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Abstract:- In this work, Nonlinear Neutral Type 

Fractional Order Differential Systems with State Delays 

and Distributed Delays in the Control and Impulsive 

Effects in Banach Space is presented for Controllability 

analysis. From the analysis, we established that the 

System is Null Controllable, and a set of necessary and 

sufficient conditions for such systems to be Null 

Controllable were established. Uses were made of the 

uniformly asymptotically Stability of its Linear Free 

Base System and the Properness of its Linear Control 

Base System. We also established that the System   

admits the Solution pair (𝒙, 𝒖) and hence the form of the 

null control of the system was obtained, using the Riesz 

theorem and Schauder’s Fixed Point theorem. 
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I. INTRODUCTION 

 

Recently the study of fractional differential systems 

have emerged as a new area of  research in the field of 

applied mathematics which have been used to model  any 

practical systems in science and engineering (Sheen and 

Cao,2012)  and  (Huang,2017). 

 

The fractional differential expressions have been used 

in engineering since 1930's to describe the viscoelastic 

materials, electric circuits and fractal geometry involving 

non integer spatial dimensions. Also fractional derivatives 

and integrals can be applied to real systems characterized by 

power laws, critical phenomena and scale free processes. 

Moreover, controllability is one of the fundamental concepts 

in mathematics and fractional control theory and is the 

generalization of the classical control theory (Ammour, 

2009).It is noted in (Oraekie,2012)  that any control systems 

is said to be controllable if every state corresponding to this 

process can be affected or controlled in respective time by 

some control signals. 

 

Furthermore, it’s well known that neutral differential 

equation is a very special class of ordinary differential 

equation and it arises in compartmental models in which the 

system can be divided into separate compartments, marking 

the path ways of material flow between compartments and 

the possible outflow into the inflow from the environment of 

the system; (Gyori and Wu,1991) as it is contained in 

(Oraekie,2012;Oraekie,2014).   Such models are usually 

used in theoretical epidemiology, physiology and population 

dynamics to describe the evolution of systems. 

 

The above said models can be remodified as a neutral 

fractional differential equation or neutral fractional volterra 

integrodifferential equation. At the same time, time delay is 

very commonly experienced in diverse scientific systems 

such as electric, pneumatic and hydraulic networks, 

chemical process, long transmission lines etc. Because the 

subsistence of pure time delay, nevertheless if it is available 

either in the control or the state may result in unacceptable 

system momentary response or even instability. Also, time 

delay is one of the inevitable problems in practical 

engineering applications, which has an important effect on 

the stability and performance of the system (Li and Song, 

2017). 

 

With the interest from the above fact, in the last few 

years, several studies have been done on the fractional delay 

differential systems. (Chen and Zhou, 2011)  (Kaslik and 

Sivabundaram, 2012), (Oraekie,2018). Generally, most of 

the dynamical systems are analyzed in either continuous or 

discrete time domain, many real systems in physics, biology, 

chemistry, engineering and information science may 

experience abrupt changes as certain instants during the 

continuous dynamical systems (Sundara,2018)  and (Li and 

Wu 2016).According to (Sundara,2018),there has been a 

somewhat new category of dynamical system; which is 

neither purely continuous time nor purely discrete time ones, 

these are called impulsive control system. 

 

This 3rd category of system displays a combination of 

characteristics of both the continuous and discrete-time 

systems. 

 

The significance of this system is to control the hasty 

changes in nature adversity. 
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Numerous advancements procedure are subject to short 

term perturbations which act instantaneously in the form of 

impulses. 

 

For instance, the existence of impulses can be seen in 

the biological phenomena involving thresholds, bursting 

rhythm models in medicine and biology, optimal control 

models in economics. 

 

Consequently the impulsive differential equations 

provide a natural description of observed advancement 

procedure of several real world problems. Recently 

(Zhang,2013) have derived the controllability criteria for 

linear fractional order differential systems with state delay 

and impulses. 

 

(Sundara,2018),studied the controllability problem of 

nonlinear neutral type fractional differential systems with 

state delay and impulsive effects and established a new set 

of sufficient conditions for the system to be controllable 

using the controllability grammian and laplace 

transformation. 

 

To the best of our knowledge there are no relevant 

reports on the Null Controllability of Nonlinear neutral-type 

fractional- order differential systems with State delays and 

distributed delays in the control, and impulsive effects in 

Banach spaces in the existing literature. Hence the research. 

 

 

 

II. VARIATION OF CONSTANT FORMULA/PRELIMINARIES 

 

We reemphasize that we denote 𝐶𝜌([𝑂. 𝑇], 𝐸𝑛) the space of all piecewise left continuous functions mapping the interval 

[𝑂. 𝑇] 𝑖𝑛𝑡𝑜 𝐸𝑛 .  
 𝐿𝑒𝑡 𝛼; 𝛽 > 0 𝑤𝑖𝑡ℎ 𝑛 − 1 < 𝛼, 𝛽 < 𝑛 𝑎𝑛𝑑   

 

𝑛 ∈ 𝑁, 𝐷 is the usual differential operator;  𝐸𝑚 𝑖𝑠 𝑡ℎ𝑒 m-dimensional Euclidean space, 

 

𝑅+ = [0, ∞) and suppose 𝑓 ∈ 𝐿1(𝑅+. ) The following definitions, properties and theorems are familiar and helpful in establishing 

our main results. 

 

 Definition 2.1 

The Riemann-Liouville fractional integral operator of order ∝>0 with the lower limit zero for a function 𝑓: 𝑅+ → 𝑅𝑛 is 

defined as 

 

𝐼𝛼𝑓(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠)

𝛼

0

𝑑𝑠, 𝑡 > 0 

 
Where 𝛤(. ) is the euler gamma function 

 

 Definition 2.2 

The Riemann-fractional derivative of the order 𝛼 > 0,  with the lower limit zero for a function 𝑓; 𝑅+ → 𝑅𝑛 , 𝑛 − 1 < 𝛼 <
𝑛, 𝑛 ∈ 𝑁 is defined as 

 

(𝐷0
𝛼 , 𝑓)(𝑡) =  

1

𝛤(𝑛 − 𝛼)
(

𝑑

𝑑𝑡
)

𝑛

∫ (𝑡 − 𝑠)𝑛−𝛼−1𝑓(𝑠)
𝑡

0

𝑑𝑠, 

 
Where the function f has absolutely continuous derivatives up to order (𝑛 − 1) 

 
 Definition 2.3 

The caputo fractional derivative of order ∝> 0, 𝑛 − 1 <∝< 𝑛 is defined as 

 

( 𝑐𝐷0
𝛼 , 𝑓)(𝑡) =

1

𝛤(𝑛−∝)
∫ (𝑡 − 𝑠)𝑛−∝−1𝑓𝑛(𝑠)

𝑡

0

𝑑𝑠,  

 

Where the function f has absolutely continuous derivatives up to order (𝑛 − 1). 
𝐼𝑓 0 <∝< 1, 𝑡ℎ𝑒𝑛 

 ( 𝑐𝐷0
𝛼𝑓)(𝑡) =  

1

𝛤(1−∝)
∫

𝑓′(𝑠)

(𝑡 − 𝑠)∝

𝑡

0

𝑑𝑠,  

 
Consider the controllability of nonlinear fractional order type differential systems with state delay and impulses, and 

distributive delays in the control in Banach spaces as follows: 
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𝐶𝐷∝ (𝑥(𝑡) − 𝑔(𝑡, 𝑥(𝑡))) = 𝐴𝑥(𝑡) + ∫ 𝐵(𝑡 − 𝑠)𝑥(𝑠 − ℎ)𝑑𝑠 
𝑡

0

+  ∫ (𝑑𝜃𝐻(𝑡, 𝛿)𝑢(𝑡 + 𝛿))
0

−ℎ

 

 

  𝑡 ∈ [0, 𝑇]  −   {𝑡1,𝑡2, . . . , 𝑡𝑘 } .   ∆𝑥(𝑡𝑗) = 𝑥(𝑡𝑖
+) − 𝑥(𝑡𝑖

−) =  𝐼𝑖(𝑥(𝑡𝑖)), 𝑖 = 1, 2,3 . . .  , 𝑘  

 

𝑥(𝑡) =  𝜙(𝑡), 𝑡 ∈ [−ℎ, 0]                                                                                                                            (1.1) 

 

𝑊ℎ𝑒𝑟𝑒 𝐶𝐷∝𝑥(𝑡) denotes an α order caputo’s fractional derivative 𝑜𝑓 𝑥(𝑡) 0 <∝< 1 , 
 

A is a constant matrix and satisfies 𝐴 ∈ 𝐸𝑛×𝑛  , 𝑤ℎ𝑒𝑟𝑒 𝐵 is a continuous matrix in their argument with initial condition 

 𝑥(𝑡0) = 𝑥0 = 𝑥(0),  
Where 𝑥 ∈ 𝐸𝑛 is the state space and 𝑢 ∈ 𝐸𝑚   is the control function, 𝐻(𝑡, 𝛿) is an 𝑛 × 𝑚 matrix continuous at 𝑡 and of 

bounded variation in 𝛿 𝑜𝑛 [−ℎ, 0];  ℎ > 0 for each 𝑡 ∈ [0, 𝑇];  0 < 𝑇. 
 

 𝜙 ∈ ([−ℎ, 0], 𝐸𝑛) denotes the initial function while 𝐶([−ℎ, 0], 𝐸𝑛) denotes the space of all continuous functions mapping 

the interval [−ℎ, 0] 𝑖𝑛𝑡𝑜 𝐸𝑛; 
 

𝐼𝑖 : 𝐸𝑛 → 𝐸𝑛 is continuous for 

 

𝑖 = 1,2,3,4, … , 𝑘  𝑎𝑛𝑑 

 

𝑥(𝑡𝑖
+) = lim

𝜀→0+
𝑥(𝐼𝑖 + 𝜀)   

 

𝑥(𝑡𝑖
−) = lim

𝜀→0−
𝑥(𝐼𝑖 + 𝜀)                                                                                                                                                                                        (1.2) 

 

Represent the right and left limits of 𝑥(𝑡) 𝑎𝑡 𝑡 = 𝑡𝑖 and the discontinuous points 

 

𝑡1 < 𝑡2 < 𝑡3 < ⋯ < 𝑡𝑘                                                                                                                                                                    (1.3) 

 

Where  
 

0 = 𝑡0 < 𝑡1, 𝑡𝑘 < 𝑡𝑘+1 = 𝑇 < ∞,  and 

 

𝑥(𝑡𝑖
+) = 𝑥(𝑡𝑖

−) 

 

Which implies that the solution of the system (1.1) is left continuous. 

 

 The Mild Solution  

In order to obtain the mild solution of system (1.1), we first consider the representation of solution for nonlinear fractional 

delay differential systems without impulses as follows: 

 

𝐶𝐷∝ (𝑥(𝑡) − 𝑔(𝑡, 𝑥(𝑡))) = 𝐴𝑥(𝑡) +  ∫ 𝐵(𝑡 − 𝑠)𝑥(𝑠 − ℎ)𝑑𝑠
𝑡

0

 

 

+  𝑓 (𝑡, 𝑥(𝑡), ∫ 𝑘(𝑠, 𝑥(𝑠)𝑑𝑠)

𝑡

0

) , 𝑡 ∈ [0. 𝑇]  

 

𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−ℎ, 0]                                                     (1.4) 

 

 Theorem 2.1 (B. Sundara etal,2018)   

𝐿𝑒𝑡 0 <∝< 1, 𝑖𝑓 𝑓: [0, 𝑇] → 𝐸𝑛  is continuous and exponential bounded then the solution of the system (4.4)  can be 

represented as 

 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡)) + ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ (𝐴(𝑡 − 𝑠)∝)

𝑡

0
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. [𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠)) + ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚 + 𝑓 (𝑠, 𝑥(𝑠), ∫ 𝐾(𝑠, 𝜏, 𝑥(𝜏))

𝑠

0

) 𝑑𝜏

𝑠

0

] 𝑑𝑠 , 𝑡𝜖[0, 𝑇] 

 

𝑥(𝑡) = 𝜙(𝑡), 𝑡𝜖[−ℎ, 0]   (See B .Sundara, etal, 2018 , for the proof) 

 

 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2.2  
Let 0 <∝< 1 and u ϵ Cp([o, T], Em) , then the state response of the system (1.1) can be represented as follows; 

 

For 𝑡𝜖[−ℎ, 0], 𝑡ℎ𝑒𝑛,  
 

𝑥(𝑡) = 𝜙(𝑡). 
 

 For 𝑡𝜖[0, 𝑡1], then we have 

 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡)) + ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝]  

𝑡

0

  

 

× [𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠)) + ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚 +

𝑠

0

∫ 𝑑𝛿𝐻(𝑠, 𝛿)𝑢(𝑡 + 𝑠)

0

−ℎ

 ] 𝑑𝑠 

 

For 𝑡𝜖[𝑡1, 𝑡2], then we have 

 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡)) + 𝐼1(𝑥(𝑡1
−)) + ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝]  

𝑡

0

  

 

× [𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠)) + ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚 +

𝑠

0

∫ 𝑑𝛿𝐻(𝑠, 𝛿)𝑢(𝑡 + 𝑠)

0

−ℎ

 ] 𝑑𝑠 

 

𝐹𝑜𝑟  𝑡𝜖[𝑡𝑗, 𝑡𝑗+1], 𝑗 = 1,2, … , 𝑘.  

 

We have 

 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−))

𝑖

𝑗=1

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝]

𝑡

0

. 

 

[𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠)) + ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚 +
𝑠

0
∫ 𝑑𝛿𝐻(𝑠, 𝛿)𝑢(𝑠 + 𝛿)

0

−ℎ
] 𝑑𝑠                                            (1.5) 

 

System (1.5) implies:. 

 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−))

𝑖

𝑗=1

 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝].

𝑡

0

 [𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]𝑑𝑠 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝]. ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠

𝑠

0

𝑡

0
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+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝]. ∫ 𝑑𝛿𝐻(𝑠, 𝛿)𝑢(𝑠 + 𝛿)

0

−ℎ

𝑡

0

𝑑𝑠                                                                                                                      (1.6)  

 

(1.6)  ⟹ 

 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−))

𝑖

𝑗=1

 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝].

𝑡

0

 [𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]𝑑𝑠  

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠

𝑠

0

𝑡

0

 

 

∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝] ∫ 𝑑𝛿𝐻(𝑠, 𝛿)𝑢(𝑠 + 𝛿)

0

−ℎ

𝑡

0

𝑑𝑠                                                                                                                            (1.7) 

 

A careful observation of the solution of system (1.1) given as system (1.7) shows that the values of the 

control 𝑢(𝑡) 𝑓𝑜𝑟 𝑡𝜖[−ℎ, 𝑇]  enter the definition of the initial complete state, thereby creating the need for an explicit variation of 

constant formula. The control in the last term of formula (1.7), therefore, has to be separated in the intervals [−ℎ, 0] 𝑎𝑛𝑑 [0, 𝑇]. 
 

To achieve this, that term has to be transformed by applying the method of (klamka,1978)  as it is contained in 

(Oraekie,2019). Finally, we interchange the order of integration using the Unsymmetric Fubini’s Theorem to have 

 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−))

𝑖

𝑗=1

 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝].

𝑡

0

 [𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]𝑑𝑠  

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠

𝑠

0

𝑡

0

 

 

+ ∫ [ ∫ 𝑑𝛿𝐻

0

−ℎ

∫ (𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝𝐻(𝑠 − 𝛿, 𝛿)𝑢(𝑠 − 𝛿 + 𝛿)]

𝑡+𝛿

0+𝛿

]

𝑡

0

𝑑𝑠 

 

⟹ 𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−))

𝑖

𝑗=1

 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]

𝑡

0

𝑑𝑠 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠

𝑠

0

𝑡

0
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+ ∫ [ ∫ 𝑑𝛿𝐻

0

−ℎ

∫ (𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝𝐻(𝑠 − 𝛿, 𝛿)𝑢(𝑠)]

𝑡+𝛿

0+𝛿

] 𝑑𝑠                                                                                        (1.8)

𝑡

0

 

 

Simplifying system (1.8), we have 

 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−))

𝑖

𝑗=1

 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]

𝑡

0

𝑑𝑠 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠

𝑠

0

𝑡

0

 

 

+ ∫ 𝑑𝐻𝛿

0

−ℎ

∫(𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)]𝑑𝑠

0

𝛿

 

 

+ ∫ 𝑑𝐻𝛿

0

−ℎ

∫ (𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝𝐻(𝑠 − 𝛿, 𝛿)𝑢(𝑠)]𝑑𝑠                                                                                                  (1.9) 

𝑡+𝛿

0

 

 

Using again the Unsymmetric Fubini's Theorem on the change of order of integration and incorporating𝐻∗ as defined below 

 

𝐻∗(𝑠 − 𝛿, 𝛿) = {
𝐻(𝑠 − 𝛿, 𝛿) 𝑓𝑜𝑟 𝑠 ≤ 𝑡

0 𝑓𝑜𝑟 𝑠 ≥ 𝑡
                                                                                                                                                       (1.10)  

 

 Formula (1.9) becomes 

 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−1))

𝑖

𝑗=1

 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]

𝑡

0

𝑑𝑠 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠

𝑠

0

𝑡

0

 

 

+ ∫ 𝑑𝐻𝛿

0

−ℎ

∫(𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)]𝑑𝑠

0

𝛿

 

 

+ ∫ [ ∫(𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝]𝑑𝛿𝐻∗(𝑠 − 𝛿, 𝛿)𝑢(𝑠) 

0

−ℎ

]

𝑡

0

𝑑𝑠                                                                                               (1.11) 
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Integration is still in the lebesque stieltjes sense in the variable 𝛿 𝑖𝑛 𝐻.  
 

For brevity, let 

 

𝜷(𝒕) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−))

𝑖

𝑗=1

 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]

𝑡

0

𝑑𝑠 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠)∝] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠 

𝑠

0

𝑡

0

                                                                                                            (1.12) 

 

𝝁(𝒕) = ∫ 𝑑𝐻𝛿

0

−ℎ

∫(𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)]𝑑𝑠

0

𝛿

                                                                                      (1.13) 

 

𝒛(𝒕, 𝒔) = ∫(𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝]𝑑𝛿𝐻∗(𝑠 − 𝛿, 𝛿)𝑢(𝑠) 

0

−ℎ

                                                                                              (1.14)  

 

Substituting (1.12),(1.13)  and (1.14)  into (1.11),we have a precise variation of constant formula for system (1.1) as: 

 

𝒙(𝒕, 𝒙𝟎, 𝒖) =  𝜷(𝒕) +  𝝁(𝒕) + ∫ 𝒛(𝒕, 𝒔)𝒖(𝒔)𝒅𝒔

𝒕

𝟎

                                                                                                                                         (1.15)  

 

III. BASIC SET FUNCTIONS AND PROPERTIES WITH APPROPRIATE TERMINOLOGIES 

 

 Definition 3.2.1 (Complete State) 

The complete state for the system (1.1) is given by 𝑧(𝑡) = {𝑥𝑡 , 𝑢𝑡} 

 
 Definition 3.2.2 (Null Controllability) 

𝐿𝑒𝑡 𝑛 𝑎𝑛𝑑 𝑚 be positive integer 𝑅 = 𝐸 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑙𝑖𝑛𝑒 (−∞, ∞).  We denote by 𝑅𝑛 = 𝐸𝑛, the space of real 𝑛 − 𝑡𝑢𝑝𝑙𝑒𝑠 with 

the Euclidean norm defined by |. |. 
 

 Definition 3.2.3 (Null Controllability) 

𝐿𝑒𝑡 𝑛 𝑎𝑛𝑑 𝑚 be positive integer 𝑅 = 𝐸 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑙𝑖𝑛𝑒 (−∞, ∞). We denote by 𝑅𝑛 = 𝐸𝑛 , the space of real  𝑛 − 𝑡𝑢𝑝𝑙𝑒𝑠 with 

the Euclidean norm defined by |. |. 
 

𝐼𝑓 𝐽 = [𝑡0, 𝑡1], 𝑡1 > 𝑡0, is any interval in 𝑅, the usual lebesgue space of  integrable (equivalences) functions from 𝐽 𝑡𝑜 𝑅𝑚  will 

be denoted by 𝐿2(𝐽, 𝐸𝑚). 
 

𝐿𝑒𝑡 ℎ ≥ 𝑘 ≥ 0 
 

Be a given real number and let 𝐶 = 𝐶([−ℎ, 0], 𝑅𝑛) be a Banach space of functions which are continuous 𝑜𝑛 [−ℎ, 0] 𝑤𝑖𝑡ℎ  
 

‖𝜙‖ = 𝑠𝑢𝑝
−ℎ≤𝑠≤0

|𝜙(𝑠)|  , 𝜙 ∈ 𝐶([−ℎ, 0], 𝑅𝑛). 

 
𝐼𝑓 𝑥 is a function from [−ℎ, ∞) 𝑡𝑜 𝑅𝑛 , 𝑙𝑒𝑡 𝑥𝑡  , 𝑡 ∈ [0, ∞) to be a function  from [−ℎ, 0]  
 

𝑡𝑜 𝑅𝑛defined by   

 
𝒙𝒕(𝒔) = 𝒙(𝒕 + 𝒔), 𝒔 ∈ [−𝒉, 𝟎]. 

 
Then the system (1.1) is said to be null controllable on the interval [𝑡0, 𝑇1] if for each 

 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                International Journal of Innovative Science and Research Technology                                                 

                                                      ISSN No:-2456-2165 

 

IJISRT23SEP1434                                                              www.ijisrt.com                                                            2256 

Function 𝜙 ∈ 𝐶([−ℎ, 0], 𝑅𝑛), there exists a time 𝑡 > 0, 𝑈 ∈ 𝐿2(𝐽, 𝑅𝑚), such that the solution 

 

  𝑥(𝑡, 0, 𝜙, 𝑢) 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 (1.1) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 

 

𝑥𝑡0
(𝑡, 0, 𝜙, 𝑢)  = 𝑥(𝑡, 0, 𝜙, 𝑢) =  𝜙, 𝑎𝑛𝑑𝑥(𝑡, 0, 𝜙, 𝑢) =  0. 

 

 Definition 3.2.4 (Linear Base Control System) 

Consider the system (1.1) with its standing hypothesis. Then the linear base control system of the system (1.1) is given as: 

 

𝐶𝐷∝ (𝑥(𝑡) − 𝑔(𝑡, 𝑥(𝑡))) = 𝐴𝑥(𝑡) + ∫ (𝑑𝛿𝐻(𝑡, 𝛿)𝑢(𝑡 + 𝛿))
0

−ℎ

                                                                                                         (1.16)  

 
 Definition 3.2.5 (Free Base Control System) 

Consider the system (1.1) with its standing hypothesis. Then the free base control system of the system (1.1) is given as: 

 

𝐶𝐷∝ (𝑥(𝑡) − 𝑔(𝑡, 𝑥(𝑡))) = 𝐴𝑥(𝑡) + ∫ 𝐵(𝑡 − 𝑠)𝑥(𝑠 − ℎ)𝑑𝑠                                                                                                            (1.17) 
𝑡

0

 

 
 3.1.3. Necessary and Sufficient Conditions for the System to be Null Controllable. 

 

 𝑃𝑟𝑒𝑎𝑚𝑏𝑙𝑒  
Recently,(Oraekie,2018)  studied the Euclidean null controllability of Nonlinear infinite Neutral systems with multiple 

Delays in the control and established sufficient conditions for the system to be null controllable, thereby extended the null 

controllability concept to  the systems with multiple delays in the control. 

 

Not alone,(Oraekie,2019)investigated the Null controllability of Sobolev type Integrodifferential systems in Banach spaces 

with Distributive Delays in the control of the form: 

 

𝐹𝑥̇(𝑡) + 𝐴𝑥(𝑡) = ∫[𝑑𝜃𝐻(𝑡, 𝜃)]𝑢(𝑡 + 𝜃)

0

−ℎ

+ ∫ 𝑔 (𝑡, 𝑠, 𝑥(𝑠), ∫ 𝐵(𝑠, 𝜏, 𝑥(𝜏))

𝑠

0

𝑑𝜏)

𝑡

0

𝑑𝑠 

 

+𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ [𝑡0, 𝑡1],  𝑡1 > 𝑡0 

 
𝑥(0) = 𝑥0  

 

He established the Necessary and sufficient conditions for computable criteria for the null Controllability of the system. 

 

In the light of these,we intend to study the Null Controllability of the Nonlinear Neutral-type Fractional-order Differential  

 

Systems with State Delays and Distributed delays in the Control and Impulsive Effects, in Banach spaces of the form: 

 

𝐶𝐷∝ (𝑥(𝑡) − 𝑔(𝑡, 𝑥(𝑡))) = 𝐴𝑥(𝑡) + ∫ 𝐵(𝑡 − 𝑠)𝑥(𝑠 − ℎ)𝑑𝑠

𝑡

0

 + ∫[𝑑𝛿𝐻(𝑡, 𝛿)]

0

−ℎ

𝑢(𝑡 + 𝛿) , 

 

𝑡 ∈ [0, 𝑇] − {𝑡1, 𝑡2, … 𝑡𝑘} , ∆𝑥(𝑡𝑖) =  𝑥(𝑡𝑖
+) − 𝑥(𝑡𝑖

−) = 𝐼𝑖(𝑥(𝑡𝑖)) , 𝑖 = 1,2,3, … , 𝑘 

 
𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−ℎ, 0] 

 

 Through: 

 

 Its Linear Base Control System given as 
 

𝐶𝐷∝ (𝑥(𝑡) − 𝑔(𝑡, 𝑥(𝑡))) = 𝐴𝑥(𝑡) + ∫[𝑑𝛿𝐻(𝑡, 𝛿)]

0

−ℎ

𝑢(𝑡 + 𝛿)                                                                                                             (1.18) 
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 Its Free Base System given as 

 

𝐶𝐷∝ (𝑥(𝑡) − 𝑔(𝑡, 𝑥(𝑡))) = 𝐴𝑥(𝑡) + ∫ 𝐵(𝑡 − 𝑠)𝑥(𝑠 − ℎ)𝑑𝑠

𝑡

0

                                                                                                             (1.19)  

 

 Theorem 3 .2. Necessary and Sufficient Conditions for Null Controllability of System (1.1) 

 

Assume for the system (1.1) that: 

 
(i).The constraint set U is arbitrarily compact subset of 𝑅𝑛 

 
(ii).The system (1.17) is uniformly asymptotically stable so that the solution of the system (1.17) satisfies 

 

‖𝑥(𝑡, 𝑡0, 𝜙, 0,0)‖ ≤ 𝑀𝑒−𝜆(𝑡1−𝑡0)‖𝜙‖ (i.e exponential estimate) 

 
𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜆 > 0, 𝑀 > 0 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. 

 
(iii).The linear control base system (1.16) is proper. 

 

(iv).The continuous function f satisfies 

 

|𝑓(𝑡, 𝑥(𝑡)), 𝑢(𝑡)| ≤ 𝑒(−𝜌𝑡)𝜋(𝑥(𝑡), 𝑢(𝑡)) 

 

 𝑓𝑜𝑟 𝑎𝑙𝑙  (𝑡, 𝑥(𝑡), 𝑢(𝑡)) ∈ [𝑡0, ∞) × 𝐶 × 𝐿2,  

 

𝑤ℎ𝑒𝑟𝑒, ∫ 𝜋(𝑥(𝑠), 𝑢(𝑠))

∞

𝑡0

𝑑𝑠 ≤ 𝑘 < ∞ 𝑎𝑛𝑑 𝑏 − 𝑎 > 0,  

 
Then, system (1.1) is Null-Controllable. 

 

 Proof  

In system (1.14), we introduce the notation: 

 

𝑧(𝑡, 𝑠) = ∫(𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝]𝑑𝛿𝐻∗(𝑠 − 𝛿, 𝛿);

0

−ℎ

𝑡 ≥ 𝑠 ≥ 𝑡0 , 

 
𝑎𝑛𝑑 𝑑𝑒𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑔𝑟𝑎𝑚𝑚𝑖𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 (1.1) 𝑏𝑦    

 

𝑊(𝑡, 0) = ∫ [ ∫(𝑡 − 𝑠 − 𝛿)𝛼−1𝐸𝛼 , 𝛼[𝐴(𝑡 − 𝑠 − 𝛿)𝛼]𝑑𝛿𝐻∗(𝑠 − 𝛿, 𝛿)

0

−ℎ

]

𝑡

0

 

 

× [ ∫(𝑡 − 𝑠 − 𝛿)𝛼−1𝐸𝛼 , 𝛼[𝐴(𝑡 − 𝑠 − 𝛿)𝛼]𝑑𝛿𝐻∗(𝑠 − 𝛿, 𝛿)

0

−ℎ

]

𝑇

= ∫ 𝑍(𝑡, 𝑠)

𝑡

0

𝑍(𝑡, 𝑠)𝑇  

 
Where T denotes the matrix transpose by (𝑖𝑖𝑖), 𝑊−1(𝑡, 0) 𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑡 > 0.  

 
Now, suppose that pair of functions (𝑥, 𝑢 ) form a solution pair to the set of integral equations∶ 
 

𝑢(𝑠) = −𝑧(𝑡1, 𝑠)𝑇𝑊−1(𝑡1, 0){(𝜙(0) − 𝑔(0, 𝑥(0))) + 𝑔(𝑡, 𝑥(𝑡)) + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−1))

𝑖

𝑗=1

+ ∫(𝑡 − 𝑠)𝛼−1

𝑡

0

𝐸𝛼 , 𝛼[𝐴(𝑡 − 𝑠)𝛼][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))] 
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+ ∫(𝑡 − 𝑠)𝛼−1𝐸𝛼 , 𝛼[𝐴(𝑡 − 𝑠)𝛼]

𝑡

0

. ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠 

𝑠

0

 

 

+ ∫ 𝑑𝐻𝛿 ∫(𝑡 − 𝑠 − 𝛿)𝛼−1

0

𝛿

0

−ℎ

𝐸𝛼 , 𝛼[𝐴(𝑠 − 𝛿)𝛼]𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)} 

 
𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−ℎ, 0].                                                                                                                                                                                   (1.20) 

 

For some suitably chosen time  𝑡 ∈ [0, 𝑇], 
 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡, 𝑥(𝑡))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−1))

𝑖

𝑗=1

 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴((𝑡 − 𝑠)∝)][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]

𝑡

0

𝑑𝑠 

 

+ ∫(𝑡 − 𝑠)∝−1𝐸∝, ∝ [𝐴((𝑡 − 𝑠)∝)] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠                  

𝑠

0

𝑡

0

 

 

+ ∫ 𝑑𝐻𝛿

0

−ℎ

∫(𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)]𝑑𝑠     

0

𝛿

 

 

+ ∫ [ ∫(𝑡 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡 − 𝑠 − 𝛿)∝]𝑑𝛿𝐻∗(𝑠 − 𝛿, 𝛿)𝑢(𝑠) 

0

−ℎ

]

𝑡

0

𝑑𝑠     

 
𝑥(𝑡) = 𝜙          ,       𝑡 ∈ [−ℎ, 0].                                                                                                                                                                        (1.21) 

 
Then 𝑢(𝑡) is square integrable on the interval [0, 𝑇], and 𝑥(𝑡) is a solution of system (1.1) corresponding 

to 𝑢(𝑡) 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒, 𝑥(𝑡0) = 𝑥(0) = 𝜙.  
 

Similarly, 

 

𝑥(𝑡1) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡1, 𝑥(𝑡1))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−1))

𝑖

𝑗=1

 

 

+ ∫ (𝑡1 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠)∝][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]

𝑡1

0

𝑑𝑠 

 

+ ∫ (𝑡1 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠)∝] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠  

𝑠

0

𝑡1

0

 

 

+ ∫ 𝑑𝐻𝛿

0

−ℎ

∫(𝑡1 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠 − 𝛿)∝]𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)𝑑𝑠 

0

𝛿

 

 

+ ∫ [ ∫(𝑡1 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠 − 𝛿)∝]𝑑𝛿𝐻∗(𝑠 − 𝛿, 𝛿)𝑢(𝑠) 

0

−ℎ

]

𝑡1

0

𝑑𝑠[−𝑧(𝑡1, 𝑠)𝑇𝑊−1(𝑡1, 0)] 
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. {𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡1, 𝑥(𝑡1)) + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−1))

𝑖

𝑗=1

 

+ ∫ (𝑡1 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠)∝][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]

𝑡1

0

+ ∫ (𝑡1 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠)∝] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠                  

𝑠

0

𝑡1

0

+ ∫ 𝑑𝐻𝛿

0

−ℎ

∫(𝑡1 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑠 − 𝛿)∝]𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)𝑑𝑠 

0

𝛿

}                                                                 (1.22) 

 

Now Consider  
 

∫ [ ∫(𝑡1 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠 − 𝛿)∝]𝑑𝛿𝐻∗(𝑠 − 𝛿, 𝛿)𝑢(𝑠) 

0

−ℎ

]

𝑡1

0

𝑑𝑠. [−𝑧(𝑡1, 𝑠)𝑇𝑊−1(𝑡1, 0)] 

 

= − ∫ 𝑍(𝑡1, 𝑠)𝑍𝑇(𝑡1, 𝑠)𝑊−1(𝑡1, 𝑠)𝑑𝑠 = − ∫
𝑍(𝑡1, 𝑠)𝑍𝑇(𝑡1, 𝑠)

𝑊(𝑡1, 0)

𝑡1

0

𝑡1

0

𝑑𝑠                                                                                                        (1.23) 

 

=
− ∫ 𝑍(𝑡1, 𝑠)𝑍𝑇(𝑡1, 𝑠)

𝑡1

0

∫ 𝑍(𝑡1, 𝑠)𝑍𝑇(𝑡1, 𝑠)
𝑡1

0

=
− ∫ 𝑍(𝑡1, 𝑠)𝑍𝑇(𝑡1, 𝑠)𝑑𝑠

𝑡1

0

∫ 𝑍(𝑡1, 𝑠)𝑍𝑇(𝑡1, 𝑠)𝑑𝑠
𝑡1

0

= −1  

 
Putting the system (1.18)   into system (1.17), we have 

 

𝑥(𝑡) =  𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡1, 𝑥(𝑡1))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−1))

𝑖

𝑗=1

 

 

+ ∫ (𝑡1 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠)∝][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]

𝑡1

0

𝑑𝑠 

 

+ ∫ (𝑡1 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠)∝] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠     

𝑠

0

𝑡1

0

 

 

+ ∫ 𝑑𝐻𝛿

0

−ℎ

∫(𝑡1 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠 − 𝛿)∝]𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)𝑑𝑠 

0

𝛿

 

 

(−1){𝜙(0) − 𝑔(0, 𝑥(0)) + 𝑔(𝑡1, 𝑥(𝑡1))  + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−1))

𝑖

𝑗=1

 

 

+ ∫ (𝑡1 − 𝑠)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠)∝][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))]

𝑡1

0

𝑑𝑠 + ∫ (𝑡1 − 𝑠)∝−1𝐸∝,

𝑡1

0

∝ [𝐴((𝑡1 − 𝑠)∝)] ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠

𝑠

0
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+ ∫ 𝑑𝐻𝛿

0

−ℎ

∫(𝑡1 − 𝑠 − 𝛿)∝−1𝐸∝, ∝ [𝐴(𝑡1 − 𝑠 − 𝛿)∝]𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)𝑑𝑠  

0

𝛿

} = 0. 

 
It remains to show that u is an admissible control. That is we need to show that the function 𝑢: [0, 𝑇] ⟶ 𝑈  is an arbitrary 

compact subset 𝑜𝑓 𝑅𝑚  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 

|𝑢| ≤ 𝜆  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜆 > 0, 𝜆 ∈ 𝑅 𝑎𝑛𝑑 𝑈 ⊂ 𝑅𝑚.  
 

By the condition (ii) of theorem 3.2, we have 

 
|𝑧(𝑡1, 𝑠)𝑇𝑊−1(𝑡1, 0)| ≤ 𝜂1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜂1 > 0,  𝜂1 ∈ 𝑅, 𝑎𝑛𝑑 

 

|𝜙(0) − 𝑔(0, 𝑥(0))| ≤  𝜂2𝑒(−𝜆1(𝑡1−0));   𝜂2 > 0;  𝜂2 ∈ 𝑅.  

 
Hence 

|𝑢(𝑡)| ≤  𝜂1[ 𝜂2𝑒(−𝜆1(𝑡1−0))] ∫  𝜂3

𝑡1

0

𝑒(−𝜆1(𝑡1−𝑠))𝑒(−𝜌𝑠)𝜋(𝑥(𝑠), 𝑢(𝑠))𝑑𝑠  

 

𝑖. 𝑒 |𝑢(𝑡)| ≤  𝜂1[ 𝜂2𝑒(−𝜆1(𝑡1−0))] ∫  𝜂2

𝑡1

0

𝑒(−𝜆1(𝑡1−𝑠))𝑒(−𝜌𝑠)𝜋(𝑥(𝑠), 𝑢(𝑠))𝑑𝑠  

 
Thus 

 

|𝑢(𝑡)| ≤  𝜂1[ 𝜂2𝑒(−𝜆1(𝑡1−0))] + 𝜂𝜂3𝑒(−𝜆1𝑡1) , 𝑠𝑖𝑛𝑐𝑒 𝜌 − 𝜆1 ≥ 0 𝑎𝑛𝑑 𝑠 ≥ 0.  

 
Hence, by taking 𝑡1 sufficiently large we have 

 

|𝑢(𝑡1)| ≤  𝜆1 , 𝑡1 ∈ [0, 𝑇].  
 

Showing that 𝑢 is an admissible control function. 

 

Secondly, let us show that the solution pair of the integral equations (1.15) and (1.16) exists.   
 

We have to first of all assume that Let 𝑌 be a Banach space of all continuous functions 

 

 (𝑥, 𝑢)  𝑓𝑟𝑜𝑚 [𝑡0 − ℎ, 𝑡1] × [𝑡0 − ℎ, 𝑡1] ⟶ 𝑅𝑛 × 𝑅𝑚 

 
 𝑖. 𝑒 (𝑥, 𝑢): [−ℎ, 𝑡1] × [−ℎ, 𝑡1] ⟶ 𝑅𝑛 × 𝑅𝑚, 𝑡0 = 0  

 
𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑌 = 𝐶([𝑡0 − ℎ, 𝑡1], 𝑅𝑛) 𝑎𝑛𝑑 𝑢 ∈ 𝐿2([𝑡0 − ℎ, 𝑡1], 𝑅𝑚) with the norm defined by 

 

‖(𝑥, 𝑢)‖ = ‖𝑥‖2 + ‖𝑢‖2  
 

Where 

‖𝑥‖2 = [∫ |𝑥(𝑠)|2𝑑𝑠

𝑡1

0

]

1
2

𝑎𝑛𝑑 ‖𝑢‖2 = [∫ |𝑢(𝑠)|2𝑑𝑠

𝑡1

0

]

1
2

  

 
Define the operator 𝐹: 𝑉 ⟶ 𝑌 by 

 
𝐹(𝑥, 𝑢) = (𝑦, 𝑣), 
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𝑊ℎ𝑒𝑟𝑒  
 

𝒗(𝒕) = −𝑧(𝑡1, 𝑠)𝑇𝑊−1(𝑡1, 0) (𝜙(0) − 𝑔(0, 𝑥(0))) + 𝑔(𝑡, 𝑥(𝑡)) + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−1))

𝑖

𝑗=1

 

 

+ ∫(𝑡 − 𝑠)𝛼−1

𝑡

0

𝐸𝛼 , 𝛼[𝐴(𝑡 − 𝑠)𝛼][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))] 

 

+ ∫(𝑡 − 𝑠)𝛼−1𝐸𝛼 , 𝛼[𝐴(𝑡 − 𝑠)𝛼]

𝑡

0

× ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠 

𝑠

0

 

 

+ ∫ 𝑑𝐻𝛿 ∫(𝑡 − 𝑠 − 𝛿)𝛼−1

0

𝛿

0

−ℎ

𝐸𝛼 , 𝛼[𝐴(𝑠 − 𝛿)𝛼]𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)𝑑𝑠                                                                                                        (1.24)  

 
    𝑣(𝑡) = 𝜙(𝑡);   𝑡 ∈ [−ℎ, 𝑡0], ℎ > 0, 𝑡0 = 0  

 
𝐴𝑛𝑑      
 

    𝒚(𝒕) = (𝜙(0) − 𝑔(0, 𝑥(0))) + 𝑔(𝑡, 𝑥(𝑡)) + ∑ 𝐼𝑗 (𝑥(𝑡𝑗
−1))

𝑖

𝑗=1

 

 

+ ∫(𝑡 − 𝑠)𝛼−1

𝑡

0

𝐸𝛼 , 𝛼[𝐴(𝑡 − 𝑠)𝛼][𝐴𝜙(0) − 𝐴𝑔(0, 𝑥(0)) + 𝐴𝑔(𝑠, 𝑥(𝑠))] 

 

+ ∫(𝑡 − 𝑠)𝛼−1𝐸𝛼 , 𝛼[𝐴(𝑡 − 𝑠)𝛼]

𝑡

0

× ∫ 𝐵(𝑠 − 𝑚)𝑥(𝑚 − ℎ)𝑑𝑚𝑑𝑠 

𝑠

0

 

 

+ ∫ 𝑑𝐻𝛿 ∫(𝑡 − 𝑠 − 𝛿)𝛼−1

0

𝛿

0

−ℎ

𝐸𝛼 , 𝛼[𝐴(𝑠 − 𝛿)𝛼]𝐻(𝑠 − 𝛿, 𝛿)𝑢0(𝑠)𝑑𝑠        

 

+ ∫ ∫(𝑡 − 𝑠 − 𝛿)𝛼−1

0

−ℎ

𝑡

0

𝐸𝛼 , 𝛼[𝐴(𝑠 − 𝛿)𝛼]𝑑𝛿𝐻(𝑠 − 𝛿, 𝛿)𝑢(𝑠)𝑑𝑠 𝑓𝑜𝑟  𝑡 ∈ [𝑜, 𝑇], 𝑇 > 0  

 
𝐴𝑛𝑑      
 

𝑦(𝑡) = 𝜙(𝑡);                                                                                                                                                                                                        (1.25) 

 
Recall; 

 

We have earlier proved that |𝑢(𝑡)| ≤ 𝜆1, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜆1 ∈ 𝑅 𝑎𝑛𝑑 𝑡 ∈ [0, 𝑇] 𝑎𝑛𝑑  
 

𝑣: [0, 𝑇] ⟶ 𝑈 , We have,  |𝑣(𝑡)| ≤ 𝜆1 

 

Hence, 

 

‖𝑣(𝑡)‖2 ≤ 𝜆1(𝑡1 + ℎ − 𝑡0) 
1

2 = 𝑀 , and ‖𝑦(𝑡)‖ ≤ 𝜂2𝑒(−𝜆1(𝑡1−𝑡0)) + 𝜂4 ∫ |𝑣(𝑠)|𝑑𝑠 +
𝑡

0
𝜂3𝑒−𝜌𝑡   

 

𝜂4 = 𝑠𝑢𝑝|𝑧(𝑡, 𝑠)|,  since 𝜌 > 0 𝑎𝑛𝑑  𝑡 ≥ 𝑡0 = 0 

 

 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                International Journal of Innovative Science and Research Technology                                                 

                                                      ISSN No:-2456-2165 

 

IJISRT23SEP1434                                                              www.ijisrt.com                                                            2262 

We deduce that 

 

|𝑦(𝑡)| ≤ 𝜂1𝜂3𝜌(𝑡1 − 𝑡0) + 𝜂𝜂2 = 𝑀1, 𝑡 ∈ [0, 𝑇] and |𝑦(𝑡)| ≤ 𝑠𝑢𝑝|𝜙(𝑡)| = 𝑀2;  𝑡 ∈ [−ℎ, 𝑡0], 𝑦 > 0 

 

 𝐻𝑒𝑛𝑐𝑒 𝑖𝑓 

 

𝛿 = 𝑚𝑎𝑥(𝑀1, 𝑀2), 𝑡ℎ𝑒𝑛‖𝑦‖2  ≤ 𝛿(𝑡1 + ℎ − 𝑡0)
1
2 = 𝑀3 < ∞ 

 
𝐿𝑒𝑡 𝐾 = 𝑚𝑎𝑥(𝑀, 𝑀3).  Then, if we let 𝐺(𝐾) = {(𝑥, 𝑢) ∈ 𝑅: ‖𝑋‖2 ≤ 𝑘, ‖𝑦‖2 ≤ 𝑘} 

 

We have thus shown that 𝐹 𝑚𝑎𝑝𝑠 𝐺 (𝑘) 𝑡𝑜 
 

𝑖. 𝑒 𝐹: 𝐺(𝑘) 𝑡𝑜 𝐺(𝑘). 
  

Since 𝑮 (𝒌)  is closed, bounded and convex, by Riesz theorem as  contained in (Oraekie,2018),it is relatively compact under 

the transformation 𝐹.  
 

Thus by the schauders fixed point theorem, it implies that 𝐹 has a fixed point 𝑥 which is the solution of system (1.1). 

 

Hence system (1.1) is null-controllable. 

   
IV. CONCLUSION 

 

Necessary and sufficient conditions for the null-

controllability of the nonlinear neutral-type Fractional-order 

Differential Systems with State Delay and Distributed 

Delays in Control, and Impulsive Effects in Banach Spaces 

have been established. 

 

These conditions are given with respect to the Stability 

of its Free Linear Base System and the Controllability of its 

Linear Controllable Base System, with the assumption that 

it’s proper. The form of the control energy function that is 

capable of steering the system (1.1) from the initial state to 

the origin in finite time was also established. 

 

The existence of the solution pair (𝑥, 𝑢) of the system 

(1.1) were established. 
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