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Abstract:- This  study highlights the problem of credit 

card fraud and the use of regularized generalized linear 

models (GLMs) to detect fraud. GLMs are flexible 

statistical frameworks that model the relationship 

between a response variable and a set of predictor 

variables. Regularization Techniques such as ridge 

regression, lasso regression, and Elasticnet can help 

mitigate overfitting, resulting in a more parsimonious and 

interpretable model. The study used a credit card 

transaction dataset from September 2013, which included 

492 fraud cases out of 284,807 transactions.   
 

The rising prevalence of credit card fraud has led to 

the development of sophisticated detection methods, with 

machine learning playing a pivotal role. In this study, we 

employed three machine learning models: Ridge 

Regression, Elasticnet Regression, and Lasso Regression, 

to detect credit card fraud using both Down-Sampling 

and Up-Sampling techniques. The results indicate that all 

three models exhibit accuracy in credit card fraud 

detection. Among them, Ridge Regression stands out as 

the most accurate model, achieving an impressive 98% 

accuracy with a 95% confidence interval between 97% 

and 99%. Following closely, Lasso Regression and 

Elasticnet Regression both demonstrate solid 

performance, with accuracy rates of 93.2% and 93.1%, 

respectively, and 95% confidence intervals ranging from 

88% to 98%. 
 

When considering the Up-Sampling technique, 

Ridge Regression maintains its position as the most 

accurate model, achieving an accuracy rate of 98.2% with 

a 95% confidence interval spanning from 97% to 99.4%. 

Elasticnet Regression follows with an accuracy rate of 

94.1% and a confidence interval between 0.8959 and 

0.9854, while Lasso Regression exhibits a slightly lower 

accuracy of 93.1% with a confidence interval from 0.88 to 

0.982. all three machine learning models—Ridge 

Regression, Elasticnet Regression, and Lasso 

Regression—demonstrate competence in credit card 

fraud detection. Ridge Regression consistently 

outperforms the others in both Down-Sampling and Up-

Sampling scenarios, making it a valuable tool for financial 

institutions to safeguard against credit card fraud threats 

in the United States. 
 

Keywords:- Machine Learning, Credit Card Transaction 

Fraud Detection, Regularized GLM,  Ridge Regression, 

Elasticnet Regression, Lasso Regression, Down-Sampling 

and Up-Sampling. 
 

I. INTRODUCTION 
 

A notable change in consumer financial services over 

the past few decades has been the growth of the use of credit 

cards, both for payments and as sources of revolving credit. 

From modest origins in the 1950s as a convenient way for the 

relatively well-to-do to settle restaurant and department store 

purchases without carrying cash, credit cards have become a 

ubiquitous financial product held by households in all 

economic strata (Credit Cards: Use and Consumer Attitudes, 

1970-2000, 2000)".  
 

Credit card fraud is a prevalent and challenging problem 

for financial institutions and consumers worldwide. In 2021, 

the Federal Trade Commission (FTC) fielded nearly 390,000 

reports of credit card fraud, making it one of the most 

common kinds of fraud in the U.S. (Federal Trade 

Commission, 2020) and consistently ranks among the top 
consumer complaints, with thousands of cases reported each 

year. In 2020 alone, the FTC received over 2.2 million fraud 

reports, with identity theft and credit card fraud being among 

the most frequently cited issues (Federal Trade Commission, 

2021).  
 

Fraudulent transactions can cause significant financial 

losses, harm the reputation of financial institutions, and create 

inconvenience and stress for customers. Therefore, detecting 

and preventing credit card fraud is of utmost importance.  

According to the Nilson Report (December 2021), global 

credit card and debit card fraud resulted in losses of $28.58 

billion during 2020, with card issuers and merchants 

incurring 88% and 12% of those losses, respectively. Card 

issuer losses occurred mainly at the point of sale from 

counterfeit cards while merchant losses occurred mainly on 
card-not-present (CNP) transactions. The report also noted 

that during 2020, credit card and debit card gross fraud losses 

accounted for roughly 6.81₵ per $100 in total volume, up 

from 6.78₵ per $100 in 2019. In 2020, the US accounted for 

35.83% of the worldwide payment card fraud losses but 

generated only 22.40% of total volume. Finally, the Nilson 

Report predicted that over the next 10 years, card industry 

losses to fraud will collectively amount to $408.50 billion. 
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II. METHODS OF CREDIT CARD FRAUD 

DETECTION 
 

Detecting and preventing credit card fraud is an ongoing 

challenge, but various methods have been developed to 

mitigate its impact. One increasingly vital approach is the 

utilization of machine learning and data analytics. These 
techniques enable the analysis of vast datasets, identifying 

suspicious patterns and anomalies that may indicate 

fraudulent activity. 

 Anomaly Detection: Anomaly detection algorithms, such 

as clustering and autoencoders, are used to flag transactions 

that significantly deviate from the norm. These anomalies 

may indicate fraudulent activities, and machine learning 

models can assign risk scores to transactions based on their 

deviation from established patterns (Ahmed et al., 2016). 

 Behavioral Analysis: Machine learning can analyze a 

user's behavior over time, creating a profile of their typical 
spending habits. Any sudden deviations from this profile 

can trigger alerts for further investigation (Ahmed et al., 

2016). 

 Network Analysis: Credit card fraud often involves 

coordinated efforts by criminal networks. Machine 

learning models can analyze transaction networks to 

identify links between seemingly unrelated accounts and 

transactions, uncovering hidden patterns (Gandomi & 

Haider, 2015). 

 Real-time Monitoring: Machine learning models can 

operate in real-time, allowing for the immediate detection 
of potentially fraudulent transactions. This rapid response 

is crucial in preventing losses (Gandomi & Haider, 2015). 

 Natural Language Processing (NLP): NLP techniques 

can be employed to analyze text data, such as customer 

service interactions and transaction comments, to identify 

suspicious language or phrases associated with fraud 

(Dinakar & Nair, 2020). 

 Pattern Recognition: Machine learning algorithms can be 

trained to recognize patterns associated with fraudulent 

transactions. By analyzing historical data, these models can 

identify deviations from typical spending behavior, such as 

unusual purchase locations, transaction amounts, or 
frequencies (Acar et al., 2017). One pattern recognition 

approach to detect credit card fraud is to use Machine 

Learning Techniques such as a generalized linear model 

(GLM), which is a flexible statistical framework that 

allows modeling the relationship between a response 

variable and a set of predictor variables. However, GLMs 

can suffer from overfitting, which occurs when the model 

is too complex and fits the noise in the data instead of the 

underlying signal. Regularization Techniques can help 

mitigate overfitting by adding a penalty term to the model's 

objective function that discourages large coefficients. 
 

In this context, regularized forms of GLMs, such as 

ridge regression and lasso regression, can be useful tools for 

detecting credit card fraud. These Techniques allow the 

model to shrink the coefficients of less important predictors, 
leading to a more parsimonious and interpretable model that 

is less prone to overfitting. Furthermore, regularized GLMs 

can handle high-dimensional data with many predictors, a 

common scenario in credit card fraud detection, where there 

are numerous features that may be relevant to identifying 

fraudulent transactions. 
 

For this study, we used the credit card transaction 

dataset from September 2013 which includes transactions 

made by European cardholders (Pozzolo, Caelen, Johnson, 

and Bontempi; 2015). This dataset covers a two-day period 
and includes 492 fraud cases out of a total of 284,807 

transactions. The dataset is considered unbalanced because 

the positive class (frauds) accounts for only 0.172% of all 

transactions. The input variables in the dataset are numerical 

and have been transformed using PCA. The original features 

and additional background information about the data cannot 

be disclosed due to confidentiality concerns. The dataset 

includes 28 principal components obtained through PCA, and 

the 'Time' and 'Amount' features have not been transformed. 

'Time' indicates the time in seconds between a given 

transaction and the first transaction in the dataset, while 
'Amount' indicates the transaction amount and can be used for 

cost-sensitive learning. The response variable, 'Class', takes a 

value of 1 for fraud cases and 0 for non-fraud cases. 
 

III. A GENERAL REVIEW ON CREDIT CARD 

FRAUD DETECTION TECHNIQUES 
 

According to Hanagandi, Dhar, and Buescher (1996), 

historical information on credit card transactions was used to 

develop a fraud score model using a radial basis function 
network and a density-based clustering approach. The authors 

applied this methodology to a fraud detection problem and 

reported satisfactory preliminary results. The paper is 

considered an early example of using machine learning 

Techniques for fraud detection in credit card transactions, 

which has since become an important application area of 

machine learning and data analytics.  
 

(Dorronsoro et al., 1997) developed an online system 

for detecting credit card fraud using a neural classifier, which 

was constructed using a nonlinear version of Fisher's 

discriminant analysis. The authors reported that the system is 

currently fully operational and can handle more than 12 

million credit card operations per year, with satisfactory 

results obtained.  
 

Bentley et al. (2000) proposed a genetic programming-

based algorithm for classifying credit card transactions into 

suspicious and non-suspicious categories using logic rules. 

The algorithm was tested on a database of 4,000 transactions 

with 62 fields, and the most effective rule was selected based 
on its predictability. This algorithm has shown promise in 

detecting credit card fraud, particularly in the context of home 

insurance data. Nonetheless, given the constantly changing 

nature of fraud tactics, new and advanced fraud detection 

methods are continuously being developed to keep pace with 

this evolving field. 
 

IV. METHODOLOGY 
 

The methodology for building the fraud detection 
model involves data exploration and cleaning, data 

preprocessing, model building, model evaluation, and 

interpretation. The data was checked for missing values, 

outliers, and correlations between predictor variables. 
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Standardization was used to avoid bias and the data was split 

into training and testing sets followed by modeling using 
down-sample and up-sample Techniques. Logistic regression 

with L1 regularization (Lasso Regularization), L2 

regularization (Ridge Regularization) and a combination of 

L1 and L2 regularization also known as Elasticnet 

Regularization was used and hyperparameters were tuned 

using cross-validation. Performance metrics like accuracy, 

precision, recall, F1-score, ROC-AUC, etc. were used to 

evaluate the model, and the coefficients were interpreted to 

understand the impact of predictor variables. 

  
A. Exploratory Data Analysis 

This dataset contains 31 variables, including the response 

variable (Class). The first 30 variables (V1 to V30) represent 

numerical variables that have been transformed using PCA. 

The variables V1 to V28 represent the principal components, 

while V29 and V30 are the residuals from the PCA 
transformation. The Amount variable is a numerical variable 

representing the transaction amount, and the Class variable is 

a binary variable representing whether the transaction is 

fraudulent or not (1 for fraud, 0 for not fraud). 

 

Table 1: Structure of Variables 

Variable Description 

V1 to V28 Numeric variables representing different aspects of the transaction such as amount, time, location, etc. 

Amount Numeric variable representing the amount of the transaction. 

Class Binary variable indicating whether the transaction was fraudulent (1) or not (0). 
 

 Checking Missing Data 

The following R snipet was used to extract all rows from 

the "credit_card" data frame that have missing values and 

looking at the output, we realize that the dataset has no 

missing values. 

 

credit_card[!complete.cases(credit_card),] 

[1] Time   V1     V2     V3     V4     V5     V6     V7     V8     V9     V10    V11    V12    V13    V14    V15    V16     

[18] V17    V18    V19   V20    V21    V22    V23    V24    V25    V26    V27    V28    Amount Class  
 

<0 rows> (or 0-length row.names) 
 

To confirm the absence of missing values in the dataset, 

the  missing values in a data frame were visualized using the 

"naniar" package in R and again, we realize that there are no 

missing values in the dataset as can be seen on the plot below. 
 

 
Fig. 1: Visualization of Missing Values in the dataset 

 

 Frequency Distribution of “Class” Variable 

The dataset is highly imbalanced, the positive class 
(frauds) accounts for just 0.1727486% of total transactions 

(that is 492 out of a total of 284807 transactions) which is not 

suitable for this project hence we will need to balance the data 
before proceeding with our Logistic regression.  

 

http://www.ijisrt.com/


Volume 8, Issue 9, September 2023                   International Journal of Innovative Science and Research Technology 

              ISSN No:-2456-2165 

 

IJISRT23SEP1533                                                                 www.ijisrt.com                                                                       1844   

 
Fig. 2: Frequency distribution of “Class” Variable 

 

Looking at Fig 3.below, , we realize that all the 

fraudulent transactions were made for less than around 2500, 

which is far less than that of the true transactions thereby 

confirming the imbalance nature of the dataset. 
 

 
Fig. 3: Amount Vs Class  Fraud chart 

 

 Checking Correlation Between the Variables 

Looking at Fig4. below, we realized that there is 
extremely very little or no correlation among the variables 

except for V2 which has some negative correlation with 

amount. We can nonetheless ignore it since it will not affect 
the outcome of our analysis in any significant way. 

 

 
Fig. 4: Correlation Between Variables 
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 Data Processing 

Data processing is an important step in machine learning 
because the quality of the data used to train a model can 

significantly impact the accuracy and performance of the 

resulting model. The following data processing steps were 

carried out: 
 

 Data Cleaning and Feature Selection:  

The raw data did not contain any missing values, hence, 

there was no need for any data imputation. The Time Variable 

was  irrelevant or unimportant to the outcome we are trying 

to predict and since it did not have a significant impact on the 

outcome, we took it out.  
 

 Data Normalization:  

Since the range and distribution of the data could impact 

the performance of our machine learning algorithms, we 

Normalized the data to ensure that the model is not biased 

towards any feature due to differences in scale especially 

because the data was highly unbalanced. This process was 

carried out after splitting the dataset into training and testing 

set. 
 

B. Modeling With Down-Sampling Technique 
 

 Data Partitioning With Down-Sampling Technique 

The dataset was split into training (190450 for Non-fraud 

Cases and  326 for Fraud Cases) and testing sets with a  ratio 

of  2:1. After splitting the dataset, we balanced the training 

data using the Down Sampling Technique. By downsampling 

the data, you are creating a new subset of the original training 

data where the positive class (i.e., the minority class) is 

represented more frequently relative to the negative class 
(i.e., the majority class). This can help address class 

imbalance issues that can arise in predictive modeling tasks, 

where one class is significantly more prevalent than the other. 

After balancing the training data (326 for Non-fraud Cases 

and  326 for Fraud Cases,  we could proceed to building  the 

regularized GLMs.   

 Model Fitting/Data Modeling 

According to Altman and Marco (1994) and Flitman 
(1997), an increasing number of statistical models have been 

applied to data mining tasks, including regression analysis, 

multiple discriminant analysis, logistic regression, Probit 

method, and others (Hanagandi, Dhar, & Buescher, 1996). In 

the context of the credit card dataset, Regulatizd GLMS 

(Ridge, Lasso and Elasticnet models) can be used to identify 

the features that are most relevant for detecting fraudulent 

transactions while also reducing the effects of 

multicollinearity. These models work by adding a penalty 

term to the ordinary least squares regression (OLS) objective 

function, which shrinks the regression coefficients towards 

zero. The Ridge regression adds the L2 norm of the 
coefficients as a penalty term, Lasso regression adds the L1 

norm of the coefficients as a penalty term, and Elasticnet 

regression adds a combination of L1 and L2 norm of the 

coefficients as a penalty term. By adding these penalty terms, 

these models can reduce the coefficients of some features to 

zero, effectively eliminating them from the model and thus 

addressing the issue of multicollinearity. 
 

We performed cross-validation on the  model using the 

cv.glmnet() function from the glmnet package. We then used 

the  coef(CV, CV$lambda.min) R snippet to retrieve the 

coefficient estimates for the Ridge model fit, with the optimal 

lambda value selected through cross-validation, allowing us 

to see which variables are most strongly associated with the 

response variable in the final model. Lastly, we then used the 

R code snippet coef(CV, CV$lambda.1se  ) to retrieve the 
coefficient estimates for the model fit with the lambda value 

selected through cross-validation that is one standard error 

away from the optimal lambda value, allowing us to see 

which variables are most strongly associated with the 

response variable in a more parsimonious model.  
 

 Ridge Regression Model Down-Sampling Technique 

The following Ridge model predictions were obtained. 

 

Top 6 

                     s0 

 2     0.1820028 

 4     0.1732274 
 5     0.1394861 

 8     0.1483054 

11    0.1540031 

13    0.1547350 

Bottom 6 

                         s0 

284789    0.1238469 

284793    0.1290248 

284797    0.2041513 

284802    0.1805562 

284803    0.1084127 

284804    0.1419076 
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 Ridge Regression Model Evaluation Down-Sampling 

Technique 
 Miscalculation Rate for Ridge Model for Down-

Sampling Technique 

The mean of the miscalculation rate is at 0.005966118. 

A miscalculation rate of 0.005966118 indicates that our 

model has 0. 5966118% incorrect predictions which means it 

has 99.4033882% correct predictions hence the model is 

predicting accurately. 

 Confidence Interval for The Area Under the 

Curve(AUC) for Ridge for Down-Sampling Technique 
The model has confidence 0.95 of predicting correctly 

with a confidence interval between 0.966 and 0.992. at an 

accuracy of 97.9%. 
 

 ROC Curve of the best fit Model for Ridge for Down-
Sampling Technique 

 

 
Fig. 5: ROC Curve of the best fit Model for Ridge (Down-Sampling Technique). 

 

The higher AUC -ROC, the better the performance of 

the model at distinguishing between positive and the negative 

classes so when the AUC is between o.5 and 1, that is, 

0.5<AUC<1,  then there is a high chance that then model can 

distinguish between the positive class values from the 

negative class values. Since our AUC value is 0.979, we have 

a 95% confidence Interval between 0.966 and 0.992 that our 

model can differentiate between is FTP(False Positive Rate) 

and the TPR(True Positive rate). 
 

 Recall and Precision Score for Ridge Model for Down-

Sampling Technique 

We obtained a precision of 0.994311 which means 

99.4311% of our prediction is relevant. We obtained a recall 

of the recall  of 0.9997108 shows that our model has accuracy 

of 99.9997108 in correctly classifying   the total relevant 

results. 
 

 Recall And Precision Curves for Ridge Model for 

Down-Sampling Technique 
 

 
Fig. 6: Recall And Precision Curves for Ridge Model (Down-Sampling Technique) 
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These curves give the shape we would expect. At 

thresholds with low recall, the precision is correspondingly 
high, and at very high recall, the precision begins to drop. 

Looking at the Precision-Recall Curve, we notice the curve 

gets precision up to about 81. 
 

 Elasticnet Regression Model for Down-Sampling 

Technique 
The following Elasticnet Model predictions were 

obtained. 

  Top 6       

 s0 

                   2          0.14 

                   4          0.09 

                   5          0.12 

                   8          0.12 

                  11         0.09 

                  13         0.10 

Bottom 6 

s0 

              284789         0.11 

              284793         0.07 

              284797         0.17 

              284802         0.13 

              284803         0.01 

              284804         0.09 

 

 Elasticnet Model Evaluation Down-Sampling Technique 
 

 Miscalculation Rate for Elasticnet Model for Down-

Sampling Technique 

The mean of the miscalculation rate is at 0.01261286. A 

miscalculation rate of 0.01261286 indicates that our model 

has 1.261286 % incorrect predictions which means it has 

98.738714% correct predictions hence the model is 
predicting accurately. 

 

 Confidence Interval for The Area Under the 

Curve(AUC) foElasticnet for Down-Sampling 

Technique 
The model has confidence 0.95 of predicting correctly 

with a confidence interval between 0.880 and 0.982 at an 

accuracy of 93.% . 
 

 ROC Curve of the best fit Model for Elasticnet  for 
Down-Sampling Technique 

 

 
Fig. 7: ROC Curve of the best fit Model for Elasticnet (Down-Sampling Technique) 

 

The higher AUC -ROC, the better the performance of 

the model at distinguishing between positive and the negative 

classes so when the AUC is between o.5 and 1, that is, 

0.5<AUC<1,  then there is a high chance that the model can 

distinguish between the positive class values from the 

negative class values. Since our AUC value is 0.931, we have 

a 95% accuracy and a confidence Interval between 0.88 and 
0.982 that our model can differentiate between is FTP(False 

Positive Rate) and the TPR(True Positive rate) 
 

 Recall and Precision Score for Elasticnet Model for 
Down-Sampling Technique 

We obtained a precision of 0.9875886 which means 

98.75886% of our prediction is relevant. We obtained a recall 

of  the recall  of 0.9997735 which shows that our model has 

accuracy of 99.97735% in correctly classifying   the total 

relevant results. 
 

 Recall and Precision Curves for Elasticnet Model for 

Down-Sampling Technique 
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Fig. 8: Recall and Precision Curves for Elasticnet Model (Down-Sampling Technique) 

 

These curves give the shape we would expect. At 

thresholds with low recall, the precision is correspondingly 

high though at a constant rate, and at very high recall, the 

precision begins to drop. Looking at the Precision-Recall 

Curve, we notice the curve gets precision up to about 78. 

 Lasso Regression for Down-Sampling Technique 

The following Elasticnet Model predictions were 

obtained. 

 

Top 6 

s0 

2  0.14 

4  0.11 

5  0.21 

8  0.19 

11 0.11 

13 0.12 

 Bottom 6 

                         s0 

      284789 0.15 

      284793 0.09 

      284797 0.20 

      284802 0.14 

      284803 0.01 

      284804 0.12 

 Lasso Model Evaluation for Down-Sampling Technique 
 

 Miscalculation Rate for Elasticnet Model for Down-

Sampling Technique 

The mean of the miscalculation rate is at 0.009273537. 

A miscalculation rate of 0.009273537 indicates that our 

model has 0.9273537% incorrect predictions which means it 

has 99.0726463% correct predictions hence the model is 

predicting accurately. 

 Confidence Interval for The Area Under the 

Curve(AUC) for Lasso for Down-Sampling Technique 

The model has confidence 0.95 of predicting correctly 

with a confidence interval between 0.880 and 0.982 at an 

accuracy of 93.1%. 
 

 ROC Curve of the best fit Model for Lasso for Down-

Sampling Technique

 

 
Fig. 9: ROC Curve of the best fit Model for Lasso (Down-Sampling Technique) 
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The higher AUC -ROC, the better the performance of 

the model at distinguishing between positive and the negative 
classes so when the AUC is between 0.5 and 1, that is, 

0.5<AUC<1,  then there is a high chance that the model can 

distinguish between the positive class values from the 

negative class values. Since our AUC value is 0.931, we have 

a 95% confidence Interval between 0.88 and 0.982 that our 

model can differentiate between is FTP(False Positive Rate) 

and the TPR(True Positive rate) 
 

 Recall and Precision Score for Lasso  Model for Down-

Sampling Technique 
We obtained a precision of 0.9909338 which means 

99.09338 % of our prediction is relevant. We obtained a recall 

of  the recall  of 0.9997743 which shows that our model has 

accuracy of 99.97743% in correctly classifying   the total 

relevant results. 
 

 Recall and Precision Curves for Lasso Model for Down-

Sampling Technique 
 

 
Fig. 10: Recall and Precision Curves for Lasso Model (Down-Sampling Technique) 

 

These curves give the shape we would expect. A 

threshold with low recall, the precision is correspondingly 

high though at a constant rate, and at very high recall, the 

precision begins to drop. Looking at the Precision-Recall 

Curve, we notice the curve gets precision up to about 88. 

C. Modelling with Up-Sample Technique 
 

 Ridge Regression 

The following Ridge Regression Model predictions were 
obtained. 

 

Top 6 

       s0 

2  0.15150102 

4  0.12316558 

5  0.11707270 

8  0.08736508 

11 0.12797648 

13 0.11691316 

Bottom 6 

         s0 

284789 0.09827895 

284793 0.09921419 

284797 0.17479334 

284802 0.15405885 

284803 0.06276707 

284804 0.10295522 

 Ridge Regression Model Evaluation for Up-Sample 

Technique 

 Miscalculation Rate for Ridge Model for Up-Sample 

Technique 
 

The mean of the miscalculation rate is at 0.006171316. 

A miscalculation rate of 0. 006171316 indicates that our 

model has 0. 6171316% incorrect predictions which means it 

has 99.3828684% correct predictions hence the model is 

predicting accurately. 

 Confidence Interval for The Area Under the 

Curve(AUC) for Ridge for Up-Sample Technique 

The model has confidence 0.95 of predicting correctly 

with a confidence interval between 97.00 and 99.40. at an 

accuracy of 98.2%. 
 

 ROC Curve of the best fit Model for Ridge for Up-

Sample Technique 
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Fig. 11: ROC Curve of the best fit Model for Ridge Model (Up-Sampling Technique) 

 

The higher AUC -ROC, the better the performance of 

the model at distinguishing between positive and the negative 

classes so when the AUC is between 0.5 and 1, that is, 

0.5<AUC<1,  then there is a high chance that then model can 

distinguish between the positive class values from the 

negative class values. Since our AUC value is 0.982, we have 

a 95% confidence Interval between 0.970 and 0.994 that our 

model can differentiate between is FTP(False Positive Rate) 
and the TPR(True Positive rate). 

 Recall and Precision Score for Ridge Model for Up-

Sample Technique 

We obtained a precision of 0.999732 which means 

99.9732% of our prediction is relevant. We obtained a recall 

of  the recall  of 0.993512 shows that our model has accuracy 

of 99.3512% in correctly classifying   the total relevant 

results. 

 

 
Fig. 12: Recall And Precision Curves for Ridge Model (Up-Sampling Technique) 

 

These curves give the shape we would expect. At 

thresholds with low recall, the precision is correspondingly 

high though at a constant rate, and at very high recall, the 

precision begins to drop. Looking at the Precision-Recall 

Curve, we notice the curve gets precision up to about 83. 
 

 Elasticnet Regression Model for Up-Sampling 

Technique 

The following Elasticnet Regression Model predictions 

were obtained. 

 

   Top 6 

  s0 

2  0.03 

4  0.01 

5  0.05 

8  0.06 

11 0.02 

13 0.01 

       Bottom 6 

  s0 

284789 0.02 

284793 0.02 

284797 0.09 

284802 0.05 

284803 0.00 

284804 0.03 
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 Miscalculation Rate for Elasticnet Model for Up-

Sampling Technique 
The mean of the miscalculation rate is at 0.02283435. A 

miscalculation rate of 0.02283435 indicates that our model 

has 2.283435% incorrect predictions which means it has 

97.716565% correct predictions hence the model is 

predicting accurately. 
 

 Confidence Interval for The Area Under the 

Curve(AUC) for Elasticnet Model for Up-Sampling 
Technique 

The model has confidence 0.95 of predicting correctly 

with a confidence interval between 0.8958664 and 0.9853755  

at an accuracy of  94.0621%.   
 

 ROC Curve of the best fit Model for Elasticnet for Up-

Sampling Technique 
 

 
Fig.13: ROC Curve of the best fit Model for Elasticnet (Up-Sampling Technique) 

 

The higher AUC -ROC, the better the performance of 

the model at distinguishing between positive and the negative 

classes so when the AUC is between 0.5 and 1, that is, 

0.5<AUC<1,  then there is a high chance that the model can 
distinguish between the positive class values from the 

negative class values. Since our AUC value is 0.941, we have 

a 95% accuracy and a confidence Interval between 0.896 and 

0.985 that our model can differentiate between is FTP(False 

Positive Rate) and the TPR(True Positive rate)  
 

 Recall and Precision Score for Elasticnet Model for Up-

Sapling Technique 

We obtained a precision of 0.9998257 which means 

99.98257% of our prediction is relevant. We obtained a recall 
of  0.9776274 which shows that our model has accuracy of 

97.76274 in correctly classifying   the total relevant results. 
 

 Recall and Precision Curves for Elasticnet Model for Up-
Sapling Technique 

 

 
Fig.14: Recall and Precision Curves for Elasticnet Model (Up-Sampling Technique) 
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Just like the other curves, these curves give the shape 

we would expect. At thresholds with low recall, the precision 
is correspondingly high though at a constant rate, and at very 

high recall, the precision begins to drop. Looking at the 

Precision-Recall Curve, we notice the curve gets precision up 

to about 83. 
 

 Lasso Regression for Up-Sampling Technique 

The following Lasso Model predictions were obtained. 
 

Top 6 

     s0 

2  0.02 

4  0.01 

5  0.05 

8  0.06 

11 0.01 

13 0.01 

 Bottom 6 

s0 

284789 0.02 

284793 0.02 

284797 0.09 

284802 0.05 

284803 0.00 

284804 0.03 
 

 Lasso Model Evaluation for Up-Sampling Technique 
 

 Miscalculation Rate for Elasticnet Model for Up-

Sampling Technique 

The mean of the miscalculation rate is at 0.009273537. 

A miscalculation rate of 0.009273537 indicates that our 

model has 0.9273537% incorrect predictions which means it 

has 99.0726463% correct predictions hence the model is 

predicting accurately. 

 Confidence Interval for The Area Under the 

Curve(AUC) for Lasso for Up-Sampling Technique 

The model has confidence 0.95 of predicting correctly 

with a confidence interval between 0.880 and 0.982 at an 

accuracy of 93.1%. 
 

 ROC Curve of the best fit Model for Lasso for Up-

Sampling Technique 

 

 
Fig. 15: ROC Curve of the best fit Model for Lasso (Up-Sampling Technique) 

 

The higher AUC -ROC, the better the performance of 

the model at distinguishing between positive and the negative 

classes so when the AUC is between 0.5 and 1, that is, 

0.5<AUC<1,  then there is a high chance that the model can 

distinguish between the positive class values from the 
negative class values. Since our AUC value is 0.931, we have 

a 95% confidence Interval between 0.88 and 0.982 that our 

model can differentiate between is FTP(False Positive Rate) 

and the TPR(True Positive rate) 
 

 Recall and Precision Score for Lasso  Model for Up-

Sampling Technique 

We obtained a precision of 0.9909338 which means 

99.09338 % of our prediction is relevant. We obtained a recall 

of  the recall  of 0.9997743 which shows that our model has 
accuracy of 99.97743% in correctly classifying   the total 

relevant results. 
 

 Recall and Precision Curves for Lasso Model for Up-
Sampling Technique 
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Fig. 16: Recall and Precision Curves for Lasso Model (Up-Sampling Technique) 

 

These curves give the shape we would expect. A 
threshold with low recall, the precision is correspondingly 

high though at a constant rate, and at very high recall, the 

precision begins to drop. Looking at the Precision-Recall 

Curve, we notice the curve gets precision up to about 88. 
 

V. CONCLUSION 
 

From the outputs obtained from modeling while using 

the Down-Sampling Technique of the Ride Regression, 
Elasticnet Regression and Lasso Regression, we realize that 

all the three models are accurate in credit card fraud 

transaction detection. Amongst the three models, we notice 

that Ridge Regression is the best with an accuracy of 98%, a 

confidence interval between 97% and 99%, with 95% 

confidence. Lasso Regression is the next best model with an 

accuracy of 93.2%, a confidence interval between 88% and 

98%, with 95% confidence, just slightly above Elasticnet 

which comes third with an accuracy of 93.1%, a confidence 

interval between 87% and 98%, with 95% confidence. 

Nonetheless  we will say Lasso and Elasticnet both have 

equal accuracy while Ridge is the best.  
 

When we look at the outputs obtained from modeling 

while using the Up-Sampling Technique of the Ride 

Regression, Elasticnet Regression and Lasso Regression, we 
also realize that all the three models are accurate in credit card 

fraud transaction detection though with very slight 

differences  where we notice that Ridge Regression is still the 

best with an accuracy of 98.2%, a confidence interval 

between  97.00 and 99.40 with a 95% confidence.   Elasticnet 

Regression is the next best with an accuracy of 94.0621%, a 

confidence interval between 0.8958664 and 0.9853755  with 

a 95% confidence unlike Lasso which was the next best in the 

Down-Sampling Technique. Lasso Regression is the third 

best with an accuracy of 93.1%, a confidence interval 

between 0.880 and 0.982 with a 0.95 confidence in 

predicting,  unlike Elasticnet which was the third in the 
Down-Sampling Technique. 

 

RECOMMENDATION 
 

We  recommend that the final models are deployed to 

make predictions on new data and their performance being 

monitored regularly.  
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APPENDIX 
 

R-CODES USED FOR THE PROJECT 

 

setwd("C:/Users/nebcy/Documents/Apsu/Apsu/Data Set STAT5140") 

credit_card1 = read.csv("creditcard.CSV") 

credit_card<-credit_card1 
dim(credit_card) 

head(credit_card) 

 

# Basic Data Exploration 

 

install.packages(c('ROCR','ggplot2','corrplot','caTools','class', 

                   'randomForest','pROC','imbalance')) 

library(ROCR) 

library(ggplot2) 

library(corrplot) 

library(caTools) 
library(class) 

library(randomForest) 

library(pROC) 

library(imbalance) 

library(rpart) 

 

#Basic Exploratory Data Analysis 

#Viewing some initial observations of the dataset 

 

#Summary of the dataset 

summary(credit_card) 

 
#Viewing Structure of the dataset 

str(credit_card) 

 

 

sapply(credit_card, FUN=class) 

 

#Checking for missing values 

credit_card[!complete.cases(credit_card),] 

 

#Missing values by visualization  

install.packages("naniar") 
library(naniar) 

vis_miss(credit_card, 'warn_large_data' = FALSE) 

gg_miss_var(credit_card) 

 

 

#Viewing the Frequency distribution of "Class" Variable 

table(credit_card$Class) 

 

prop.table(table(credit_card$Class)) 

 

ggplot(data = credit_card,aes(x=Class))+geom_bar(col="red")  

 
#Plotting the Amount - Fraud chart 

ggplot(data = credit_card,aes(y=Amount,x=Class))+geom_point(col="slateblue3") + facet_grid(~Class) 

 

#Checking correlation between the variables 

install.packages("corpcor") 

library(corpcor) 

head(cor2pcor(cov(credit_card))) 

 

library(corrplot) 
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credit_card$Class <- as.numeric(credit_card$Class) 

corr <- cor(credit_card[],method="pearson") 
corrplot(corr,method = "circle", type = "lower") 

 

#Taking out Time Column. 

#Since the Time Variab,e is not important for this project, we take it out 

credit_card<-credit_card1[,-1] 

head(credit_card) 

 

######################### Data partition ################## 

set.seed(123)  #maintains consistency of data and makes data set not to randomly change when running it multiple times 

n <- nrow(credit_card) 

split_data <- sample(x=1:2, size = n, replace=TRUE, prob=c(0.67, 0.33)) #x=1 =training data, x=2 = testing data 

train <- credit_card[split_data == 1, ] 
test <- credit_card[split_data == 2, ] 

y.train <- train$Class 

yobs <- test$Class 

 

##################### Balancing data through upsampling 

# Load the necessary libraries 

install.packages("caret") 

library(caret) 

 

# Check the class distribution before upsampling 

table(train$Class) 
 

 

# Check the class of the 'Class' variable 

class(train$Class) 

 

# Convert 'Class' to a factor variable if it's not already 

train$Class <- as.factor(train$Class) 

 

# Verify that 'Class' is now a factor 

class(train$Class) 

 

set.seed(90)  # for reproducibility 
down_train_data <- downSample(x = train[, -30], y = train$Class) 

 

# Check the class distribution after upsampling 

table(down_train_data$Class) 

 

 

# Upsample the minority class 

set.seed(90)  # for reproducibility 

down_train_data <- downSample(x = train[, -30], y = train$Class) 

 

# Check the class distribution after upsampling 
table(down_train_data$Class) 

 

 

#Building A logistic model  

install.packages("glmnet") 

library(glmnet) #Elastic net 

formula0 <- factor(Class)~. #This teslls us num is a categorical variable and this will bring out just 1 and 0 

X <- model.matrix (as.formula(formula0), data = down_train_data)[, -1] # trim off the first column and leaving only the predictors 

 

#RIDGE REGRESSION 

#Using cross validation to determine the optimal tuning parameter. To chose the best lambda 
CV <- cv.glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 0, # CROSS VALIDATION METHOD 
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                nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda 

for us. 
 

plot(CV) 

coef(CV, CV$lambda.min) 

coef(CV, CV$lambda.1se)     

 

b.lambda <- CV$lambda.1se #we can use 1se or min      THIS GIVES US THE BEST LAMBDA 

b.lambda   

 

fit.best <- glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 0,           #BEST FIT WILL NOT HAVE ANY 

DATA DISAPPEARING BECAUSE WE USED RIDGE i.E. LAMBDA = 0 

                   lambda=b.lambda) 

(fit.best$beta) 
 

# Prediction 

X.test <- model.matrix (as.formula(formula0), data = test)[, -1] 

pred <- predict(fit.best, newx = X.test, type="response") #type = "response" means y is continues  

head(pred) 

tail(pred) 

dim(pred) 

 

##### Finding missclassification rate #making a threshhold 

pred1 <- ifelse(pred>0.5, 1, 0)  #if it is bigger than 50%, we say yes 

pred1 
 

(miss.rate <- mean(yobs != pred1)) 

 

pred<-pred[, 1] #gives only the index (1, 0) and not the column  

 

pred1<-pred1[,1] 

 

#Plotting ROC curve of the fit.best model. 

install.packages("cvAUC") 

library(cvAUC) 

AUC <- ci.cvAUC(predictions = pred, labels = yobs, folds=1:NROW(test), confidence = 0.95) 

AUC 
(auc.ci <- round(AUC$ci, digits = 3)) 

 

install.packages("verification") 

library(verification) 

mod.glm <- verify(obs = yobs, pred = pred) 

roc.plot(mod.glm, plot.thres=NULL) 

text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC$cvAUC, digits = 3), "with 95% CI (", 

                         auc.ci[1], ",", auc.ci[2], ").", sep = " "), col="blue", cex =1.2) 

 

#confusion matrix  (we dont need it in this case because the data in imbalance) 

#library(caret) 
#library(e1071) 

#confusionMatrix( as.factor(pred1),as.factor(yobs),positive = "1") 

 

#RECALL AND PRECISION SCORE, WE CAN USE THIS     

#precision(as.factor(yobs),as.factor(pred1))             

#recall(as.factor(yobs), as.factor(pred1)) 

# Assuming yobs and pred1 are binary (0/1) vectors or factors 

library(caret) 

 

# Calculate precision 

precision_score <- posPredValue(as.factor(pred1), as.factor(yobs)) 
 

# Calculate recall 
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recall_score <- sensitivity(as.factor(pred1), as.factor(yobs)) 

 
# Print the precision and recall scores 

cat("Precision Score:", precision_score, "\n") 

cat("Recall Score:", recall_score, "\n") 

 

 

#RECALL AND PRECISION CURVES 

install.packages("precrec") 

library(precrec) 

precrec_ridge <- evalmod(scores = pred, labels = yobs) 

precrec_ridge  

autoplot(precrec_ridge) 

 
################################# 

 

#ELASTICNET REGRESSION 

#Using cross validation to determine the optimal tuning parameter. To chose the best lambda 

CV2 <- cv.glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 0.5, # CROSS VALIDATION METHOD 

                 nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda 

for us. 

 

plot(CV2) 

coef(CV2, CV2$lambda.min) 

coef(CV2, CV2$lambda.1se)     
 

b.lambda2 <- CV2$lambda.1se #we can use 1se or min      THIS GIVES US THE BEST LAMBDA 

b.lambda2   

 

fit.best2 <- glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 0.5,           #BEST FIT WILL SHOW SOME DATA 

DISAPPEARING BECAUSE WE USED LASSO i.E. LAMBDA = 1 

                    lambda=b.lambda2) 

(fit.best2$beta) 

 

# Prediction 

X.test <- model.matrix (as.formula(formula0), data = test)[, -1] 

pred_elasticnet <- predict(fit.best2, newx = X.test, type="response") #type = "response" means y is continues  
(head(pred_elasticnet <- round(pred_elasticnet, digits = 2))) 

(tail(pred_elasticnet <- round(pred_elasticnet, digits = 2))) 

 

dim(pred_elasticnet) 

 

##### Finding missclassification rate #making a threshhold 

pred1_elasticnet <- ifelse(pred_elasticnet>0.5, 1, 0)  #if it is bigger than 50%, we say yes 

pred1_elasticnet 

 

(miss.rate <- mean(yobs != pred1_elasticnet)) 

 
pred_elasticnet<-pred_elasticnet[, 1] #gives only the index (1, 0) and not the column  

 

pred1_elasticnet<-pred1_elasticnet[,1] 

 

#Plotting ROC curve of the fit.best model. 

library(cvAUC) 

AUC2 <- ci.cvAUC(predictions = pred1_elasticnet, labels = yobs, folds=1:NROW(test), confidence = 0.95) 

AUC2 

(auc.ci_elasticnet <- round(AUC2$ci, digits = 3)) 

 

library(verification) 
mod.glm_elasticnet <- verify(obs = yobs, pred = pred_elasticnet) 

roc.plot(mod.glm_elasticnet, plot.thres=NULL) 
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text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC2$cvAUC, digits = 3), "with 95% CI (", 

                         auc.ci_elasticnet[1], ",", auc.ci_elasticnet[2], ").", sep = " "), col="blue", cex =1.2) 
 

#confusion matrix  (we dont need it in this case because the data in imbalance) 

#library(caret) 

#library(e1071) 

#confusionMatrix( as.factor(pred1),as.factor(yobs),positive = "1") 

 

#FOR RECALL AND PRECISION SCORE, WE CAN USE THIS    ....Since our data is imbalance, we use RECALL AND 

PRECISION SCORE to see if it can predict the minority class since it will definitely predict the majority class since it 

has enough data on which to learn so with our output off 0.9917754, we can conclude that the model is prdicting well.  

#precision(as.factor(yobs),as.factor(pred1_elasticnet))             

#recall(as.factor(yobs), as.factor(pred1_elasticnet)) 

 
################ 

#RECALL AND PRECISION SCORE, WE CAN USE THIS     

#precision(as.factor(yobs),as.factor(pred1_elasticnet))             

#recall(as.factor(yobs), as.factor(pred1_elasticnet)) 

# Assuming yobs and pred1_elasticnet are binary (0/1) vectors or factors 

library(caret) 

 

# Calculate precision 

precision_score <- posPredValue(as.factor(pred1_elasticnet), as.factor(yobs)) 

 

# Calculate recall 
recall_score <- sensitivity(as.factor(pred1_elasticnet), as.factor(yobs)) 

 

# Print the precision and recall scores 

cat("Precision Score:", precision_score, "\n") 

cat("Recall Score:", recall_score, "\n") 

 

#RECALL AND PRECISION CURVES 

#install.packages("precrec") 

library(precrec) 

precrec_elasticnet <- evalmod(scores = pred_elasticnet, labels = yobs) 

precrec_elasticnet 

autoplot(precrec_elasticnet) 
 

############################################ 

#LASSO REGRESSION 

#Using cross validation to determine the optimal tuning parameter. To chose the best lambda 

CV1 <- cv.glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 1, # CROSS VALIDATION METHOD 

                 nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda 

for us. 

 

plot(CV1) 

coef(CV1, CV1$lambda.min) 

coef(CV1, CV1$lambda.1se)     
 

b.lambda1 <- CV1$lambda.1se #we can use 1se or min      THIS GIVES US THE BEST LAMBDA 

b.lambda1   

 

fit.best1 <- glmnet(x=X, y=down_train_data$Class, family="binomial", alpha = 1,           #BEST FIT WILL SHOW SOME DATA 

DISAPPEARING BECAUSE WE USED LASSO i.E. LAMBDA = 1 

                    lambda=b.lambda1) 

(fit.best1$beta) 

 

# Prediction 

X.test <- model.matrix (as.formula(formula0), data = test)[, -1] 
pred_lasso <- predict(fit.best1, newx = X.test, type="response") #type = "response" means y is continues  

(head(pred_lasso <- round(pred_lasso, digits = 2))) 
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(tail(pred_lasso <- round(pred_lasso, digits = 2))) 

 
dim(pred_lasso) 

 

##### Finding missclassification rate #making a threshhold 

pred1_lasso <- ifelse(pred_lasso>0.5, 1, 0)  #if it is bigger than 50%, we say yes 

 

(miss.rate <- mean(yobs != pred1_lasso)) 

 

pred_lasso<-pred_lasso[,1] #gives only the index (1, 0) and not the column  

 

pred1_lasso<-pred1_lasso[,1] 

 

#Plotting ROC curve of the fit.best model. 
library(cvAUC) 

AUC1 <- ci.cvAUC(predictions = pred1_lasso, labels = yobs, folds=1:NROW(test), confidence = 0.95) 

AUC1 

(auc.ci_lasso <- round(AUC1$ci, digits = 3)) 

 

library(verification) 

mod.glm_lasso <- verify(obs = yobs, pred = pred_lasso) 

roc.plot(mod.glm_lasso, plot.thres=NULL) 

text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC1$cvAUC, digits = 3), "with 95% CI (", 

                         auc.ci_lasso[1], ",", auc.ci_lasso[2], ").", sep = " "), col="purple", cex =1.2) 

 
#confusion matrix  (we dont need it in this case because the data in imbalance) 

#library(caret) 

#library(e1071) 

#confusionMatrix( as.factor(pred1),as.factor(yobs),positive = "1") 

 

#FOR RECALL AND PRECISION SCORE, WE CAN USE THIS     

#precision(as.factor(yobs),as.factor(pred1_lasso))             

#recall(as.factor(yobs), as.factor(pred1_lasso)) 

 

#RECALL AND PRECISION CURVES 

#install.packages("precrec") 

library(precrec) 
precrec_lasso <- evalmod(scores = pred_lasso, labels = yobs) 

precrec_lasso 

autoplot(precrec_lasso) 

 

############## 

# Calculate precision 

precision_score <- posPredValue(as.factor(pred1_lasso), as.factor(yobs)) 

 

# Calculate recall 

recall_score <- sensitivity(as.factor(pred1_lasso), as.factor(yobs)) 

 
# Print the precision and recall scores 

cat("Precision Score:", precision_score, "\n") 

cat("Recall Score:", recall_score, "\n") 

 

 

#RECALL AND PRECISION CURVES 

#install.packages("precrec") 

library(precrec) 

precrec_lasso <- evalmod(scores = pred1_lasso, labels = yobs) 

precrec_lasso 

autoplot(precrec_lasso) 
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# Clear the console 

cat("\014") 
 

# Restart R 

q(save = "no") 

 

setwd("C:/Users/nebcy/Documents/Apsu/Apsu/Data Set STAT5140") 

credit_card1 = read.csv("creditcard.CSV") 

credit_card<-credit_card1 

dim(credit_card) 

head(credit_card) 

 

# Basic Data Exploration 

 
install.packages(c('ROCR','ggplot2','corrplot','caTools','class', 

                   'randomForest','pROC','imbalance')) 

library(ROCR) 

library(ggplot2) 

library(corrplot) 

library(caTools) 

library(class) 

library(randomForest) 

library(pROC) 

library(imbalance) 

library(rpart) 
 

#Basic Exploratory Data Analysis 

#Viewing some initial observations of the dataset 

 

#Summary of the dataset 

summary(credit_card) 

 

#Viewing Structure of the dataset 

str(credit_card) 

 

sapply(credit_card, FUN=class) 

 
#Checking for missing values 

credit_card[!complete.cases(credit_card),] 

 

#Missing values by visualization  

install.packages("naniar") 

library(naniar) 

vis_miss(credit_card, 'warn_large_data' = FALSE) 

gg_miss_var(credit_card) 

 

 

#Viewing the Frequency distribution of "Class" Variable 
table(credit_card$Class) 

 

prop.table(table(credit_card$Class)) 

 

ggplot(data = credit_card,aes(x=Class))+geom_bar(col="red")  

 

#Plotting the Amount - Fraud chart 

ggplot(data = credit_card,aes(y=Amount,x=Class))+geom_point(col="slateblue3") + facet_grid(~Class) 

 

#Checking correlation between the variables 

install.packages("corpcor") 
library(corpcor) 

head(cor2pcor(cov(credit_card))) 
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library(corrplot) 
credit_card$Class <- as.numeric(credit_card$Class) 

corr <- cor(credit_card[],method="pearson") 

corrplot(corr,method = "circle", type = "lower") 

 

#Taking out Time Column. 

#Since the Time Variab,e is not important for this project, we take it out 

credit_card<-credit_card1[,-1] 

head(credit_card) 

 

######################### Data partition ################## 

set.seed(123)  #maintains consistency of data and makes data set not to randomly change when running it multiple times 

n <- nrow(credit_card) 
split_data <- sample(x=1:2, size = n, replace=TRUE, prob=c(0.67, 0.33)) #x=1 =training data, x=2 = testing data 

train <- credit_card[split_data == 1, ] 

test <- credit_card[split_data == 2, ] 

y.train <- train$Class 

yobs <- test$Class 

 

##################### Balancing data through upsampling 

# Load the necessary libraries 

install.packages("caret") 

library(caret) 

 
# Check the class distribution before upsampling 

table(train$Class) 

 

 

# Check the class of the 'Class' variable 

class(train$Class) 

 

# Convert 'Class' to a factor variable if it's not already 

train$Class <- as.factor(train$Class) 

 

# Verify that 'Class' is now a factor 

class(train$Class) 
 

set.seed(90)  # for reproducibility 

up_train_data <- upSample(x = train[, -30], y = train$Class) 

 

# Check the class distribution after upsampling 

table(up_train_data$Class) 

 

 

# Upsample the minority class 

set.seed(90)  # for reproducibility 

up_train_data <- upSample(x = train[, -30], y = train$Class) 
 

# Check the class distribution after upsampling 

table(up_train_data$Class) 

 

#Building A logistic model  

install.packages("glmnet") 

library(glmnet) #Elastic net 

formula0 <- factor(Class)~. #This teslls us num is a categorical variable and this will bring out just 1 and 0 

X <- model.matrix (as.formula(formula0), data = up_train_data)[, -1] # trim off the first column and leaving only the predictors 

 

#RIDGE REGRESSION 
#Using cross validation to determine the optimal tuning parameter. To chose the best lambda 

CV <- cv.glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 0, # CROSS VALIDATION METHOD 
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                nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda 

for us. 
 

plot(CV) 

coef(CV, CV$lambda.min) 

coef(CV, CV$lambda.1se)     

 

b.lambda <- CV$lambda.1se #we can use 1se or min      THIS GIVES US THE BEST LAMBDA 

b.lambda   

 

fit.best <- glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 0,           #BEST FIT WILL NOT HAVE ANY DATA 

DISAPPEARING BECAUSE WE USED RIDGE i.E. LAMBDA = 0 

                   lambda=b.lambda) 

(fit.best$beta) 
 

# Prediction 

X.test <- model.matrix (as.formula(formula0), data = test)[, -1] 

pred <- predict(fit.best, newx = X.test, type="response") #type = "response" means y is continues  

head(pred) 

tail(pred) 

dim(pred) 

 

##### Finding missclassification rate #making a threshhold 

pred1 <- ifelse(pred>0.5, 1, 0)  #if it is bigger than 50%, we say yes 

pred1 
 

(miss.rate <- mean(yobs != pred1)) 

 

pred<-pred[, 1] #gives only the index (1, 0) and not the column  

 

pred1<-pred1[,1] 

 

#Plotting ROC curve of the fit.best model. 

install.packages("cvAUC") 

library(cvAUC) 

AUC <- ci.cvAUC(predictions = pred, labels = yobs, folds=1:NROW(test), confidence = 0.95) 

AUC 
(auc.ci <- round(AUC$ci, digits = 3)) 

 

install.packages("verification") 

library(verification) 

mod.glm <- verify(obs = yobs, pred = pred) 

roc.plot(mod.glm, plot.thres=NULL) 

text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC$cvAUC, digits = 3), "with 95% CI (", 

                         auc.ci[1], ",", auc.ci[2], ").", sep = " "), col="blue", cex =1.2) 

 

#confusion matrix  (we dont need it in this case because the data in imbalance) 

#library(caret) 
#library(e1071) 

#confusionMatrix( as.factor(pred1),as.factor(yobs),positive = "1") 

 

#RECALL AND PRECISION SCORE, WE CAN USE THIS     

#precision(as.factor(yobs),as.factor(pred1))             

#recall(as.factor(yobs), as.factor(pred1)) 

# Assuming yobs and pred1 are binary (0/1) vectors or factors 

library(caret) 

 

# Calculate precision 

precision_score <- posPredValue(as.factor(pred1), as.factor(yobs)) 
 

# Calculate recall 
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recall_score <- sensitivity(as.factor(pred1), as.factor(yobs)) 

 
# Print the precision and recall scores 

cat("Precision Score:", precision_score, "\n") 

cat("Recall Score:", recall_score, "\n") 

 

 

#RECALL AND PRECISION CURVES 

install.packages("precrec") 

library(precrec) 

precrec_ridge <- evalmod(scores = pred, labels = yobs) 

precrec_ridge  

autoplot(precrec_ridge) 

 
################################# 

 

#ELASTICNET REGRESSION 

#Using cross validation to determine the optimal tuning parameter. To chose the best lambda 

CV2 <- cv.glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 0.5, # CROSS VALIDATION METHOD 

                 nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda 

for us. 

 

plot(CV2) 

coef(CV2, CV2$lambda.min) 

coef(CV2, CV2$lambda.1se)     
 

b.lambda2 <- CV2$lambda.1se #we can use 1se or min      THIS GIVES US THE BEST LAMBDA 

b.lambda2   

 

fit.best2 <- glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 0.5,           #BEST FIT WILL SHOW SOME DATA 

DISAPPEARING BECAUSE WE USED LASSO i.E. LAMBDA = 1 

                    lambda=b.lambda2) 

(fit.best2$beta) 

 

# Prediction 

X.test <- model.matrix (as.formula(formula0), data = test)[, -1] 

pred_elasticnet <- predict(fit.best2, newx = X.test, type="response") #type = "response" means y is continues  
(head(pred_elasticnet <- round(pred_elasticnet, digits = 2))) 

(tail(pred_elasticnet <- round(pred_elasticnet, digits = 2))) 

 

dim(pred_elasticnet) 

 

##### Finding missclassification rate #making a threshhold 

pred1_elasticnet <- ifelse(pred_elasticnet>0.5, 1, 0)  #if it is bigger than 50%, we say yes 

pred1_elasticnet 

 

(miss.rate <- mean(yobs != pred1_elasticnet)) 

 
pred_elasticnet<-pred_elasticnet[, 1] #gives only the index (1, 0) and not the column  

 

pred1_elasticnet<-pred1_elasticnet[,1] 

 

#Plotting ROC curve of the fit.best model. 

library(cvAUC) 

AUC2 <- ci.cvAUC(predictions = pred1_elasticnet, labels = yobs, folds=1:NROW(test), confidence = 0.95) 

AUC2 

(auc.ci_elasticnet <- round(AUC2$ci, digits = 3)) 

 

library(verification) 
mod.glm_elasticnet <- verify(obs = yobs, pred = pred_elasticnet) 

roc.plot(mod.glm_elasticnet, plot.thres=NULL) 
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text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC2$cvAUC, digits = 3), "with 95% CI (", 

                         auc.ci_elasticnet[1], ",", auc.ci_elasticnet[2], ").", sep = " "), col="blue", cex =1.2) 
 

#confusion matrix  (we dont need it in this case because the data in imbalance) 

#library(caret) 

#library(e1071) 

#confusionMatrix( as.factor(pred1),as.factor(yobs),positive = "1") 

 

#FOR RECALL AND PRECISION SCORE, WE CAN USE THIS     

#precision(as.factor(yobs),as.factor(pred1_elasticnet))             

#recall(as.factor(yobs), as.factor(pred1_elasticnet)) 

 

################ 

#RECALL AND PRECISION SCORE, WE CAN USE THIS     
#precision(as.factor(yobs),as.factor(pred1_elasticnet))             

#recall(as.factor(yobs), as.factor(pred1_elasticnet)) 

# Assuming yobs and pred1_elasticnet are binary (0/1) vectors or factors 

library(caret) 

 

# Calculate precision 

precision_score <- posPredValue(as.factor(pred1_elasticnet), as.factor(yobs)) 

 

# Calculate recall 

recall_score <- sensitivity(as.factor(pred1_elasticnet), as.factor(yobs)) 

 
# Print the precision and recall scores 

cat("Precision Score:", precision_score, "\n") 

cat("Recall Score:", recall_score, "\n") 

 

 

#RECALL AND PRECISION CURVES 

#install.packages("precrec") 

library(precrec) 

precrec_elasticnet <- evalmod(scores = pred_elasticnet, labels = yobs) 

precrec_elasticnet 

autoplot(precrec_elasticnet) 

 
############################################ 

#LASSO REGRESSION 

#Using cross validation to determine the optimal tuning parameter. To chose the best lambda 

CV1 <- cv.glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 1, # CROSS VALIDATION METHOD 

                 nlambda = 200)#we can take out part of the fucntion from standardize =T till maxit=100 so as to let R choose best lamda 

for us. 

 

plot(CV1) 

coef(CV1, CV1$lambda.min) 

coef(CV1, CV1$lambda.1se)     

 
b.lambda1 <- CV1$lambda.1se #we can use 1se or min      THIS GIVES US THE BEST LAMBDA 

b.lambda1   

 

fit.best1 <- glmnet(x=X, y=up_train_data$Class, family="binomial", alpha = 1,           #BEST FIT WILL SHOW SOME DATA 

DISAPPEARING BECAUSE WE USED LASSO i.E. LAMBDA = 1 

                    lambda=b.lambda1) 

(fit.best1$beta) 

 

# Prediction 

X.test <- model.matrix (as.formula(formula0), data = test)[, -1] 

pred_lasso <- predict(fit.best1, newx = X.test, type="response") #type = "response" means y is continues  
(head(pred_lasso <- round(pred_lasso, digits = 2))) 

(tail(pred_lasso <- round(pred_lasso, digits = 2))) 
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dim(pred_lasso) 
 

##### Finding missclassification rate #making a threshhold 

pred1_lasso <- ifelse(pred_lasso>0.5, 1, 0)  #if it is bigger than 50%, we say yes 

 

(miss.rate <- mean(yobs != pred1_lasso)) 

 

pred_lasso<-pred_lasso[,1] #gives only the index (1, 0) and not the column  

 

pred1_lasso<-pred1_lasso[,1] 

 

#Plotting ROC curve of the fit.best model. 

library(cvAUC) 
AUC1 <- ci.cvAUC(predictions = pred1_lasso, labels = yobs, folds=1:NROW(test), confidence = 0.95) 

AUC1 

(auc.ci_lasso <- round(AUC1$ci, digits = 3)) 

 

library(verification) 

mod.glm_lasso <- verify(obs = yobs, pred = pred_lasso) 

roc.plot(mod.glm_lasso, plot.thres=NULL) 

text(x=0.7, y=0.2, paste("Area under ROC = ", round(AUC1$cvAUC, digits = 3), "with 95% CI (", 

                         auc.ci_lasso[1], ",", auc.ci_lasso[2], ").", sep = " "), col="purple", cex =1.2) 

 

#confusion matrix  (we dont need it in this case because the data in imbalance) 
#library(caret) 

#library(e1071) 

#confusionMatrix( as.factor(pred1),as.factor(yobs),positive = "1") 

 

#FOR RECALL AND PRECISION SCORE, WE CAN USE THIS     

#precision(as.factor(yobs),as.factor(pred1_lasso))             

#recall(as.factor(yobs), as.factor(pred1_lasso)) 

 

#RECALL AND PRECISION CURVES 

#install.packages("precrec") 

library(precrec) 

precrec_lasso <- evalmod(scores = pred_lasso, labels = yobs) 
precrec_lasso 

autoplot(precrec_lasso) 

 

############## 

 

# Calculate precision 

precision_score <- posPredValue(as.factor(pred1_lasso), as.factor(yobs)) 

 

# Calculate recall 

recall_score <- sensitivity(as.factor(pred1_lasso), as.factor(yobs)) 

 
# Print the precision and recall scores 

cat("Precision Score:", precision_score, "\n") 

cat("Recall Score:", recall_score, "\n") 

 

#RECALL AND PRECISION CURVES 

#install.packages("precrec") 

library(precrec) 

precrec_lasso <- evalmod(scores = pred1_lasso, labels = yobs) 

precrec_lasso 

autoplot(precrec_lasso) 

 

http://www.ijisrt.com/

