
Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1841

Enhancing Credit Card Fraud Detection

with Regularized Generalized Linear Models:

A Comparative Analysis of Down-Sampling

and Up-Sampling Techniques

1Cyril Neba C., 2Gerard Shu F. , 3Adrian Neba F., 4Aderonke Adebisi, 5P. Kibet., 6F.Webnda, 7Philip Amouda A.
1,3,4,5,6,7Department of Mathematics and Computer Science, Austin Peay State University, Clarksville, Tennessee, USA

2Montana State University, Gianforte School of Computing, Bozeman, Montana, USA

Abstract:- This study highlights the problem of credit

card fraud and the use of regularized generalized linear

models (GLMs) to detect fraud. GLMs are flexible

statistical frameworks that model the relationship

between a response variable and a set of predictor

variables. Regularization Techniques such as ridge

regression, lasso regression, and Elasticnet can help

mitigate overfitting, resulting in a more parsimonious and

interpretable model. The study used a credit card

transaction dataset from September 2013, which included

492 fraud cases out of 284,807 transactions.

The rising prevalence of credit card fraud has led to

the development of sophisticated detection methods, with

machine learning playing a pivotal role. In this study, we

employed three machine learning models: Ridge

Regression, Elasticnet Regression, and Lasso Regression,

to detect credit card fraud using both Down-Sampling

and Up-Sampling techniques. The results indicate that all

three models exhibit accuracy in credit card fraud

detection. Among them, Ridge Regression stands out as

the most accurate model, achieving an impressive 98%

accuracy with a 95% confidence interval between 97%

and 99%. Following closely, Lasso Regression and

Elasticnet Regression both demonstrate solid

performance, with accuracy rates of 93.2% and 93.1%,

respectively, and 95% confidence intervals ranging from

88% to 98%.

When considering the Up-Sampling technique,

Ridge Regression maintains its position as the most

accurate model, achieving an accuracy rate of 98.2% with

a 95% confidence interval spanning from 97% to 99.4%.

Elasticnet Regression follows with an accuracy rate of

94.1% and a confidence interval between 0.8959 and

0.9854, while Lasso Regression exhibits a slightly lower

accuracy of 93.1% with a confidence interval from 0.88 to

0.982. all three machine learning models—Ridge

Regression, Elasticnet Regression, and Lasso

Regression—demonstrate competence in credit card

fraud detection. Ridge Regression consistently

outperforms the others in both Down-Sampling and Up-

Sampling scenarios, making it a valuable tool for financial

institutions to safeguard against credit card fraud threats

in the United States.

Keywords:- Machine Learning, Credit Card Transaction

Fraud Detection, Regularized GLM, Ridge Regression,

Elasticnet Regression, Lasso Regression, Down-Sampling

and Up-Sampling.

I. INTRODUCTION

A notable change in consumer financial services over

the past few decades has been the growth of the use of credit

cards, both for payments and as sources of revolving credit.

From modest origins in the 1950s as a convenient way for the

relatively well-to-do to settle restaurant and department store

purchases without carrying cash, credit cards have become a

ubiquitous financial product held by households in all

economic strata (Credit Cards: Use and Consumer Attitudes,

1970-2000, 2000)".

Credit card fraud is a prevalent and challenging problem

for financial institutions and consumers worldwide. In 2021,

the Federal Trade Commission (FTC) fielded nearly 390,000

reports of credit card fraud, making it one of the most

common kinds of fraud in the U.S. (Federal Trade

Commission, 2020) and consistently ranks among the top
consumer complaints, with thousands of cases reported each

year. In 2020 alone, the FTC received over 2.2 million fraud

reports, with identity theft and credit card fraud being among

the most frequently cited issues (Federal Trade Commission,

2021).

Fraudulent transactions can cause significant financial

losses, harm the reputation of financial institutions, and create

inconvenience and stress for customers. Therefore, detecting

and preventing credit card fraud is of utmost importance.

According to the Nilson Report (December 2021), global

credit card and debit card fraud resulted in losses of $28.58

billion during 2020, with card issuers and merchants

incurring 88% and 12% of those losses, respectively. Card

issuer losses occurred mainly at the point of sale from

counterfeit cards while merchant losses occurred mainly on
card-not-present (CNP) transactions. The report also noted

that during 2020, credit card and debit card gross fraud losses

accounted for roughly 6.81₵ per $100 in total volume, up

from 6.78₵ per $100 in 2019. In 2020, the US accounted for

35.83% of the worldwide payment card fraud losses but

generated only 22.40% of total volume. Finally, the Nilson

Report predicted that over the next 10 years, card industry

losses to fraud will collectively amount to $408.50 billion.

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1842

II. METHODS OF CREDIT CARD FRAUD

DETECTION

Detecting and preventing credit card fraud is an ongoing

challenge, but various methods have been developed to

mitigate its impact. One increasingly vital approach is the

utilization of machine learning and data analytics. These
techniques enable the analysis of vast datasets, identifying

suspicious patterns and anomalies that may indicate

fraudulent activity.

 Anomaly Detection: Anomaly detection algorithms, such

as clustering and autoencoders, are used to flag transactions

that significantly deviate from the norm. These anomalies

may indicate fraudulent activities, and machine learning

models can assign risk scores to transactions based on their

deviation from established patterns (Ahmed et al., 2016).

 Behavioral Analysis: Machine learning can analyze a

user's behavior over time, creating a profile of their typical
spending habits. Any sudden deviations from this profile

can trigger alerts for further investigation (Ahmed et al.,

2016).

 Network Analysis: Credit card fraud often involves

coordinated efforts by criminal networks. Machine

learning models can analyze transaction networks to

identify links between seemingly unrelated accounts and

transactions, uncovering hidden patterns (Gandomi &

Haider, 2015).

 Real-time Monitoring: Machine learning models can

operate in real-time, allowing for the immediate detection
of potentially fraudulent transactions. This rapid response

is crucial in preventing losses (Gandomi & Haider, 2015).

 Natural Language Processing (NLP): NLP techniques

can be employed to analyze text data, such as customer

service interactions and transaction comments, to identify

suspicious language or phrases associated with fraud

(Dinakar & Nair, 2020).

 Pattern Recognition: Machine learning algorithms can be

trained to recognize patterns associated with fraudulent

transactions. By analyzing historical data, these models can

identify deviations from typical spending behavior, such as

unusual purchase locations, transaction amounts, or
frequencies (Acar et al., 2017). One pattern recognition

approach to detect credit card fraud is to use Machine

Learning Techniques such as a generalized linear model

(GLM), which is a flexible statistical framework that

allows modeling the relationship between a response

variable and a set of predictor variables. However, GLMs

can suffer from overfitting, which occurs when the model

is too complex and fits the noise in the data instead of the

underlying signal. Regularization Techniques can help

mitigate overfitting by adding a penalty term to the model's

objective function that discourages large coefficients.

In this context, regularized forms of GLMs, such as

ridge regression and lasso regression, can be useful tools for

detecting credit card fraud. These Techniques allow the

model to shrink the coefficients of less important predictors,
leading to a more parsimonious and interpretable model that

is less prone to overfitting. Furthermore, regularized GLMs

can handle high-dimensional data with many predictors, a

common scenario in credit card fraud detection, where there

are numerous features that may be relevant to identifying

fraudulent transactions.

For this study, we used the credit card transaction

dataset from September 2013 which includes transactions

made by European cardholders (Pozzolo, Caelen, Johnson,

and Bontempi; 2015). This dataset covers a two-day period
and includes 492 fraud cases out of a total of 284,807

transactions. The dataset is considered unbalanced because

the positive class (frauds) accounts for only 0.172% of all

transactions. The input variables in the dataset are numerical

and have been transformed using PCA. The original features

and additional background information about the data cannot

be disclosed due to confidentiality concerns. The dataset

includes 28 principal components obtained through PCA, and

the 'Time' and 'Amount' features have not been transformed.

'Time' indicates the time in seconds between a given

transaction and the first transaction in the dataset, while
'Amount' indicates the transaction amount and can be used for

cost-sensitive learning. The response variable, 'Class', takes a

value of 1 for fraud cases and 0 for non-fraud cases.

III. A GENERAL REVIEW ON CREDIT CARD

FRAUD DETECTION TECHNIQUES

According to Hanagandi, Dhar, and Buescher (1996),

historical information on credit card transactions was used to

develop a fraud score model using a radial basis function
network and a density-based clustering approach. The authors

applied this methodology to a fraud detection problem and

reported satisfactory preliminary results. The paper is

considered an early example of using machine learning

Techniques for fraud detection in credit card transactions,

which has since become an important application area of

machine learning and data analytics.

(Dorronsoro et al., 1997) developed an online system

for detecting credit card fraud using a neural classifier, which

was constructed using a nonlinear version of Fisher's

discriminant analysis. The authors reported that the system is

currently fully operational and can handle more than 12

million credit card operations per year, with satisfactory

results obtained.

Bentley et al. (2000) proposed a genetic programming-

based algorithm for classifying credit card transactions into

suspicious and non-suspicious categories using logic rules.

The algorithm was tested on a database of 4,000 transactions

with 62 fields, and the most effective rule was selected based
on its predictability. This algorithm has shown promise in

detecting credit card fraud, particularly in the context of home

insurance data. Nonetheless, given the constantly changing

nature of fraud tactics, new and advanced fraud detection

methods are continuously being developed to keep pace with

this evolving field.

IV. METHODOLOGY

The methodology for building the fraud detection
model involves data exploration and cleaning, data

preprocessing, model building, model evaluation, and

interpretation. The data was checked for missing values,

outliers, and correlations between predictor variables.

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1843

Standardization was used to avoid bias and the data was split

into training and testing sets followed by modeling using
down-sample and up-sample Techniques. Logistic regression

with L1 regularization (Lasso Regularization), L2

regularization (Ridge Regularization) and a combination of

L1 and L2 regularization also known as Elasticnet

Regularization was used and hyperparameters were tuned

using cross-validation. Performance metrics like accuracy,

precision, recall, F1-score, ROC-AUC, etc. were used to

evaluate the model, and the coefficients were interpreted to

understand the impact of predictor variables.

A. Exploratory Data Analysis

This dataset contains 31 variables, including the response

variable (Class). The first 30 variables (V1 to V30) represent

numerical variables that have been transformed using PCA.

The variables V1 to V28 represent the principal components,

while V29 and V30 are the residuals from the PCA
transformation. The Amount variable is a numerical variable

representing the transaction amount, and the Class variable is

a binary variable representing whether the transaction is

fraudulent or not (1 for fraud, 0 for not fraud).

Table 1: Structure of Variables

Variable Description

V1 to V28 Numeric variables representing different aspects of the transaction such as amount, time, location, etc.

Amount Numeric variable representing the amount of the transaction.

Class Binary variable indicating whether the transaction was fraudulent (1) or not (0).

 Checking Missing Data

The following R snipet was used to extract all rows from

the "credit_card" data frame that have missing values and

looking at the output, we realize that the dataset has no

missing values.

credit_card[!complete.cases(credit_card),]

[1] Time V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

[18] V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 Amount Class

<0 rows> (or 0-length row.names)

To confirm the absence of missing values in the dataset,

the missing values in a data frame were visualized using the

"naniar" package in R and again, we realize that there are no

missing values in the dataset as can be seen on the plot below.

Fig. 1: Visualization of Missing Values in the dataset

 Frequency Distribution of “Class” Variable

The dataset is highly imbalanced, the positive class
(frauds) accounts for just 0.1727486% of total transactions

(that is 492 out of a total of 284807 transactions) which is not

suitable for this project hence we will need to balance the data
before proceeding with our Logistic regression.

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1844

Fig. 2: Frequency distribution of “Class” Variable

Looking at Fig 3.below, , we realize that all the

fraudulent transactions were made for less than around 2500,

which is far less than that of the true transactions thereby

confirming the imbalance nature of the dataset.

Fig. 3: Amount Vs Class Fraud chart

 Checking Correlation Between the Variables

Looking at Fig4. below, we realized that there is
extremely very little or no correlation among the variables

except for V2 which has some negative correlation with

amount. We can nonetheless ignore it since it will not affect
the outcome of our analysis in any significant way.

Fig. 4: Correlation Between Variables

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1845

 Data Processing

Data processing is an important step in machine learning
because the quality of the data used to train a model can

significantly impact the accuracy and performance of the

resulting model. The following data processing steps were

carried out:

 Data Cleaning and Feature Selection:

The raw data did not contain any missing values, hence,

there was no need for any data imputation. The Time Variable

was irrelevant or unimportant to the outcome we are trying

to predict and since it did not have a significant impact on the

outcome, we took it out.

 Data Normalization:

Since the range and distribution of the data could impact

the performance of our machine learning algorithms, we

Normalized the data to ensure that the model is not biased

towards any feature due to differences in scale especially

because the data was highly unbalanced. This process was

carried out after splitting the dataset into training and testing

set.

B. Modeling With Down-Sampling Technique

 Data Partitioning With Down-Sampling Technique

The dataset was split into training (190450 for Non-fraud

Cases and 326 for Fraud Cases) and testing sets with a ratio

of 2:1. After splitting the dataset, we balanced the training

data using the Down Sampling Technique. By downsampling

the data, you are creating a new subset of the original training

data where the positive class (i.e., the minority class) is

represented more frequently relative to the negative class
(i.e., the majority class). This can help address class

imbalance issues that can arise in predictive modeling tasks,

where one class is significantly more prevalent than the other.

After balancing the training data (326 for Non-fraud Cases

and 326 for Fraud Cases, we could proceed to building the

regularized GLMs.

 Model Fitting/Data Modeling

According to Altman and Marco (1994) and Flitman
(1997), an increasing number of statistical models have been

applied to data mining tasks, including regression analysis,

multiple discriminant analysis, logistic regression, Probit

method, and others (Hanagandi, Dhar, & Buescher, 1996). In

the context of the credit card dataset, Regulatizd GLMS

(Ridge, Lasso and Elasticnet models) can be used to identify

the features that are most relevant for detecting fraudulent

transactions while also reducing the effects of

multicollinearity. These models work by adding a penalty

term to the ordinary least squares regression (OLS) objective

function, which shrinks the regression coefficients towards

zero. The Ridge regression adds the L2 norm of the
coefficients as a penalty term, Lasso regression adds the L1

norm of the coefficients as a penalty term, and Elasticnet

regression adds a combination of L1 and L2 norm of the

coefficients as a penalty term. By adding these penalty terms,

these models can reduce the coefficients of some features to

zero, effectively eliminating them from the model and thus

addressing the issue of multicollinearity.

We performed cross-validation on the model using the

cv.glmnet() function from the glmnet package. We then used

the coef(CV, CV$lambda.min) R snippet to retrieve the

coefficient estimates for the Ridge model fit, with the optimal

lambda value selected through cross-validation, allowing us

to see which variables are most strongly associated with the

response variable in the final model. Lastly, we then used the

R code snippet coef(CV, CV$lambda.1se) to retrieve the
coefficient estimates for the model fit with the lambda value

selected through cross-validation that is one standard error

away from the optimal lambda value, allowing us to see

which variables are most strongly associated with the

response variable in a more parsimonious model.

 Ridge Regression Model Down-Sampling Technique

The following Ridge model predictions were obtained.

Top 6

 s0

 2 0.1820028

 4 0.1732274
 5 0.1394861

 8 0.1483054

11 0.1540031

13 0.1547350

Bottom 6

 s0

284789 0.1238469

284793 0.1290248

284797 0.2041513

284802 0.1805562

284803 0.1084127

284804 0.1419076

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1846

 Ridge Regression Model Evaluation Down-Sampling

Technique
 Miscalculation Rate for Ridge Model for Down-

Sampling Technique

The mean of the miscalculation rate is at 0.005966118.

A miscalculation rate of 0.005966118 indicates that our

model has 0. 5966118% incorrect predictions which means it

has 99.4033882% correct predictions hence the model is

predicting accurately.

 Confidence Interval for The Area Under the

Curve(AUC) for Ridge for Down-Sampling Technique
The model has confidence 0.95 of predicting correctly

with a confidence interval between 0.966 and 0.992. at an

accuracy of 97.9%.

 ROC Curve of the best fit Model for Ridge for Down-
Sampling Technique

Fig. 5: ROC Curve of the best fit Model for Ridge (Down-Sampling Technique).

The higher AUC -ROC, the better the performance of

the model at distinguishing between positive and the negative

classes so when the AUC is between o.5 and 1, that is,

0.5<AUC<1, then there is a high chance that then model can

distinguish between the positive class values from the

negative class values. Since our AUC value is 0.979, we have

a 95% confidence Interval between 0.966 and 0.992 that our

model can differentiate between is FTP(False Positive Rate)

and the TPR(True Positive rate).

 Recall and Precision Score for Ridge Model for Down-

Sampling Technique

We obtained a precision of 0.994311 which means

99.4311% of our prediction is relevant. We obtained a recall

of the recall of 0.9997108 shows that our model has accuracy

of 99.9997108 in correctly classifying the total relevant

results.

 Recall And Precision Curves for Ridge Model for

Down-Sampling Technique

Fig. 6: Recall And Precision Curves for Ridge Model (Down-Sampling Technique)

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1847

These curves give the shape we would expect. At

thresholds with low recall, the precision is correspondingly
high, and at very high recall, the precision begins to drop.

Looking at the Precision-Recall Curve, we notice the curve

gets precision up to about 81.

 Elasticnet Regression Model for Down-Sampling

Technique
The following Elasticnet Model predictions were

obtained.

 Top 6

 s0

 2 0.14

 4 0.09

 5 0.12

 8 0.12

 11 0.09

 13 0.10

Bottom 6

s0

 284789 0.11

 284793 0.07

 284797 0.17

 284802 0.13

 284803 0.01

 284804 0.09

 Elasticnet Model Evaluation Down-Sampling Technique

 Miscalculation Rate for Elasticnet Model for Down-

Sampling Technique

The mean of the miscalculation rate is at 0.01261286. A

miscalculation rate of 0.01261286 indicates that our model

has 1.261286 % incorrect predictions which means it has

98.738714% correct predictions hence the model is
predicting accurately.

 Confidence Interval for The Area Under the

Curve(AUC) foElasticnet for Down-Sampling

Technique
The model has confidence 0.95 of predicting correctly

with a confidence interval between 0.880 and 0.982 at an

accuracy of 93.% .

 ROC Curve of the best fit Model for Elasticnet for
Down-Sampling Technique

Fig. 7: ROC Curve of the best fit Model for Elasticnet (Down-Sampling Technique)

The higher AUC -ROC, the better the performance of

the model at distinguishing between positive and the negative

classes so when the AUC is between o.5 and 1, that is,

0.5<AUC<1, then there is a high chance that the model can

distinguish between the positive class values from the

negative class values. Since our AUC value is 0.931, we have

a 95% accuracy and a confidence Interval between 0.88 and
0.982 that our model can differentiate between is FTP(False

Positive Rate) and the TPR(True Positive rate)

 Recall and Precision Score for Elasticnet Model for
Down-Sampling Technique

We obtained a precision of 0.9875886 which means

98.75886% of our prediction is relevant. We obtained a recall

of the recall of 0.9997735 which shows that our model has

accuracy of 99.97735% in correctly classifying the total

relevant results.

 Recall and Precision Curves for Elasticnet Model for

Down-Sampling Technique

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1848

Fig. 8: Recall and Precision Curves for Elasticnet Model (Down-Sampling Technique)

These curves give the shape we would expect. At

thresholds with low recall, the precision is correspondingly

high though at a constant rate, and at very high recall, the

precision begins to drop. Looking at the Precision-Recall

Curve, we notice the curve gets precision up to about 78.

 Lasso Regression for Down-Sampling Technique

The following Elasticnet Model predictions were

obtained.

Top 6

s0

2 0.14

4 0.11

5 0.21

8 0.19

11 0.11

13 0.12

 Bottom 6

 s0

 284789 0.15

 284793 0.09

 284797 0.20

 284802 0.14

 284803 0.01

 284804 0.12

 Lasso Model Evaluation for Down-Sampling Technique

 Miscalculation Rate for Elasticnet Model for Down-

Sampling Technique

The mean of the miscalculation rate is at 0.009273537.

A miscalculation rate of 0.009273537 indicates that our

model has 0.9273537% incorrect predictions which means it

has 99.0726463% correct predictions hence the model is

predicting accurately.

 Confidence Interval for The Area Under the

Curve(AUC) for Lasso for Down-Sampling Technique

The model has confidence 0.95 of predicting correctly

with a confidence interval between 0.880 and 0.982 at an

accuracy of 93.1%.

 ROC Curve of the best fit Model for Lasso for Down-

Sampling Technique

Fig. 9: ROC Curve of the best fit Model for Lasso (Down-Sampling Technique)

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1849

The higher AUC -ROC, the better the performance of

the model at distinguishing between positive and the negative
classes so when the AUC is between 0.5 and 1, that is,

0.5<AUC<1, then there is a high chance that the model can

distinguish between the positive class values from the

negative class values. Since our AUC value is 0.931, we have

a 95% confidence Interval between 0.88 and 0.982 that our

model can differentiate between is FTP(False Positive Rate)

and the TPR(True Positive rate)

 Recall and Precision Score for Lasso Model for Down-

Sampling Technique
We obtained a precision of 0.9909338 which means

99.09338 % of our prediction is relevant. We obtained a recall

of the recall of 0.9997743 which shows that our model has

accuracy of 99.97743% in correctly classifying the total

relevant results.

 Recall and Precision Curves for Lasso Model for Down-

Sampling Technique

Fig. 10: Recall and Precision Curves for Lasso Model (Down-Sampling Technique)

These curves give the shape we would expect. A

threshold with low recall, the precision is correspondingly

high though at a constant rate, and at very high recall, the

precision begins to drop. Looking at the Precision-Recall

Curve, we notice the curve gets precision up to about 88.

C. Modelling with Up-Sample Technique

 Ridge Regression

The following Ridge Regression Model predictions were
obtained.

Top 6

 s0

2 0.15150102

4 0.12316558

5 0.11707270

8 0.08736508

11 0.12797648

13 0.11691316

Bottom 6

 s0

284789 0.09827895

284793 0.09921419

284797 0.17479334

284802 0.15405885

284803 0.06276707

284804 0.10295522

 Ridge Regression Model Evaluation for Up-Sample

Technique

 Miscalculation Rate for Ridge Model for Up-Sample

Technique

The mean of the miscalculation rate is at 0.006171316.

A miscalculation rate of 0. 006171316 indicates that our

model has 0. 6171316% incorrect predictions which means it

has 99.3828684% correct predictions hence the model is

predicting accurately.

 Confidence Interval for The Area Under the

Curve(AUC) for Ridge for Up-Sample Technique

The model has confidence 0.95 of predicting correctly

with a confidence interval between 97.00 and 99.40. at an

accuracy of 98.2%.

 ROC Curve of the best fit Model for Ridge for Up-

Sample Technique

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1850

Fig. 11: ROC Curve of the best fit Model for Ridge Model (Up-Sampling Technique)

The higher AUC -ROC, the better the performance of

the model at distinguishing between positive and the negative

classes so when the AUC is between 0.5 and 1, that is,

0.5<AUC<1, then there is a high chance that then model can

distinguish between the positive class values from the

negative class values. Since our AUC value is 0.982, we have

a 95% confidence Interval between 0.970 and 0.994 that our

model can differentiate between is FTP(False Positive Rate)
and the TPR(True Positive rate).

 Recall and Precision Score for Ridge Model for Up-

Sample Technique

We obtained a precision of 0.999732 which means

99.9732% of our prediction is relevant. We obtained a recall

of the recall of 0.993512 shows that our model has accuracy

of 99.3512% in correctly classifying the total relevant

results.

Fig. 12: Recall And Precision Curves for Ridge Model (Up-Sampling Technique)

These curves give the shape we would expect. At

thresholds with low recall, the precision is correspondingly

high though at a constant rate, and at very high recall, the

precision begins to drop. Looking at the Precision-Recall

Curve, we notice the curve gets precision up to about 83.

 Elasticnet Regression Model for Up-Sampling

Technique

The following Elasticnet Regression Model predictions

were obtained.

 Top 6

 s0

2 0.03

4 0.01

5 0.05

8 0.06

11 0.02

13 0.01

 Bottom 6

 s0

284789 0.02

284793 0.02

284797 0.09

284802 0.05

284803 0.00

284804 0.03

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1851

 Miscalculation Rate for Elasticnet Model for Up-

Sampling Technique
The mean of the miscalculation rate is at 0.02283435. A

miscalculation rate of 0.02283435 indicates that our model

has 2.283435% incorrect predictions which means it has

97.716565% correct predictions hence the model is

predicting accurately.

 Confidence Interval for The Area Under the

Curve(AUC) for Elasticnet Model for Up-Sampling
Technique

The model has confidence 0.95 of predicting correctly

with a confidence interval between 0.8958664 and 0.9853755

at an accuracy of 94.0621%.

 ROC Curve of the best fit Model for Elasticnet for Up-

Sampling Technique

Fig.13: ROC Curve of the best fit Model for Elasticnet (Up-Sampling Technique)

The higher AUC -ROC, the better the performance of

the model at distinguishing between positive and the negative

classes so when the AUC is between 0.5 and 1, that is,

0.5<AUC<1, then there is a high chance that the model can
distinguish between the positive class values from the

negative class values. Since our AUC value is 0.941, we have

a 95% accuracy and a confidence Interval between 0.896 and

0.985 that our model can differentiate between is FTP(False

Positive Rate) and the TPR(True Positive rate)

 Recall and Precision Score for Elasticnet Model for Up-

Sapling Technique

We obtained a precision of 0.9998257 which means

99.98257% of our prediction is relevant. We obtained a recall
of 0.9776274 which shows that our model has accuracy of

97.76274 in correctly classifying the total relevant results.

 Recall and Precision Curves for Elasticnet Model for Up-
Sapling Technique

Fig.14: Recall and Precision Curves for Elasticnet Model (Up-Sampling Technique)

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1852

Just like the other curves, these curves give the shape

we would expect. At thresholds with low recall, the precision
is correspondingly high though at a constant rate, and at very

high recall, the precision begins to drop. Looking at the

Precision-Recall Curve, we notice the curve gets precision up

to about 83.

 Lasso Regression for Up-Sampling Technique

The following Lasso Model predictions were obtained.

Top 6

 s0

2 0.02

4 0.01

5 0.05

8 0.06

11 0.01

13 0.01

 Bottom 6

s0

284789 0.02

284793 0.02

284797 0.09

284802 0.05

284803 0.00

284804 0.03

 Lasso Model Evaluation for Up-Sampling Technique

 Miscalculation Rate for Elasticnet Model for Up-

Sampling Technique

The mean of the miscalculation rate is at 0.009273537.

A miscalculation rate of 0.009273537 indicates that our

model has 0.9273537% incorrect predictions which means it

has 99.0726463% correct predictions hence the model is

predicting accurately.

 Confidence Interval for The Area Under the

Curve(AUC) for Lasso for Up-Sampling Technique

The model has confidence 0.95 of predicting correctly

with a confidence interval between 0.880 and 0.982 at an

accuracy of 93.1%.

 ROC Curve of the best fit Model for Lasso for Up-

Sampling Technique

Fig. 15: ROC Curve of the best fit Model for Lasso (Up-Sampling Technique)

The higher AUC -ROC, the better the performance of

the model at distinguishing between positive and the negative

classes so when the AUC is between 0.5 and 1, that is,

0.5<AUC<1, then there is a high chance that the model can

distinguish between the positive class values from the
negative class values. Since our AUC value is 0.931, we have

a 95% confidence Interval between 0.88 and 0.982 that our

model can differentiate between is FTP(False Positive Rate)

and the TPR(True Positive rate)

 Recall and Precision Score for Lasso Model for Up-

Sampling Technique

We obtained a precision of 0.9909338 which means

99.09338 % of our prediction is relevant. We obtained a recall

of the recall of 0.9997743 which shows that our model has
accuracy of 99.97743% in correctly classifying the total

relevant results.

 Recall and Precision Curves for Lasso Model for Up-
Sampling Technique

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1853

Fig. 16: Recall and Precision Curves for Lasso Model (Up-Sampling Technique)

These curves give the shape we would expect. A
threshold with low recall, the precision is correspondingly

high though at a constant rate, and at very high recall, the

precision begins to drop. Looking at the Precision-Recall

Curve, we notice the curve gets precision up to about 88.

V. CONCLUSION

From the outputs obtained from modeling while using

the Down-Sampling Technique of the Ride Regression,
Elasticnet Regression and Lasso Regression, we realize that

all the three models are accurate in credit card fraud

transaction detection. Amongst the three models, we notice

that Ridge Regression is the best with an accuracy of 98%, a

confidence interval between 97% and 99%, with 95%

confidence. Lasso Regression is the next best model with an

accuracy of 93.2%, a confidence interval between 88% and

98%, with 95% confidence, just slightly above Elasticnet

which comes third with an accuracy of 93.1%, a confidence

interval between 87% and 98%, with 95% confidence.

Nonetheless we will say Lasso and Elasticnet both have

equal accuracy while Ridge is the best.

When we look at the outputs obtained from modeling

while using the Up-Sampling Technique of the Ride

Regression, Elasticnet Regression and Lasso Regression, we
also realize that all the three models are accurate in credit card

fraud transaction detection though with very slight

differences where we notice that Ridge Regression is still the

best with an accuracy of 98.2%, a confidence interval

between 97.00 and 99.40 with a 95% confidence. Elasticnet

Regression is the next best with an accuracy of 94.0621%, a

confidence interval between 0.8958664 and 0.9853755 with

a 95% confidence unlike Lasso which was the next best in the

Down-Sampling Technique. Lasso Regression is the third

best with an accuracy of 93.1%, a confidence interval

between 0.880 and 0.982 with a 0.95 confidence in

predicting, unlike Elasticnet which was the third in the
Down-Sampling Technique.

RECOMMENDATION

We recommend that the final models are deployed to

make predictions on new data and their performance being

monitored regularly.

REFERENCES

[1.] Acar, A., Aksu, H., & Dogac, A. (2017). A survey of

credit card fraud detection techniques: Data and

technique-oriented perspective. Journal of Computer

and System Sciences, 83(1), 121-136.

[2.] Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A

survey of network anomaly detection techniques.

Journal of Network and Computer Applications, 60,

19-31.

[3.] Altman, E. I., Marco, G., & Varetto, F. (1994).
Corporate distress diagnosis comparisons using linear

discriminant analysis and neural networks. Journal of

Banking and Finance, 18(3), 505-529.

[4.] Bentley, P., Kim, J., Jung. G., & Choi, J. (2000). Fuzzy

Darwinian Detection of Credit Card Fraud. Proc. of

14th Annual Fall Symposium of the Korean

Information Processing Society.

[5.] Credit Cards: Use and Consumer Attitudes, 1970-

2000, 86 Fed. Res. Bull. 623 (2000).

[6.] Dal Pozzolo, A., Caelen, O., Johnson, R. A., &

Bontempi, G. (2015). Calibrating Probability with
Undersampling for Unbalanced Classification. In

Symposium on Computational Intelligence and Data

Mining (CIDM) (pp. 1-7). IEEE.

[7.] Dinakar, K., & Nair, R. R. (2020). An efficient credit

card fraud detection model using machine learning and

natural language processing. Procedia Computer

Science, 171, 695-703.

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1854

[8.] Dorronsoro, J. R., Ginel, F., Sanchez, J. A., & Cruz, J.

M. (1997). Building an online system for fraud
detection of credit card operations based on a neural

classifier. Proceedings of the International Conference

on Artificial Neural Networks (ICANN'97), 683-688.

[9.] Federal Trade Commission. (2020). Consumer

Sentinel Network Data Book 2020. Retrieved from

https://www.ftc.gov/system/files/documents/reports/c

onsumer-sentinel-network-data-book-

2020/csn_data_book_2020.pdf

[10.] Federal Trade Commission. (2021). Consumer

Sentinel Network Data Book 2020. Retrieved from

https://www.ftc.gov/reports/consumer-sentinel-

network-data-book-2020
[11.] Flitman, A. M. (1997). Towards analysing student

failures: neural networks compared with regression

analysis and multiple discriminant analysis.

Computers & Operations Research, 24(4), 367-377.
[12.] Gandomi, A., & Haider, M. (2015). Beyond the hype:

Big data concepts, methods, and analytics.

International Journal of Information Management,

35(2), 137-144.

[13.] Hanagandi, V., Dhar, S., & Buescher, K. (1996).

Application of classification models on credit card

fraud detection. Proceedings of the International

Conference on Neural Networks, 1996. doi:

10.1109/ICNN.1996.548981

[14.] Nilson Report. (December 2021). Card Fraud

Worldwide. Issue 1209.

[15.] The Nilson Report. (2020). Card Fraud Losses Reach
$9.47 Billion. Retrieved from

https://www.nilsonreport.com/mention/194/card-

fraud-losses-reach-9.47-billion/

http://www.ijisrt.com/
https://www.nilsonreport.com/mention/194/card-fraud-losses-reach-9.47-billion/
https://www.nilsonreport.com/mention/194/card-fraud-losses-reach-9.47-billion/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1855

APPENDIX

R-CODES USED FOR THE PROJECT

setwd("C:/Users/nebcy/Documents/Apsu/Apsu/Data Set STAT5140")

credit_card1 = read.csv("creditcard.CSV")

credit_card<-credit_card1
dim(credit_card)

head(credit_card)

Basic Data Exploration

install.packages(c('ROCR','ggplot2','corrplot','caTools','class',

 'randomForest','pROC','imbalance'))

library(ROCR)

library(ggplot2)

library(corrplot)

library(caTools)
library(class)

library(randomForest)

library(pROC)

library(imbalance)

library(rpart)

#Basic Exploratory Data Analysis

#Viewing some initial observations of the dataset

#Summary of the dataset

summary(credit_card)

#Viewing Structure of the dataset

str(credit_card)

sapply(credit_card, FUN=class)

#Checking for missing values

credit_card[!complete.cases(credit_card),]

#Missing values by visualization

install.packages("naniar")
library(naniar)

vis_miss(credit_card, 'warn_large_data' = FALSE)

gg_miss_var(credit_card)

#Viewing the Frequency distribution of "Class" Variable

table(credit_card$Class)

prop.table(table(credit_card$Class))

ggplot(data = credit_card,aes(x=Class))+geom_bar(col="red")

#Plotting the Amount - Fraud chart

ggplot(data = credit_card,aes(y=Amount,x=Class))+geom_point(col="slateblue3") + facet_grid(~Class)

#Checking correlation between the variables

install.packages("corpcor")

library(corpcor)

head(cor2pcor(cov(credit_card)))

library(corrplot)

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1856

credit_card$Class <- as.numeric(credit_card$Class)

corr <- cor(credit_card[],method="pearson")
corrplot(corr,method = "circle", type = "lower")

#Taking out Time Column.

#Since the Time Variab,e is not important for this project, we take it out

credit_card<-credit_card1[,-1]

head(credit_card)

######################### Data partition ##################

set.seed(123) #maintains consistency of data and makes data set not to randomly change when running it multiple times

n <- nrow(credit_card)

split_data <- sample(x=1:2, size = n, replace=TRUE, prob=c(0.67, 0.33)) #x=1 =training data, x=2 = testing data

train <- credit_card[split_data == 1,]
test <- credit_card[split_data == 2,]

y.train <- train$Class

yobs <- test$Class

##################### Balancing data through upsampling

Load the necessary libraries

install.packages("caret")

library(caret)

Check the class distribution before upsampling

table(train$Class)

Check the class of the 'Class' variable

class(train$Class)

Convert 'Class' to a factor variable if it's not already

train$Class <- as.factor(train$Class)

Verify that 'Class' is now a factor

class(train$Class)

set.seed(90) # for reproducibility
down_train_data <- downSample(x = train[, -30], y = train$Class)

Check the class distribution after upsampling

table(down_train_data$Class)

Upsample the minority class

set.seed(90) # for reproducibility

down_train_data <- downSample(x = train[, -30], y = train$Class)

Check the class distribution after upsampling
table(down_train_data$Class)

#Building A logistic model

install.packages("glmnet")

library(glmnet) #Elastic net

formula0 <- factor(Class)~. #This teslls us num is a categorical variable and this will bring out just 1 and 0

X <- model.matrix (as.formula(formula0), data = down_train_data)[, -1] # trim off the first column and leaving only the predictors

#RIDGE REGRESSION

#Using cross validation to determine the optimal tuning parameter. To chose the best lambda
CV <- cv.glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 0, # CROSS VALIDATION METHOD

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1857

 nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda

for us.

plot(CV)

coef(CV, CV$lambda.min)

coef(CV, CV$lambda.1se)

b.lambda <- CV$lambda.1se #we can use 1se or min THIS GIVES US THE BEST LAMBDA

b.lambda

fit.best <- glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 0, #BEST FIT WILL NOT HAVE ANY

DATA DISAPPEARING BECAUSE WE USED RIDGE i.E. LAMBDA = 0

 lambda=b.lambda)

(fit.best$beta)

Prediction

X.test <- model.matrix (as.formula(formula0), data = test)[, -1]

pred <- predict(fit.best, newx = X.test, type="response") #type = "response" means y is continues

head(pred)

tail(pred)

dim(pred)

Finding missclassification rate #making a threshhold

pred1 <- ifelse(pred>0.5, 1, 0) #if it is bigger than 50%, we say yes

pred1

(miss.rate <- mean(yobs != pred1))

pred<-pred[, 1] #gives only the index (1, 0) and not the column

pred1<-pred1[,1]

#Plotting ROC curve of the fit.best model.

install.packages("cvAUC")

library(cvAUC)

AUC <- ci.cvAUC(predictions = pred, labels = yobs, folds=1:NROW(test), confidence = 0.95)

AUC
(auc.ci <- round(AUC$ci, digits = 3))

install.packages("verification")

library(verification)

mod.glm <- verify(obs = yobs, pred = pred)

roc.plot(mod.glm, plot.thres=NULL)

text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC$cvAUC, digits = 3), "with 95% CI (",

 auc.ci[1], ",", auc.ci[2], ").", sep = " "), col="blue", cex =1.2)

#confusion matrix (we dont need it in this case because the data in imbalance)

#library(caret)
#library(e1071)

#confusionMatrix(as.factor(pred1),as.factor(yobs),positive = "1")

#RECALL AND PRECISION SCORE, WE CAN USE THIS

#precision(as.factor(yobs),as.factor(pred1))

#recall(as.factor(yobs), as.factor(pred1))

Assuming yobs and pred1 are binary (0/1) vectors or factors

library(caret)

Calculate precision

precision_score <- posPredValue(as.factor(pred1), as.factor(yobs))

Calculate recall

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1858

recall_score <- sensitivity(as.factor(pred1), as.factor(yobs))

Print the precision and recall scores

cat("Precision Score:", precision_score, "\n")

cat("Recall Score:", recall_score, "\n")

#RECALL AND PRECISION CURVES

install.packages("precrec")

library(precrec)

precrec_ridge <- evalmod(scores = pred, labels = yobs)

precrec_ridge

autoplot(precrec_ridge)

#################################

#ELASTICNET REGRESSION

#Using cross validation to determine the optimal tuning parameter. To chose the best lambda

CV2 <- cv.glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 0.5, # CROSS VALIDATION METHOD

 nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda

for us.

plot(CV2)

coef(CV2, CV2$lambda.min)

coef(CV2, CV2$lambda.1se)

b.lambda2 <- CV2$lambda.1se #we can use 1se or min THIS GIVES US THE BEST LAMBDA

b.lambda2

fit.best2 <- glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 0.5, #BEST FIT WILL SHOW SOME DATA

DISAPPEARING BECAUSE WE USED LASSO i.E. LAMBDA = 1

 lambda=b.lambda2)

(fit.best2$beta)

Prediction

X.test <- model.matrix (as.formula(formula0), data = test)[, -1]

pred_elasticnet <- predict(fit.best2, newx = X.test, type="response") #type = "response" means y is continues
(head(pred_elasticnet <- round(pred_elasticnet, digits = 2)))

(tail(pred_elasticnet <- round(pred_elasticnet, digits = 2)))

dim(pred_elasticnet)

Finding missclassification rate #making a threshhold

pred1_elasticnet <- ifelse(pred_elasticnet>0.5, 1, 0) #if it is bigger than 50%, we say yes

pred1_elasticnet

(miss.rate <- mean(yobs != pred1_elasticnet))

pred_elasticnet<-pred_elasticnet[, 1] #gives only the index (1, 0) and not the column

pred1_elasticnet<-pred1_elasticnet[,1]

#Plotting ROC curve of the fit.best model.

library(cvAUC)

AUC2 <- ci.cvAUC(predictions = pred1_elasticnet, labels = yobs, folds=1:NROW(test), confidence = 0.95)

AUC2

(auc.ci_elasticnet <- round(AUC2$ci, digits = 3))

library(verification)
mod.glm_elasticnet <- verify(obs = yobs, pred = pred_elasticnet)

roc.plot(mod.glm_elasticnet, plot.thres=NULL)

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1859

text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC2$cvAUC, digits = 3), "with 95% CI (",

 auc.ci_elasticnet[1], ",", auc.ci_elasticnet[2], ").", sep = " "), col="blue", cex =1.2)

#confusion matrix (we dont need it in this case because the data in imbalance)

#library(caret)

#library(e1071)

#confusionMatrix(as.factor(pred1),as.factor(yobs),positive = "1")

#FOR RECALL AND PRECISION SCORE, WE CAN USE THIS Since our data is imbalance, we use RECALL AND

PRECISION SCORE to see if it can predict the minority class since it will definitely predict the majority class since it

has enough data on which to learn so with our output off 0.9917754, we can conclude that the model is prdicting well.

#precision(as.factor(yobs),as.factor(pred1_elasticnet))

#recall(as.factor(yobs), as.factor(pred1_elasticnet))

################

#RECALL AND PRECISION SCORE, WE CAN USE THIS

#precision(as.factor(yobs),as.factor(pred1_elasticnet))

#recall(as.factor(yobs), as.factor(pred1_elasticnet))

Assuming yobs and pred1_elasticnet are binary (0/1) vectors or factors

library(caret)

Calculate precision

precision_score <- posPredValue(as.factor(pred1_elasticnet), as.factor(yobs))

Calculate recall
recall_score <- sensitivity(as.factor(pred1_elasticnet), as.factor(yobs))

Print the precision and recall scores

cat("Precision Score:", precision_score, "\n")

cat("Recall Score:", recall_score, "\n")

#RECALL AND PRECISION CURVES

#install.packages("precrec")

library(precrec)

precrec_elasticnet <- evalmod(scores = pred_elasticnet, labels = yobs)

precrec_elasticnet

autoplot(precrec_elasticnet)

#LASSO REGRESSION

#Using cross validation to determine the optimal tuning parameter. To chose the best lambda

CV1 <- cv.glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 1, # CROSS VALIDATION METHOD

 nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda

for us.

plot(CV1)

coef(CV1, CV1$lambda.min)

coef(CV1, CV1$lambda.1se)

b.lambda1 <- CV1$lambda.1se #we can use 1se or min THIS GIVES US THE BEST LAMBDA

b.lambda1

fit.best1 <- glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 1, #BEST FIT WILL SHOW SOME DATA

DISAPPEARING BECAUSE WE USED LASSO i.E. LAMBDA = 1

 lambda=b.lambda1)

(fit.best1$beta)

Prediction

X.test <- model.matrix (as.formula(formula0), data = test)[, -1]
pred_lasso <- predict(fit.best1, newx = X.test, type="response") #type = "response" means y is continues

(head(pred_lasso <- round(pred_lasso, digits = 2)))

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1860

(tail(pred_lasso <- round(pred_lasso, digits = 2)))

dim(pred_lasso)

Finding missclassification rate #making a threshhold

pred1_lasso <- ifelse(pred_lasso>0.5, 1, 0) #if it is bigger than 50%, we say yes

(miss.rate <- mean(yobs != pred1_lasso))

pred_lasso<-pred_lasso[,1] #gives only the index (1, 0) and not the column

pred1_lasso<-pred1_lasso[,1]

#Plotting ROC curve of the fit.best model.
library(cvAUC)

AUC1 <- ci.cvAUC(predictions = pred1_lasso, labels = yobs, folds=1:NROW(test), confidence = 0.95)

AUC1

(auc.ci_lasso <- round(AUC1$ci, digits = 3))

library(verification)

mod.glm_lasso <- verify(obs = yobs, pred = pred_lasso)

roc.plot(mod.glm_lasso, plot.thres=NULL)

text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC1$cvAUC, digits = 3), "with 95% CI (",

 auc.ci_lasso[1], ",", auc.ci_lasso[2], ").", sep = " "), col="purple", cex =1.2)

#confusion matrix (we dont need it in this case because the data in imbalance)

#library(caret)

#library(e1071)

#confusionMatrix(as.factor(pred1),as.factor(yobs),positive = "1")

#FOR RECALL AND PRECISION SCORE, WE CAN USE THIS

#precision(as.factor(yobs),as.factor(pred1_lasso))

#recall(as.factor(yobs), as.factor(pred1_lasso))

#RECALL AND PRECISION CURVES

#install.packages("precrec")

library(precrec)
precrec_lasso <- evalmod(scores = pred_lasso, labels = yobs)

precrec_lasso

autoplot(precrec_lasso)

##############

Calculate precision

precision_score <- posPredValue(as.factor(pred1_lasso), as.factor(yobs))

Calculate recall

recall_score <- sensitivity(as.factor(pred1_lasso), as.factor(yobs))

Print the precision and recall scores

cat("Precision Score:", precision_score, "\n")

cat("Recall Score:", recall_score, "\n")

#RECALL AND PRECISION CURVES

#install.packages("precrec")

library(precrec)

precrec_lasso <- evalmod(scores = pred1_lasso, labels = yobs)

precrec_lasso

autoplot(precrec_lasso)

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1861

Clear the console

cat("\014")

Restart R

q(save = "no")

setwd("C:/Users/nebcy/Documents/Apsu/Apsu/Data Set STAT5140")

credit_card1 = read.csv("creditcard.CSV")

credit_card<-credit_card1

dim(credit_card)

head(credit_card)

Basic Data Exploration

install.packages(c('ROCR','ggplot2','corrplot','caTools','class',

 'randomForest','pROC','imbalance'))

library(ROCR)

library(ggplot2)

library(corrplot)

library(caTools)

library(class)

library(randomForest)

library(pROC)

library(imbalance)

library(rpart)

#Basic Exploratory Data Analysis

#Viewing some initial observations of the dataset

#Summary of the dataset

summary(credit_card)

#Viewing Structure of the dataset

str(credit_card)

sapply(credit_card, FUN=class)

#Checking for missing values

credit_card[!complete.cases(credit_card),]

#Missing values by visualization

install.packages("naniar")

library(naniar)

vis_miss(credit_card, 'warn_large_data' = FALSE)

gg_miss_var(credit_card)

#Viewing the Frequency distribution of "Class" Variable
table(credit_card$Class)

prop.table(table(credit_card$Class))

ggplot(data = credit_card,aes(x=Class))+geom_bar(col="red")

#Plotting the Amount - Fraud chart

ggplot(data = credit_card,aes(y=Amount,x=Class))+geom_point(col="slateblue3") + facet_grid(~Class)

#Checking correlation between the variables

install.packages("corpcor")
library(corpcor)

head(cor2pcor(cov(credit_card)))

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1862

library(corrplot)
credit_card$Class <- as.numeric(credit_card$Class)

corr <- cor(credit_card[],method="pearson")

corrplot(corr,method = "circle", type = "lower")

#Taking out Time Column.

#Since the Time Variab,e is not important for this project, we take it out

credit_card<-credit_card1[,-1]

head(credit_card)

######################### Data partition ##################

set.seed(123) #maintains consistency of data and makes data set not to randomly change when running it multiple times

n <- nrow(credit_card)
split_data <- sample(x=1:2, size = n, replace=TRUE, prob=c(0.67, 0.33)) #x=1 =training data, x=2 = testing data

train <- credit_card[split_data == 1,]

test <- credit_card[split_data == 2,]

y.train <- train$Class

yobs <- test$Class

##################### Balancing data through upsampling

Load the necessary libraries

install.packages("caret")

library(caret)

Check the class distribution before upsampling

table(train$Class)

Check the class of the 'Class' variable

class(train$Class)

Convert 'Class' to a factor variable if it's not already

train$Class <- as.factor(train$Class)

Verify that 'Class' is now a factor

class(train$Class)

set.seed(90) # for reproducibility

up_train_data <- upSample(x = train[, -30], y = train$Class)

Check the class distribution after upsampling

table(up_train_data$Class)

Upsample the minority class

set.seed(90) # for reproducibility

up_train_data <- upSample(x = train[, -30], y = train$Class)

Check the class distribution after upsampling

table(up_train_data$Class)

#Building A logistic model

install.packages("glmnet")

library(glmnet) #Elastic net

formula0 <- factor(Class)~. #This teslls us num is a categorical variable and this will bring out just 1 and 0

X <- model.matrix (as.formula(formula0), data = up_train_data)[, -1] # trim off the first column and leaving only the predictors

#RIDGE REGRESSION
#Using cross validation to determine the optimal tuning parameter. To chose the best lambda

CV <- cv.glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 0, # CROSS VALIDATION METHOD

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1863

 nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda

for us.

plot(CV)

coef(CV, CV$lambda.min)

coef(CV, CV$lambda.1se)

b.lambda <- CV$lambda.1se #we can use 1se or min THIS GIVES US THE BEST LAMBDA

b.lambda

fit.best <- glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 0, #BEST FIT WILL NOT HAVE ANY DATA

DISAPPEARING BECAUSE WE USED RIDGE i.E. LAMBDA = 0

 lambda=b.lambda)

(fit.best$beta)

Prediction

X.test <- model.matrix (as.formula(formula0), data = test)[, -1]

pred <- predict(fit.best, newx = X.test, type="response") #type = "response" means y is continues

head(pred)

tail(pred)

dim(pred)

Finding missclassification rate #making a threshhold

pred1 <- ifelse(pred>0.5, 1, 0) #if it is bigger than 50%, we say yes

pred1

(miss.rate <- mean(yobs != pred1))

pred<-pred[, 1] #gives only the index (1, 0) and not the column

pred1<-pred1[,1]

#Plotting ROC curve of the fit.best model.

install.packages("cvAUC")

library(cvAUC)

AUC <- ci.cvAUC(predictions = pred, labels = yobs, folds=1:NROW(test), confidence = 0.95)

AUC
(auc.ci <- round(AUC$ci, digits = 3))

install.packages("verification")

library(verification)

mod.glm <- verify(obs = yobs, pred = pred)

roc.plot(mod.glm, plot.thres=NULL)

text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC$cvAUC, digits = 3), "with 95% CI (",

 auc.ci[1], ",", auc.ci[2], ").", sep = " "), col="blue", cex =1.2)

#confusion matrix (we dont need it in this case because the data in imbalance)

#library(caret)
#library(e1071)

#confusionMatrix(as.factor(pred1),as.factor(yobs),positive = "1")

#RECALL AND PRECISION SCORE, WE CAN USE THIS

#precision(as.factor(yobs),as.factor(pred1))

#recall(as.factor(yobs), as.factor(pred1))

Assuming yobs and pred1 are binary (0/1) vectors or factors

library(caret)

Calculate precision

precision_score <- posPredValue(as.factor(pred1), as.factor(yobs))

Calculate recall

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1864

recall_score <- sensitivity(as.factor(pred1), as.factor(yobs))

Print the precision and recall scores

cat("Precision Score:", precision_score, "\n")

cat("Recall Score:", recall_score, "\n")

#RECALL AND PRECISION CURVES

install.packages("precrec")

library(precrec)

precrec_ridge <- evalmod(scores = pred, labels = yobs)

precrec_ridge

autoplot(precrec_ridge)

#################################

#ELASTICNET REGRESSION

#Using cross validation to determine the optimal tuning parameter. To chose the best lambda

CV2 <- cv.glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 0.5, # CROSS VALIDATION METHOD

 nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda

for us.

plot(CV2)

coef(CV2, CV2$lambda.min)

coef(CV2, CV2$lambda.1se)

b.lambda2 <- CV2$lambda.1se #we can use 1se or min THIS GIVES US THE BEST LAMBDA

b.lambda2

fit.best2 <- glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 0.5, #BEST FIT WILL SHOW SOME DATA

DISAPPEARING BECAUSE WE USED LASSO i.E. LAMBDA = 1

 lambda=b.lambda2)

(fit.best2$beta)

Prediction

X.test <- model.matrix (as.formula(formula0), data = test)[, -1]

pred_elasticnet <- predict(fit.best2, newx = X.test, type="response") #type = "response" means y is continues
(head(pred_elasticnet <- round(pred_elasticnet, digits = 2)))

(tail(pred_elasticnet <- round(pred_elasticnet, digits = 2)))

dim(pred_elasticnet)

Finding missclassification rate #making a threshhold

pred1_elasticnet <- ifelse(pred_elasticnet>0.5, 1, 0) #if it is bigger than 50%, we say yes

pred1_elasticnet

(miss.rate <- mean(yobs != pred1_elasticnet))

pred_elasticnet<-pred_elasticnet[, 1] #gives only the index (1, 0) and not the column

pred1_elasticnet<-pred1_elasticnet[,1]

#Plotting ROC curve of the fit.best model.

library(cvAUC)

AUC2 <- ci.cvAUC(predictions = pred1_elasticnet, labels = yobs, folds=1:NROW(test), confidence = 0.95)

AUC2

(auc.ci_elasticnet <- round(AUC2$ci, digits = 3))

library(verification)
mod.glm_elasticnet <- verify(obs = yobs, pred = pred_elasticnet)

roc.plot(mod.glm_elasticnet, plot.thres=NULL)

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1865

text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC2$cvAUC, digits = 3), "with 95% CI (",

 auc.ci_elasticnet[1], ",", auc.ci_elasticnet[2], ").", sep = " "), col="blue", cex =1.2)

#confusion matrix (we dont need it in this case because the data in imbalance)

#library(caret)

#library(e1071)

#confusionMatrix(as.factor(pred1),as.factor(yobs),positive = "1")

#FOR RECALL AND PRECISION SCORE, WE CAN USE THIS

#precision(as.factor(yobs),as.factor(pred1_elasticnet))

#recall(as.factor(yobs), as.factor(pred1_elasticnet))

################

#RECALL AND PRECISION SCORE, WE CAN USE THIS
#precision(as.factor(yobs),as.factor(pred1_elasticnet))

#recall(as.factor(yobs), as.factor(pred1_elasticnet))

Assuming yobs and pred1_elasticnet are binary (0/1) vectors or factors

library(caret)

Calculate precision

precision_score <- posPredValue(as.factor(pred1_elasticnet), as.factor(yobs))

Calculate recall

recall_score <- sensitivity(as.factor(pred1_elasticnet), as.factor(yobs))

Print the precision and recall scores

cat("Precision Score:", precision_score, "\n")

cat("Recall Score:", recall_score, "\n")

#RECALL AND PRECISION CURVES

#install.packages("precrec")

library(precrec)

precrec_elasticnet <- evalmod(scores = pred_elasticnet, labels = yobs)

precrec_elasticnet

autoplot(precrec_elasticnet)

#LASSO REGRESSION

#Using cross validation to determine the optimal tuning parameter. To chose the best lambda

CV1 <- cv.glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 1, # CROSS VALIDATION METHOD

 nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda

for us.

plot(CV1)

coef(CV1, CV1$lambda.min)

coef(CV1, CV1$lambda.1se)

b.lambda1 <- CV1$lambda.1se #we can use 1se or min THIS GIVES US THE BEST LAMBDA

b.lambda1

fit.best1 <- glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 1, #BEST FIT WILL SHOW SOME DATA

DISAPPEARING BECAUSE WE USED LASSO i.E. LAMBDA = 1

 lambda=b.lambda1)

(fit.best1$beta)

Prediction

X.test <- model.matrix (as.formula(formula0), data = test)[, -1]

pred_lasso <- predict(fit.best1, newx = X.test, type="response") #type = "response" means y is continues
(head(pred_lasso <- round(pred_lasso, digits = 2)))

(tail(pred_lasso <- round(pred_lasso, digits = 2)))

http://www.ijisrt.com/

Volume 8, Issue 9, September 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23SEP1533 www.ijisrt.com 1866

dim(pred_lasso)

Finding missclassification rate #making a threshhold

pred1_lasso <- ifelse(pred_lasso>0.5, 1, 0) #if it is bigger than 50%, we say yes

(miss.rate <- mean(yobs != pred1_lasso))

pred_lasso<-pred_lasso[,1] #gives only the index (1, 0) and not the column

pred1_lasso<-pred1_lasso[,1]

#Plotting ROC curve of the fit.best model.

library(cvAUC)
AUC1 <- ci.cvAUC(predictions = pred1_lasso, labels = yobs, folds=1:NROW(test), confidence = 0.95)

AUC1

(auc.ci_lasso <- round(AUC1$ci, digits = 3))

library(verification)

mod.glm_lasso <- verify(obs = yobs, pred = pred_lasso)

roc.plot(mod.glm_lasso, plot.thres=NULL)

text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC1$cvAUC, digits = 3), "with 95% CI (",

 auc.ci_lasso[1], ",", auc.ci_lasso[2], ").", sep = " "), col="purple", cex =1.2)

#confusion matrix (we dont need it in this case because the data in imbalance)
#library(caret)

#library(e1071)

#confusionMatrix(as.factor(pred1),as.factor(yobs),positive = "1")

#FOR RECALL AND PRECISION SCORE, WE CAN USE THIS

#precision(as.factor(yobs),as.factor(pred1_lasso))

#recall(as.factor(yobs), as.factor(pred1_lasso))

#RECALL AND PRECISION CURVES

#install.packages("precrec")

library(precrec)

precrec_lasso <- evalmod(scores = pred_lasso, labels = yobs)
precrec_lasso

autoplot(precrec_lasso)

##############

Calculate precision

precision_score <- posPredValue(as.factor(pred1_lasso), as.factor(yobs))

Calculate recall

recall_score <- sensitivity(as.factor(pred1_lasso), as.factor(yobs))

Print the precision and recall scores

cat("Precision Score:", precision_score, "\n")

cat("Recall Score:", recall_score, "\n")

#RECALL AND PRECISION CURVES

#install.packages("precrec")

library(precrec)

precrec_lasso <- evalmod(scores = pred1_lasso, labels = yobs)

precrec_lasso

autoplot(precrec_lasso)

http://www.ijisrt.com/

