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Abstract:- This paper is an investigation into the motion 

of a flying disc. It starts out by considering the basic 

concepts of force and pressure acting on the disc during 

flight and uses intuition to derive differential equations 

for the motion. It then goes on to consider a variety of 

factors that may affect the motion of the disc through the 

air. The aim of the paper is to find a meaningful 

connection between how uncertain quantities and 

variations can qualitatively affect the motion of the disc, 

making use of mathematical techniques along the way to 

prove proportions and relations. 
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I. BACKGROUND AND QUICK NOTES 

 

This paper is possible because of the contributions made 

to the fields of Physics and Mathematics by pioneers like 

Isaac Newton, Ludwig Boltzmann, and James Clerk 

Maxwell. It was written with the aim of breaking the 

individual parts and probabilities apart, understanding their 

qualitative properties, identifying the outcomes of an in-

deterministic system and the reasoning behind it. 

 

This paper, most importantly, has been made possible 
by the guidance and support of my mentor Prof. Soumya 

Bhattacharya. He has not only continually helped me through 

my learning process, teaching me advanced trigonometry, 

calculus, linear algebra, and other aerodynamics related 

concepts, but also cultivated and nurtured my interest in 

physics and mathematics over multiple years. This paper is, 

therefore, a product of the contributions he has made to my 

growth as a learner and hopeful researcher. It is only through 

discussions and the critical analysis of my own writing, with 

him, have I been able to reach the reasoned ideas and 

conclusions that I have. 

 
The field of study used to analyze the motion of an 

object starts out as a kinematic issue. Using integration one 

can determine the equations of motion for an object 

undergoing ideal projectile motion. It is the purpose of this 

paper to try and add another layer of realism into the 

approach considering the lift and drag experienced by the 

object as well, transitioning into physics.  

 

In no way does this paper, however, contain the most 

realistic model possible. All across certain assumptions have 

been made. Those assumptions do not tend to hold true in 
realistic conditions but must be made. If not, the problem of 

statistical dynamics and statistical thermodynamics arises. 

The scope transitions from an analysis of external factors to 

an analysis of internal variations. I have, as far as possible 

highlighted the assumptions where they are made, to improve 

clarity. 
 

Throughout the paper multiple constants are defined 

whereas some other constant quantities are not included with 

the definitions of those constants. That is because at a later 

stage all variables left in the main equation will be used to 

simulate changing conditions. 

 

I attempt to make use of as novel and original of an 

approach as possible. I have referred to a few sources for 

formulae and values for certain constants which have been 

cited appropriately. 

 

II. DERIVATION FOR THE EQUATIONS OF 

MOTION 

 

 Simple Projectile Motion 

Simple projectile motion is something that students 

study as their first interaction with kinematics. It is 

commonly portrayed as the parametric solution to the two 

equations below (where g = 9.81ms−2 representing the 

acceleration due to gravity) taking into account the initial 

conditions: u (initial velocity) and θ (angle of launch). 

 

𝑑2𝑥

𝑑𝑡2
= 0 

 

𝑑2𝑦

𝑑𝑡2
= −𝑔 

 
The parametric solution is given by the equations below 

where 𝑡 stands for the time and 𝑇 stands for the time 

period/time of flight. 

 

 
 

However, as the complexity of motion increases, it 

becomes more and more difficult to define the underlying 

"differential equations" as shown above because every 

instance of motion is affected by the one before it. More 

formally, the position 𝑠 at time (t + Δt) is affected not only 

explicitly by 𝑡 but also by the position and forces on the 

object at time 𝑡. Therefore, we must switch techniques to 
consider forces acting on the object as a starting point rather 

than directly determining the equations of motion. 
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 Pressure Forces 

Pressure Forces are forces induced on the object due to 

differences in pressure distribution around the body. Most 

objects tend to have complex shapes such as rockets, while 

flying disks have rather simple shapes, however, in all cases 

pressure forces act normal to the surface of the object at that 

point. This can be denoted by using a normal unit vector that 

changes across the surface of the flying disc, denoted, n̂. The 
common formula for pressure can then be used to derive an 

equation for force, as shown below. 

 

𝑃 =
𝐹

𝐴
 

 

�⃗� = ∑(𝑃𝑖�̂� ⋅ 𝐴𝑖) 

 

To find the actual force, we must take a Closed Surface 

Integral across every sliver of area and the force acting there 

to finally end up with the equation below. This is because for 

an object in motion through a fluid, the local velocity of the 

fluid about that point changes across the surface, as a result 
of which, the pressure also varies continuously, thus 

warranting the use of an integral; specifically, a closed 

surface integral. 

 

 
 

Here dΣ represents the tiniest slice of area on the 

surface. The reason dΣ was used and not dA to represent area 

is because dA =  dxdy. This means that 𝑑𝐴 represents a two-

dimensional square slice, whereas we require a curved slice 

following the surface 𝑆 which in this case represents the 

surface of the flying disc. dΣ is used to emphasize this 

difference. A closed integral is used because the disc can be 

considered a close surface that encloses a volume similar to 

real-life rather than a curved surface with infinitesimal 

thickness. Simply writing ∯ dΣ
S

 would represent the surface 

area. Therefore dΣ must be multiplied by the pressure vector 

at each position. Pressure, however, is a scalar and must be 

assigned a direction, in this case, n̂. n̂ represents the normal 

to the surface at any point on the surface and its definition 
therefore changes with position. 

 

To evaluate this integral however, one would have to 

know the pressure distribution across the entire surface, and 

thus by extension the velocity distribution of fluid flow. 

When considering the actual complexity of the flow and 

various other factors such as turbulence in lower pressure 

zones and separation of airflow, it makes it almost impossible 

to calculate. 

 

The first step it to isolate the net force, F⃗⃗, into two 

perpendicular components: lift, which acts perpendicular to 

the direction of movement (denoted here by v̂) and drag, 

which acts in the v̂ direction. For most practical use cases, the 

object of research is set up in a wind tunnel and the lift and 

drag forces are measured using sensors. For the purposes of 

this paper, there is no access to a wind tunnel so certain 

approximations must be made, facilitated by previous 

research in the field in the form of lift and drag coefficients 

(Cl and Cd respectively). These coefficients are, intuitively 

speaking, measures of how well an object generates lift and 

drag. A flying disc has a streamlined shape and therefore has 

a low Cd because it generates less drag, but a higher 𝐶𝑙 

because it generates greater lift. Both values vary greatly 

with angle of attack (α). Note that the angle of attack is 

defined not as the angle the disc forms with the horizontal but 

rather the angle between the direction of motion (v̂, refer to 

Equations 1.4 for more detail) and the orientation of the disc. 

A greater angle of attack will create larger differences in 

pressure across the surface. As these differences increase, the 

magnitudes of both "expressions" of the pressure force (lift 

and drag) also increase. The exact variations for these 

coefficients are given by the equations below. 

 

𝐶𝑑 = 𝐶𝑑0 + 𝐶𝑑𝛼𝛼2 
 

𝐶𝑙 = 𝐶𝑙0 + 𝐶𝑙𝛼 
 

Here the 0 designated constants are those for α =
 0 rad. The α designated constants represent the change in 

magnitude for every radian change in angle of attack. These 

values are empirically found to be Cd0 = 0.15, Cdα =
1.24, Cl0 = 0.188, Clα = 2.37. Note that the drag coefficient 

varies with the square of the angle of attack. Also note that 

for the remainder of this paper α is considered to be 0 unless 

otherwise specified because the orientation of the disc is 

considered to be coinciding with the direction of motion. [6] 

 

The changes in these coefficients will be discussed in 

greater detail further in the paper. The formulae using these 

coefficients are as given: 

 

𝐹𝑑 =
1

2
𝐶𝑑𝜌𝐴𝑟𝑣2 where 𝐴𝑟 is reference area                     (1.2) 

 

𝐹𝑙 =
1

2
𝐶𝑙𝜌𝐴𝑤𝑣2 where 𝐴𝑤 is wing area                            (1.3) 

 

 Resolution of Forces 

There are, at this point, three main forces acting on the 

flying disc: weight, lift and drag. All these three forces must 

be combined together. Therefore, the net force (Fnet
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) is given 

by the equation below. 

 

𝐹𝑛𝑒𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐹𝑑 + 𝐹𝑙 + 𝑊        

 

where W is the weight of the disc 

 

Before resolving the vectors, though, it is important to 

define directions and what the unit vectors represent in terms 

of a 2-dimensional coordinate system in 𝑥 and 𝑦 each 

represented by unit vectors x̂ and ŷ rather than the standard î 
and ĵ for convenience purposes. 
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Here v̂ represents the unit vector in the direction of 

movement of the disc. It is co-linear with but exactly 

opposite to the direction of drag. l̂ represents the direction 

perpendicular to v̂ and the direction of lift. 

 
To simplify Equation 1.2 and Equation 1.3, quantities 

that remain constant can be condensed and velocity can be 

converted into its vector form. Equation 1.2 and Equation 1.3 

can therefore be rewritten as Equation 1.5 and Equation 1.6. 

 

 
 

It is important to note that here the assumption is made 

that all quantities used to define 𝑘𝑑 and 𝑘𝑙 will remain 
constant throughout the entire duration of motion. This is 

false. Take the density (ρ) for example. The density of the 

fluid (air in this case) varies not only with altitude but also 

due to variations in wind patterns. Wind can be considered to 

have both a laminar and turbulent nature at the same time 

within different boundaries. The borders between the 

boundaries will tend to have changes in wind speed and 

therefore, in terms of a vector field, acts as a relative sink due 

to the curl of the field representing wind. Similarly, vortexes 

may create regions of lower density. We cannot therefore 
safely assume the disc to be a point mass as different regions 

of the disc will experience different forces due to the above 

variations. 

 

Another important note is that there is no lift induced 

drag considered in this case. Lift-induced drag is a 

phenomenon that occurs when the angle of attack (α) relative 

to the direction of movement is not 0 rad as the lift acts 

normal to the orientation but not to the direction of 

movement. Depending on the angle of attack, there is a 
component of the lift vector acting opposite to the direction 

of movement. The magnitude of this force (Fld) is given by.  

 

𝐹𝑙𝑑 = 𝐹𝑙 𝑠𝑖𝑛 𝛼 
 

The lift-induced drag is not considered because α is 

considered to be 0 𝑟𝑎𝑑. Therefore, there is no component of 

the lift in the plane of motion. 

Combining these equations together we get the final 
equation for net force as shown. 

 

 
Fig 1 An Exaggerated Display of the Characteristics of the 

Equation Provided when Solving the System of Differential 

Equations above. 

 
Using F  =  ma, we can calculate the acceleration 

experienced by mass 𝑚, as shown below. 

 

 
 
This yields the final equation for acceleration as shown 

below. 

 

 
 

The characteristic of the graph solving the differential 

equations provided seems to follow the logical path. Figure 1 
below demonstrates this general shape. Note that the shape of 

the graph has been achieved by a 
Cl

Cd
 of 25 to exaggerate the 

characteristics. Under normal conditions, the graphs look 

similar to the one of simple projectile motion as shown in 

Figure 2 

 

 
Fig 2 Difference between Simple Projectile Motion and that 

of the Equation Derived above using a Combination of Drag 

and Lift Coefficients for Demonstration. Note that Logical 

Ranges for these Coefficients are from [6]. 

 

The graphs above serve the purpose of visually 
expressing the difference between the two models (simple 

projectile motion and that expressed in Equation 1.8). Note 

importantly that all values have conditions expressed below. 

 

𝑢 = 10𝑚𝑠−1 
 

𝜃 = 10° 
 

𝑘𝑑 , 𝑘𝑙 ≊ 0.03657 
 

𝑦0 = 1𝑚 
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Table 1 shows that for an about 25 percent change in the 

Drag Coefficient there is no major change in range. This is 

not however the case for the Lift coefficient because it has a 

higher absolute value. Further analysis of values in the table 

reveals some interesting information. There seems to be a 

linear correlation between the Range (𝑟) and the Cd. 

Specifically, as the Cd increases by 0.02, 𝑟 seems to decrease 

by 0.02 ∼ 0.03. When looking at the later decimal places, 

one can realize that the difference is changing with the Cl. 

Through mathematical manipulation, it seems to be that the 

range can be modeled by Equation 1.9 below by creating a 

linear relation between 𝑟 and Cd, where the gradient (and 

therefore the y-intercept) varies with Cl. 

 

 
 

Here the functions m(Cl) and c(Cl) are defined in such 

an implicit manner because within the scope of my 

evaluation, there is no linear, polynomial, exponential, or 

logarithmic correlation that defines the function. Therefore, 

within the scope of the paper we will consider quadratic 

regression for m(Cl) and c(Cl) which is fairly accurate with 

R2 = 0.9997. Thus, both functions can be defined as below 

(values accurate to six significant figures). A trick is to take 

the functions as having discrete definitions for specified 
values but that doesn't really work unless one wants to 

replicate values with exactly the same conditions as those in 

the table.  
 

Table 1 The table contains data relevant to but in more 

detail than Figure 2 for a clearer interpretation of trends and 

differences. The data has been derived from a computerized 

differential equation program written by me (using python 

and the SciPy and NumPy libraries), by finding the x-

intercepts of the trajectories. 

 

Table 1 Contains Data Relevant 

 
 

 
 

It is important to note that these functions are only valid 
for the values within the constraints of the table and some 

values outside it (valid for Cd up to 0.12 and Cl up to 0.90). 

 

Due to statistical inaccuracies, the predicted value of 

range from the defined functions is off by a maximum of 

0.01 m which amounts to a maximum error (in the worst-

case scenario within the data) of 0.0954%. 

 

 

III. VARIATIONS DUE TO EXTERNAL 

CONDITIONS AND ROTATIONAL MOTION 

 

 Reynolds Number and Knudsen Number 

The Reynolds Number (Re) and the Knudsen Number 

(Kn) are two important quantities that have major effects on 

the Cd and Cl values because they define the flow regimes 

around the object, in this case a rotating flying disc. 

 

The Reynolds Number is an expression of how laminar 

or turbulent the flow around an object is. It is technically 

defined as the ratio between inertial and viscous force. It can 

be calculated for a particular system/situation using the 

formula below. 

 

 
 

𝑅𝑒 is an important concept to consider because 

turbulence has multiple effects on lift and drag. In a high 

viscosity fluid flow, because the vertical pressure distribution 

is almost completely symmetrical, there is therefore no lift on 

the object. As the 𝑅𝑒 increases, flow becomes more 

turbulent. This creates vortices and pressure differentials. 

These differences in pressure induce lift and drag as 

discussed in Section 1.2. The transition Reynolds Number is 

the set of Reynolds Numbers where the flow is neither 

laminar nor turbulent. This range varies mainly depending on 

the fluid, the environment in which the experiment is carried 
out and the relative velocity of the object in the fluid-stream. 

It therefore follows that as the velocity of the disc increases, 

the Reynolds Number must also increase. 

 

The change in flow characteristics and Reynolds 

Number can be shown through a diagram (Figure 3) that 

represents the flow visually, but also the how the fluid 

velocity changes with distance from the surface. [7] 

 

 
Fig 3 Transition between laminar and turbulent flow along 

with the relevant fluid velocity changes relative to the initial 

fluid velocity u∞. This specific notation can also be 

interpreted as the fluid velocity at infinite distance from the 

surface, meaning the surface has no effect on it. 
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In the case of a curved surface however, flow separation 

will occur. The distance and angle at which this will occur 

from the center of mass of the disc will vary based on the Re 

for the system. Figure 4 [2] clearly shows how flow 

separation occurs from turbulent flow. Because the surface 

curves away from the airflow, the profile of the velocity 

distribution changes. The fluid velocity vector pointing in the 

opposite direction represents the flow has been separated 
from the curved surface. This back flow induces vortices, 

thus creating a low-pressure zone behind the curved surface. 

This low-pressure zone is what generates the drag and 

turbulence. 

 

 
Fig 4 Flow Separation in the Boundary Layer with the 

Relevant Velocity Vector Distribution. 

 

The relations between the Re and the Cd and Cl are 

therefore based on these concepts. As the Re increases, Cd 

decreases because there is less resistance to the motion of the 

object in turbulent conditions than there is in laminar 

conditions. The vortices formed in turbulent flow are 
localized and can easily be disrupted and therefore there is 

lesser drag. In this case the lift force generated also decreases 

as the pressure differential decreases. This logic is especially 

apparent in Formula 1 cars, where they make use of a 

"slipstream" behind other cars, to reduce downforce and drag 

on the straights. The same situation can cause the car to lose 

downforce in the corners and spin off the track. In the case of 

a disc, it performs the best in laminar conditions so as to 

generate the maximum lift to drag ratio. 

 

Knudsen Number is given using the formula below. [4] 

 

 
 

Kn is analogous to the molecular density. The molecular 

mean free path (λ) is average distance a particle travels 

before colliding with another particle. In this case, a higher 

Knudsen Number represents a greater molecular density. If 

the Kn is low, then it approaches an ideal condition of 

continuum flow. However, as the value of Kn increases, the 

mean free length plays a much greater role in the overall 

dynamics of the system because of its relative magnitude 

compared to the 𝐿 value assigned in the system. The 

threshold Kn = 0.01 is assigned as the maximum Knudsen 

Number value for continuum flow. After which it is divided 

into three categories: slip flow (0.01 < Kn < 0.1), transition 

flow (0.1 < Kn < 10), and free molecule flow (Kn > 10). 

[3] 

 

The idea to include the Knudsen Number came from a 

microscopic analysis of the disc interacting with the airflow 

and the boundary layer. The random motion of air molecules 

means that they tend to collide with the disc in all direction. 

This causes them to rebound into the other air molecules in 

the layer behind it. This is more apparent in laminar flow 

because the layers of molecules are more defined. This 

collision momentarily increases the density of air around the 
disc. The greater density increases the pressure exerted by the 

airflow on the disc all round which increases the magnitude 

of forces experienced by the disc as shown in Equation 1.1. 

 

The concept expressed above is close, in form, to 

Langevin Dynamics. It represents the set of techniques used 

to model molecular systems. It makes use of a concept called 

Random Walk, which is the "process for determining the 

probable location of a point subject to random motions, given 

the probabilities (the same at each step) of moving some 

distance in some direction." [1]. Langevin found the 
approximate (Root Mean Square Value) distance a particle 

could move in a given direction 𝑥 (Δ𝑥) [5]. It is not possible 

for us to consider such motion with the same level of 

mathematical rigor here, but similarly to how pressure forces 

were approximated using 𝐶𝑑 and 𝐶𝑙, we try to approximate 

the effects of the above happenings using 𝑅𝑒 and 𝐾𝑛. 

 

Considering the Equations 2.1 and 2.2, we can see the 

correspondence of quantities. Rearranging 2.1, we get 

 
𝜂

𝜌𝐿
=

𝑣

𝑅𝑒
 

 

Which can be substituted into 2.2 to give 
 

𝐾𝑛 =
𝑣

𝑅𝑒
√

𝜋

2𝑅𝑇
 

 

And then further rearranged to give the final equation, 

considering KnRe = 𝜙 as shown below. 

 

 
 

This equation isolates constants that represent the nature 

of a closed system and provide a representation of their 

product in terms of the relative velocity of the object in the 

fluid. Therefore, this formula can be used to determine 

minute variations in fluid conditions with velocity. To further 
determine the nature of the proportionality, we can use 

dimensional analysis. This process yields the below 

proportion. 
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𝜙 ∝ √
𝑛

𝑚
 

 

where 𝑛 is the moles of fluid within the system 
 

where 𝑚 is the mass of the fluid 
 

This can be further simplified to 

 

𝜙 ∝ √
1

𝑀𝑟

 

 

where 𝑀𝑟 is the molecular mass of the fluid 
 

Note that in the case of mixtures like air, one can 

consider the Mr to be the mean for that specific mixture in 

the closed system. This is also obviously not true given the 

molecular mass of the fluid cannot change as the disc moves 

through it. Since these results yielded from dimensional 

analysis, one must be able to derive a more logical 

conclusion from the appearance of the molecular mass which, 

therefore, may not have the same mathematical rigor as other 

quantities. 

 

 Stokes’ Law 

The thought behind Stokes' Law was to find a more 
accurate representation for the drag force experienced by an 

object making use of the viscosity, dimensions of the object 

and its velocity in the fluid. The equation given by Stokes' 

Law for a sphere is given below. 

 

 
 

An important condition for the equation to be valid is 

relating to the Reynolds Number of the system. Since this is 

only true for purely laminar and high viscosity fluids, 𝑅𝑒 ≪
1. This is clearly shown in the Figure 2.3 [7] below where the 

linear characteristic is only maintained closely for values 

𝑅𝑒 <  1. Another thing to note is that the constant, 6π, is a 

representation of the 3D circular symmetry of the sphere used 

to derive the equation. 

 

 
Fig 5 The Experimentally Derived Values of Reynolds 

Number and Corresponding Drag Coefficient Readings on a 

Logarithmic Scale. 

 

It is also important to note that the coefficient (6𝜋) is 

only valid for a sphere and therefore a separate coefficient 

must be derived for a disc like object in 3D rather than 2D. 

The derivation itself is rather complex involving vector 

fields, divergence, curl and ∇ and ∇2 operators. It uses the 

main assumptions, utilizing pressure and velocity fields, as 

shown below. 

 

𝛻𝑝 = 𝜂𝛻2𝑣 
 

𝛻 ⋅ 𝑣 =  0 
 

It follows that the gradient of the pressure surface is 

proportional to the Laplacian of the velocity field (which can 

be simplified to p ∝ 𝑣). The divergence of the velocity field 

is also 0 because the kinetic energy of the fluid must be 

conserved. 

 

Equation 2.4 must be rewritten in terms of an arbitrary 

constant ψ for a disc. ψ only varies because of the shape of 
the disc and therefore all other proportions are conserved. 

Note that in Equation 2.4, 𝐹𝑑 ∝ 𝑟 where the reference area 

varies quadratically with 𝑟. In the case of a disc with a 

rectangular cross-section in the air stream, the reference area 

varies linearly with 𝑟 and therefore we must take the square 

root of 𝑟 and change the unit of ψ to account for the 

dimensional change and maintain the homogeneity of the 

equation. 
 

 
 

Logically this proportionality seems to work out, but it 

is possible this is not the case. This is because apart from the 

differences in whether or not the area is proportional to 𝑟 or 

√𝑟, the fundamental geometry is different. The rectangular 

cross-section does not have the 2D symmetry and a disc does 

not have the 3D symmetry of a sphere. As a result, the 

viscous drag produced also changes. 

 

 
Fig 6 The Third Diagram Represents the Resultant Vector 

Field Found from the Addition of the First Two. 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT23SEP1426                                                              www.ijisrt.com                  1194 

Realistically, this model would also not work because of 

a small assumption made in Equations 1.4. While 𝑣 

represents the velocity vector, 𝑙 is the lift vector which is 

perpendicular to the orientation of the disc. Since 𝑣 ⋅ 𝑙 = 0, 

the disc is always assumed to be oriented in the 𝑣 direction. 

This is untrue because variation in motion means there is 

always the under-body or over-body of the disc exposed to 

the airflow, thus changing the value of 𝐹𝑑. Another 

adjustment must also be made. Stokes’ Law is used in 

situations where the flow is high viscosity and 𝑅𝑒 ≪ 1, 

which is untrue for air. The physics of initial contact with the 

airflow remains the same, but flow separation will result in 
predictable inaccuracies. It is my belief Equation 2.5 can be 

empirically adjusted for this as long as the obtuse angle from 

the equilibrium line at which the flow separates in the 

horizontal plane, and the similar angle in the vertical plane, 

remain constant. 

 

 Circulation 

This section addresses the spinning motion of the disc 

and how this affects the forces experienced by it. Start by 

considering the flow of air around a circular disc to be 

represented by a vector field 𝑣𝑓⃗⃗⃗⃗⃗. The rotational motion on the 

disc has an added effect which can be considered to be a 

separate vector field 𝑣𝑟⃗⃗ ⃗⃗ . 𝑣𝑟⃗⃗ ⃗⃗  is a circular vector field where the 

vectors are arranged tangentially to the disc at the origin. The 

magnitude of these decreases as the distance from origin 

increases. The magnitude can be considered to have 

exponential decay. Both these fields can be added together to 

given the final field �⃗�. This concept is clearly expressed for 

ideal flow as shown in Figure 2.4. [7] 

 
Note that the stability of the disc will also depend on the 

moment of inertia, which will be governed by both the mass 

of the disc and the frequency of rotation.  

 

 Pseudo-Changes in Viscosity 

At the risk of minor ambiguity, consider a pot of honey. 

The glass rod is placed in the honey and it is stirred, at first, 

because of the high viscosity of honey a large resistive force 

is experienced by the rod. However, as the rotation of the rod 

continues, it becomes easier to stir and increase the velocity 

of stirring as well. This rotational motion seems to induce a 
localized reduction in viscosity but this is more likely a 

consequence of the inertia of the molecules closest to the 

glass rod. 

 

In the case of a disc, molecules in the boundary layer 

have a lower velocity compared to those in the air stream. It 

is possible that the boundary layer acts as a sort of 

"insulation" reducing the viscous drag on the disc. The 

greater the angular velocity (ω), the lower the viscous drag, 

thus reaching the conclusion 

 

𝐹𝑣𝑑 ∝
1

𝜔
 

 

 

 

 

This insulation could be a result of the properties of the 

boundary layer and has varying effects depending in whether 

it is turbulent or laminar as shown in Figure 2.1. Logically, 

this effect seems to be more viable when the boundary layer 

is laminar because of the sharp change in velocity between 

the normal flow and the boundary layer. There are two cases 

where this could be applied. One is where the fluid flow is 

moving in the direction of rotation of the disc. In this case, 
the velocity of fluid molecules should increase closer to the 

surface of the disc, then reduce, and then start to increase 

again such that the magnitude of velocity has a parabolic 

character. The second case, where the rotation of the disc is 

opposite to that of the fluid may cause the velocity to be 

negative (in the opposite direction) relative to the surface. 

This, as discussed, leads to flow separation from the disc and 

turbulent flow, further causing vortices to form in the wake 

since the airflow combining at the back of the disc is not at 

the same speed. In this case as well it is possible for the 

magnitude of velocity to have parabolic character. 

 
 

Over time though ω is bound to reduce due to air 

friction. As ω reduces, the very same effect will have the 

opposite results on the motion of the disc. Because of inertia, 

the relative speed between the molecules in the boundary 

layer and the surface of the disc might be greater than or 

equal to the relative speed between the surface of the disc and 

𝑢∞. As a result, this must also be considered when creating a 

mathematical model to simulate its effect. 
 

Another factor to consider is the presence of "grooves" 

or "rims". The presence of surface irregularities induces 

localized turbulence which reduced the drag acting on the 

disc. 

 

 Magnus Effect 

A consequence of circulation is that one side of the disc 

is moving in the direction of the airflow while the other is 

moving the in the opposite direction. The side of the disc 

moving in the direction of the airflow experiences less drag 
than the other. This is because, as discussed in the second 

case in Section 2.3.1 above, greater surface friction generates 

more drag, representing the path of greatest resistance. In a 

more technical sense, the addition of circulation increases the 

density of the field lines of the velocity vector field on the 

side where the disc's rotation is along with the airflow. It is 

simple to conclude how pressure (p) and density (ρ) are 

related directly with each other. Bernoulli's Equation is as 

below. 

 

 
 

According to Bernoulli's Equation, when the velocity 

increases (in this case the "density" of the field lines in the 

vector field), the pressure decreases. This pressure 

differential creates an added lateral force causing the disc to 

follow a sightly curved trajectory, in the horizontal plane. 

However, for a disc the Magnus effect is almost negligible 

over short distances, and is therefore not considered. 
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IV. CONCLUDING STATEMENTS 

 

It was first determined that it is imperative to break 

down the forces acting on the disc into two components (drag 

and lift) to most accurately approximate the Pressure Forces 

represented in Equation 1.1. Then the forces were resolved to 

create the final system of equations that represented the 

motion of the disc through the air. The next chapter attempted 
to add on qualitative rather than quantitative detail to the 

model by analyzing the effect of the system (through 𝑅𝑒 and 

𝐾𝑛), understanding Stokes' Law governing viscous drag in 

more detail, and looking at the effect of the disc rotating. 

 

As mentioned in the Background and Quick Notes 

section, this is neither the most accurate nor the most 

complete model. As I continue working upon this project, I 

feel a few more details are in order. Through this paper I have 

successfully generalized a collection of forces and have 
qualitatively considered a few other factors both external and 

internal. My goal is to continue researching these phenomena 

in order to gain a more detailed understanding while 

providing explanations with more mathematical rigor. This is 

because I have noticed multiple sections which can be further 

elaborated upon. Also, most results derived from graphs and 

charts may not be perfectly true. Therefore, the reasoning 

behind the trends we see in the data is up to interpretation. 

 

Another interesting thing to note is that the conclusion 

reached in this paper can be applied to all dynamical systems. 

Given most of the research paper deals in variables and does 
not assign any values anywhere (except in the end of Section 

1.3 to provide graphs), the values themselves can be adjusted 

to represent any other object, save for a few technical 

changes such as proportionality changes to quantities similar 

to those in Section 2.2. This is because the interactions 

between the object and its environment remain the same. 
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