatory water or mix, E is the 

evaporation of water, B is Bolt, D is the Drift of fine water 

droplets  

 

 Calculation of Water Evaporation in the Cooling Tower  

Two general methods can be used to calculate the water 

evaporation in the cooling tower.  

 

The first method (use of the specialized formula for 

calculating the evaporation of the cooling tower: According 

to this method, the following formula is used to calculate the 

amount of compensatory water resulting from evaporation in 

the cooling tower.  

 

E = 0.00085 * R * 1.8 * C                                                    (4) 

 

Where E is 0.00085 x R x 1.8 x C, E is Evaporation 

Loss, R is Range and C is Circulating Cooling Water (m3/hr)  

 

The second method (uses the second specialized 

formula to calculate the evaporation rate of the cooling tower 

numerically: In this method, heat absorbed in evaporation is 

generally used. According to this method, the following 

formula was used to calculate the compensation water 

resulting from evaporation in the cooling tower:  

 

E = C * R * Cp / HV                                                            (5) 

 

Where E is  Evaporation Loss, C is Cycle of 

Concentration, R is Range, Cp  is  Specific Heat = 4.184 and 

HV is Latent heat of vaporization = 2260  

 

 Calculation of Cooling Tower Blued  

Similar to evaporation, Bludan can be calculated using 

two methods. The first method (numerical calculation of the 

amount of cooling-tower noise according to the following 

formula:  

 

B = E/ (COC-1) )                                                                  (6) 

 

Where B is Blow Down, E is Evaporation Loss, and 

COC is Cycle of Concentration (a dimensionless parameter 

between 2 and 7 that is determined by the cooling tower 

manufacturer) 

 

The second method (approximate calculations of 

cooling tower noise according to the following table: the 

amount of discharge and bludgeon in the cooling tower to 

maintain the concentration of dissolved minerals within an 

acceptable range) depends on the cooling range of the 

cooling tower (range) and the initial conditions of the water 

(TDS). 

 

For example, a cooling tower device. One ton of 

refrigeration with a circulating water flow. 1 cubic meter per 

hour and a temperature difference of 1.1 degrees Celsius, the 

amount of compensated water according to the above method 

is calculated as follows [23-31]: 

 

Where E is 350*2 =700 , M is B+E = 865 and B is 

50000*(0.0033)=165 

 

III. ARTIFICIAL NEURAL NETWORKS 

 

The use of an artificial neural network allows for high 

speed and low cost to obtain a model for the cooling tower to 

predict the temperature of the cooling tower in a wide range 

of input data. Finally, the results of the artificial neural 

network are compared with those of the heat transfer and 

mass model, indicating that the model error designed by the 

artificial neural network is a mathematical model to obtain a 

desirable analysis close to the reality of cooling tower 

components. And predicting the performance of different 

systems is the neural network of good and efficient choices. 

Neural networks have been used in various areas. These 

systems consist of multiple layers and neurons. Figure 1 

shows the structure of the neural network.  

 

 
Fig 1 MLP Neural Network Structure 

 

IV. METHODS 

 

The multilayer perceptron neural network is a type of 

artificial neural network that consists of multiple layers of 

interconnected neurons. It typically includes an input layer, a 

hidden layer, and an output layer, with each layer containing 

nodes that utilize nonlinear activation functions. Unlike a 

linear perceptron, the multilayer perceptron is capable of 

handling non-linear data. The training of the multilayer 

perceptron involves a monitoring learning technique known 

as refund, which involves calculating error gradients for each 

network parameter (i.e., weight or bias) and adjusting them 

accordingly. This process allows the algorithm to determine 

the necessary changes to the weights in order to minimize 

errors. Overall, the multilayer perceptron is trained through a 

process of adjusting the weights in its layers. 
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 Data information  

In the initial phase of network design, the experimental 

data is thoroughly classified, and the design process is 

divided into two distinct categories: input data and target 

data. The various types of experimental data utilized in the 

network structure are outlined in Table 1, as referenced in 

[1]. The neural network design process incorporates data 

derived from benchmark articles on neural networks.  

 

Table 1 Neural Network Data 

Input Variable Target Variable 

Dry bubble temperature of 

inlet air θin 

 

Wet bubble temperature τin 

Inlet water temperature in tin 

circulation 

Inlet mass flow rate of 

circulating water ˙min 

Inlet wind speed Vin 

Tout circulating water outlet 

temperature 

temperature difference T 

Cooling efficiency 

coefficient η 

 

  

 Multi-Layer Network Network Modeling   

In this study, a multilayer Perceptron network was 

employed to construct a prediction model, as depicted in 

Figure 2. The hidden layer consisted of nine neurons, while 

the output layer contained two neurons. To ensure 

robustness, the dataset used for model development was 

divided into three distinct sets: training, testing, and 

validation. The training set accounted for 70% of the dataset, 

while the remaining portion was allocated for validation of 

Model 1 and Model 2. The optimal configuration for the 

input layer, hidden layer, and output layer was determined to 

be 1 [12-15]. 

 

The dataset comprised a total of 355 instances. The 

network was trained using the back-propagation algorithm 

and the Levenberg-Marquard strategy. Training continued 

until the training error reached a sufficiently small value or 

when negligible changes in the training error were observed. 

In essence, training was terminated when the regression 

coefficient R approached unity. A schematic representation 

of the neural network can be seen in Figure 3 [13-15]. 

 

 
Fig 2 Schematic of MLP Neural Network 

  

Normally, network design is performed in such a way 

that according to trial and error and referring to reliable 

sources, the values of the network variables are selected. The 

simulation results are shown in Fig. 3.  

  

 
Fig 3 MLP Neural Network Regression 

 

V. ANALYSIS AND REVIEW OF RESULTS 

 

In this research study, a laboratory experiment was 

conducted to collect sufficient data for the purposes of 

training and prediction on a natural counterflow wet cooling 

tower [1]. This section aims to compare the performance of 

different components of the Hankah tower, as obtained from 

the neural network model, with the results obtained from 

experimental calculations [1]. To evaluate the accuracy of the 

results, it is necessary to utilize both the experimental data 

and various software packages. The experimental 

calculations were carried out using heat transfer relations and 

assessed based on internationally recognized standards. 

These calculations were then validated using CoolSpec 

software, and the outcomes are presented in Table 4. To 

further examine the prediction of heat transfer in the crown 

and compare it with the results from the designed neural 

network, the final data from the regression graphs should be 

analyzed using Data Graph Digitizing software. 

 

 
Fig 4 The Final Regression of the MLP Network 
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 The outcomes of the deep learning network are presented in 

Figure. The final results exhibit enhanced convergence and 

more desirable outcomes, indicating that the designed 

network outperforms the experimental sample and accurately 

predicts the final output data. The Mean Squared Error 

(MSE) and final regression results can be observed in the 

pseudo-neural output section. 

 

Table 2 Training Function 

 Samples MSE R 

Training 25 3559.29075e-0 9.99964e-1 

Validation 5 4294860.30898e-0 9.12059e-1 

Testing 5 1853728.98074e-0 9.50070e-1 

  

The final results of the multilayer Perceptron network 

are shown in Figure 5. The final coefficient for predicting 

heat transfer with a very high level of convergence is 0.9999, 

which indicates favorable results. Compared with the results 

of the software, it is possible to realize the high efficiency of 

network performance to accurately predict the data in the 

output phase.  

 

Table 3 The Results of the Neural Network for Paper1 

 
 

Table 4 The results of the MLP neural network 

 
 

VI. CONCLUSION 

 

In this study, a mathematical model based on a 

multilayer perceptron neural network is introduced as a 

means to predict the performance of cooling towers. The 

design of the neural network structure is thoroughly 

described, encompassing all relevant details. The 

performance of the cooling towers was evaluated through 

functional systems. The results obtained from these 

evaluations were then compared with those derived from the 

neural network. The findings indicate that the proposed 

neural network accurately predicts the annual performance on 

the surface with an error rate of approximately 4%, and the 

total annual performance with an error rate of 2%. This 

demonstrates the high accuracy and efficiency of the 

proposed system. Furthermore, a comparison between the 

results of this research and those of a previous study [1] 

reveals the superiority of the proposed neural network over a 

similar model presented in the aforementioned research. 

Considering all aspects, the effectiveness of the proposed 

neural network in predicting the performance of cooling 

towers is evident. 
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