
Volume 8, Issue 9, September – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT23SEP1815                                                              www.ijisrt.com                 2195 

Comprehension of Software Testing and Impacts of 

Automation Testing 
 

 
1Priyanka Prakash Sawant 

University of Mumbai  

Institute of Distance & Open Learning 

(IDOL), Mumbai, India 

 

2Ritu Bisht  

University of Mumbai  

Institute of Distance & Open Learning 

(IDOL), Mumbai, India 

 

3Neha Mahesh Raut  

Assistant Professor (AI&DS) 

Vidyavardhini's  

College of Engineering and Technology 

 

Abstract:- In order to find and fix errors and assure the 

quality and dependability of software applications, 

software testing is a critical step in the software 

development lifecycle. It entails comparing the 

functionality, efficiency, security, and usability of a 

software product to predetermined standards and 

guidelines. Software testing's main objective is to find 

and fix defects, guaranteeing that the finished product is 

free of serious flaws and satisfies user expectations. The 

essential principles, approaches, and goals of software 

testing are covered in this abstract as a whole. It 

emphasizes how important testing is to producing a 

reliable and bug-free software solution and lowering the 

possibility of expensive post-release faults. Unit testing, 

integration testing, system testing, and acceptance 

testing are just a few of the testing layers that are 

discussed 

 

The abstract also discusses test automation, a 

crucial component of contemporary software testing 

that facilitates continuous integration and delivery 

practices while speeding up test execution and 

increasing test coverage. Testers may manage test cases 

and data effectively with the help of test automation 

tools and frameworks, which streamlines the testing 

process overall. In conclusion, software testing is 

essential for assuring software quality, fulfilling user 

expectations, and creating applications that are 

dependable, secure, and high-performing. Software 

development companies may increase the stability of 

their software, lower maintenance costs, and ultimately 

produce products that offer a great user experience by 

utilizing the right testing approaches, embracing test 

automation, and adhering to industry best practices. 

 
Keywords:- Software Testing Life Cycle, Software Testing 

Techniques Automation in Quality Assurance, Analysis of 

Automation Testing Tools. 

 

I. INTRODUCTION 

 

Software testing is a critical phase in the software 

development process that ensures the quality and reliability 

of software applications. It involves the evaluation of a 

software product to identify defects, errors, or discrepancies 

between expected and actual outcomes. By validating and 
verifying that the software meets its specified requirements 

and adheres to industry standards, testing helps build 

confidence in the product's functionality, performance, 

security, and usability 

 

A. Manual Testing: 

A traditional method of software testing is manual 

testing, in which test cases are carried out by hand without 

the aid of automated technologies. With this approach, 

testers mimic end-user behaviour as they use the 

application to test various features, user interfaces, and 

capabilities. Although manual testing requires human 

labour, it has many benefits, including the capacity to react 

to last-minute modifications, a more thorough method of 
evaluating the user experience, and cost-effectiveness for 

small-scale projects. 

 

B. Automation Testing: 

Automation testing entails running pre-defined test 

cases through automated tools and scripts and comparing 

the results to what was anticipated. This method greatly 

quickens the testing procedure, requires less human work, 

and enhances test precision and reproducibility. Regression 

testing and situations requiring the execution of several test 

cases profit most from it. 
 

II. LITERATURE REVIEW 

 

Software testing is an essential stage in the 

development process that looks for defects and ensures the 

dependability and quality of software programs. Manual 

testing is a time-honored technique for testing software, in 

which test cases are performed manually without the use of 

automated tools. This literature review offers a general 

overview of the core concepts, methods, and best practices 

in manual software testing while also examining its 

benefits, drawbacks, and role in modern software 
development. 

 

A. Importance of Manual Testing 

Numerous studies emphasize the importance of 

manual testing in the software development process. 

Manual testing allows testers to apply their domain 

knowledge, experience, and creativity to identify usability 

issues and potential edge cases that may be overlooked in 

automated testing. Bhagyashree A. Shegokar and Rakesh 

R. Gupta (2017) in their research highlighted that manual 

testing is valuable in uncovering user experience issues and 
providing comprehensive feedback on the application's 

functionality. 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT23SEP1815                                                              www.ijisrt.com                 2196 

B. Testcase Design & Execution 

The literature often discusses the test case design and 

execution techniques in manual testing. Nandini 

Nandhakumar et al. (2019) conducted a comparative study 

of manual and automated test case design techniques. Their 

findings revealed that manual test case design can be more 

effective in uncovering specific defects and dependencies, 

particularly in complex applications. Additionally, manual 
execution allows for dynamic testing, where testers adapt to 

the system's behavior in real-time and make critical 

decisions based on their observations 

 

C. Test Oracles and Subjectivity 

One of the key challenges in manual testing is the 

subjectivity of test results and test oracles. Test oracles are 

used to determine the expected results, and in manual 

testing, this often depends on the tester's judgment. 

Catherine A. Wah et al. (2018) highlighted that the 

subjective nature of manual testing can lead to 

inconsistencies in test results and might require additional 
effort to ensure consistency and accuracy. 

 

D. Limitations and Drawbacks 

Several studies address the limitations and drawbacks 

of manual testing. Jie Zhang and Saurabh Sinha (2018) 

argued that manual testing can be time-consuming, 

resource-intensive, and prone to human errors, particularly 

in repetitive test scenarios. The lack of repeatability in 

manual testing can hinder the efficient detection of 

regression issues. 

 
E. Integration with Automation 

The literature also explores the integration of manual 

testing with automation. Studies suggest that a hybrid 

approach, combining both manual and automated testing, 

can lead to improved testing efficiency and effectiveness. 

Chan-Wei Lin et al. (2019) demonstrated that a well-

planned combination of manual and automated testing can 

optimize testing efforts and maximize test coverage. 

 

III. METHODS 

 

A. Here is the Graphical Representation of the STLC: 
 

 
Fig 1 Software Testing Life Cycle (STLC) – Manual 

 Requirement Analysis: 

 

 Understanding the software requirements and its scope 

of testing that has to be carried out. 

 

 Test Planning: 

 

 In this phase the test efforts, resource allocation and test 
environment is decided for the testing by the 

Senior/Lead QA. 

 

 Test Design: 

 

 Designing of Test Criteria/Scenario and Test Cases as 

per the requirement and scope. 

 Test Scenarios/Cases Review is also done by 

Lead/Senior QA in this stage to make sure everything is 

covered. 

 
 Test Environment Setup: 

 

 The QA needs to configure the test environment so that 

the production settings can be replicated 

 This involves installing required software, hardware, 

and configure same as production. 

 

 Test Execution: 

 

 Execution of the test cases in the test environment. 

 Updating test results which includes pass/fail status. 
 

 Defect Reporting and Tracking: 

 

 Logging the defects found during test execution. 

 Assign the defects to the development team so that the 

issue can be fixed. 

 Tracking the status of defects until they are fixed and 

verified. 

 

 Test Closure: 

 

 Evaluating the testing process against the test plan. 

 Preparing a test summary report with test results and 

activities. 

 Obtaining approval for the closure of the testing phase. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT23SEP1815                                                              www.ijisrt.com                 2197 

B. Here is the Graphical Representation of the ATLC 

 

 
Fig 2 Software Testing Life Cycle (STLC) – 

Automation 

 

 Automaton Scope Analysis: 

 

 First step is to narrow down the cases that can be 

automated as automation cannot provide 100% test 

coverage. 

 

 Automation Tool Selection: 

 

 This step involves us to use type of automation tools 

and language which will help us for test coverage and 

the knowledge about the tool. 

  Costing and expertise has to be considered while tool 

selection. 
 

 Plan & Strategies: 

 

 Framework designing and cases format preparation. 

Deciding the data flow within the code. 

 Experiment the device whether it supports the tools or 

any extra supporting files required. 

 

 Setup Test Environment: 

 

 The test environment setup is basically making the 
project which needs to be automated. 

 It is required to check the framework designed is 

working or not on that project. 

 

 Test Scripting and Debug: 

 

 Test Scripting means coding as per the strategy and 

making sure the required variables, class, functions are 

declared appropriately and deign the cod reusable and 

maintainable. 

 Debugging ensures the code the working, if not hen the 
necessary changes should be done. 

 Automation Run: 

 

 End to end run of all the prepared cases is done by 

Automation Tester once Scripting and Debugging the 

cases are completed. 

 The full automation run ensures the framework can be 

reused again. 

 
 Log Analysis and Reporting: 

 

 Once Full run is completed the logs are ready to be 

analyzed and if any difference found during run then the 

same has to be reported. 

 

C. Types of Software Testing Techniques 

 

 Black Box Testing 

Black-box testing, also called functional testing, is a 

technique where the tester examines the software's external 

interface and behavior without access to its source code or 
any consideration of its internal logic. 

 

 White Box Testing: 

White box testing, also referred to as clear box testing, 

is a method of testing in which the tester possesses 

knowledge about the inner mechanisms of the product, can 

access its source code, and verifies that all internal 

operations adhere to the specified requirements. 

 

 Functional Testing 

Functional testing is an essential method in software 
testing, which centers on confirming that a software 

application operates correctly and aligns with the 

predetermined criteria, executing its intended functions 

accurately. The key aim of functional testing is to verify the 

application's performance and features, as perceived by 

end-users. The examination assesses various aspects of the 

Application under Test, such as User Interface, APIs, 

Database, Security, and Client/Server communication. This 

evaluation can be carried out through either manual means 

or automation. 

 
D. Types of Software Functional Testing 

 

 Unit Testing:  

Unit testing is centered around examining separate 

units or elements of the software independently to confirm 

their precision. This type of testing is conducted during the 

application's development stage. 

 

 System Testing:  

Evaluates the entire integrated system to ensure that it 

functions correctly as a whole and meets the specified 

requirements. 
 

 Acceptance Testing:  

Conducted by end-users or stakeholders to determine 

whether the software meets the business requirements and 

is ready for deployment. 

 

 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT23SEP1815                                                              www.ijisrt.com                 2198 

 Regression Testing:  

This testing method primarily focuses on ensuring that 

the code changes do not negatively affect the current 

functionality of the system. When bugs are fixed, 

regression testing is employed to check if all components 

are functioning as expected and to assess whether any 

impact on the system has occurred. The main objective of 

regression testing is to verify the system's stability post 
updates. 

 

 Smoke Testing:  

Smoke testing, a form of functional testing, focuses on 

validating the fundamental features of a system to ensure its 

core functionality is working. It is also referred to as "Build 

Verification Testing." The primary goal of smoke testing is 

to ascertain that crucial functions are operational. For 

instance, it verifies that the application can launch 

successfully and checks the responsiveness of the GUI. 

 

 Sanity Testing:  
Sanity testing is a part of regression testing, and its 

purpose is to verify that recent code changes are 

functioning correctly. It acts as a checkpoint to determine if 

further testing of the build can proceed. During sanity 

testing, the primary focus of the team is to validate the 

overall functionality of the application, rather than 

conducting exhaustive testing. Typically, this type of 

testing is conducted on builds that demand immediate 

production deployment, such as critical bug fixes. 

 

E. Types of Software Non Functional Testing 
 

 Non-functional testing is a software testing approach 

that evaluates non-functional aspects, such as 

reliability, load capacity, performance, and 

accountability of the software. Unlike functional 

testing, its main objective is to assess the software 

system's responsiveness based on non-functional 

parameters. These parameters are not examined 

during functional testing and focus on gauging the 

software's behavior under various conditions. 

 

 Performance Testing:  
Performance testing aims to identify and address the 

root causes responsible for the software's sluggish and 

constrained performance. The objective is to optimize the 

software's reading speed to achieve maximum efficiency. 

 

 Load Testing:  

Load testing is a process that assesses a system's 

capacity to handle increasing user loads effectively. This 

capacity refers to the system's ability to accommodate a 

growing number of simultaneous users. 

 
 Security Testing:  

Security testing is used to detect the security flaws of 

the software application. The testing is done via 

investigating system architecture and the mindset of an 

attacker. Test cases are conducted by finding areas of code 

where an attack is most likely to happen. 

 

 Stress Testing:  

Stress testing is a Non-Functional testing technique 

conducted as part of performance testing. It involves 

subjecting the system to an overload to assess its ability to 

withstand such stress. During stress testing, the system's 

performance is closely monitored to ensure its resilience 

under intense conditions. 

 
 Portability Testing:  

The test for portability evaluates the software's 

capability to operate smoothly on multiple operating 

systems without encountering any bugs. Additionally, the 

test also assesses the software's functionality when running 

on the same operating system but with different hardware 

configurations. 

 

 Reliability Testing:  

The testing is based on the assumption that the 

software system will function without any errors within the 

predefined parameters. It requires a specific amount of time 
and processes to execute the system. Additionally, the 

reliability test will not pass if the system encounters failures 

in specific predetermined situations. For instance, it is 

essential for all web pages and links to be dependable. 

 

 UI Testing:  

UI testing, also referred to as User Interface testing, 

offers a solution to address such concerns. Its primary 

purpose is to ensure that the software user interface (UI) is 

displayed accurately to every user. By conducting UI tests, 

one can verify that each element on a web page is 
appropriately sized, shaped, and positioned as intended. 

The objective of UI testing is to evaluate the visible output 

of an application and compare it with the expected design 

outcomes. In essence, this type of testing helps to identify 

"UI bugs," which are distinct from functional bugs, and 

focus on issues related to the appearance and layout of a 

page or screen. 

 

IV. TOOLS USED FOR AUTOMATION TESTING 

 

 Selenium:  

Selenium, an open-source automated testing 
framework, serves as a valuable tool for web application 

validation across diverse browsers and platforms. With 

support for various programming languages like Java, C#, 

Python, etc., it enables the creation of Selenium Test 

Scripts. The testing conducted through this tool is 

commonly known as Selenium Testing. The tagline of 

Selenium confirms its role as an automation testing tool for 

web applications, making it the most dependable option 

among web automation testing tools. 

 

 Appium:  
Appium is a well-known open-source automated 

testing tool, is designed primarily for mobile applications. 

It enables automation of native, hybrid, and mobile web 

applications developed for both iOS and Android 

platforms. Appium operates on a server architecture and 

leverages automation frameworks provided by vendors. Its 

user-friendly setup and usage have contributed to its 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT23SEP1815                                                              www.ijisrt.com                 2199 

widespread adoption. Over the past years, Appium has 

gained tremendous popularity and stability, solidifying its 

position as one of the top choices for mobile automation 

testing. 

 

 Rational Functional Tester (RFT):  

RFT, an acronym for Rational Functional Tester, is an 

automated testing tool developed by the Rational Software 
division of IBM. It is primarily used for automated 

regression testing of software applications. RFT's script, 

which integrates with Eclipse and employs Java as its 

scripting language, is stored as a .java file. This script has 

complete access to the standard Java APIs as well as any 

other APIs exposed through different class libraries. 

Additionally, RFT offers a comprehensive API, allowing 

users to extensively modify the scripts generated through 

the recorder. To facilitate control identification based on 

specified properties, the Rational Test Script class serves as 

the foundational class for any Test Script and provides a 

useful find API. 
 

 SoapUI:  

SoapUI is an open-source functional testing tool 

designed by Smartbear–a leader in Gartner Magic Quadrant 

for Software Test Automation. It provides a comprehensive 

API Test Automation Framework for Representational 

State Transfers. 

 

 (REST) and Service-Oriented Architectures (SOAP).It 

is not an automation testing tool for web or mobile app 

testing; however, it can be a tool of choice to test API 
and services. It is a headless functional testing 

application, especially for API testing. 

 

 TWIN:  

Twin, an automation tool for Windows graphical 

applications, empowers users to script actions like button 

clicks, text entry, and result visualization. Originally 

created at eBay, it serves the purpose of enabling 

automated functional testing for Windows applications. 

Drawing inspiration from Selenium/Webdriver, Twin's 

design allows for analogous application in various 

scenarios. 
 

 AutoIT:  

AutoIT, an open source tool, enables the automation of 

diverse processes involving Windows and desktop 

applications. Its automation approach encompasses a blend 

of keystrokes, mouse movements, and window/control 

manipulation to accomplish various tasks. This tool is 

compatible with all versions of Windows and utilizes C# 

and VB as its scripting languages. As a third-generation 

programming language, AutoIT employs a classical data 

model and supports multiple data types capable of storing 
various kinds of information. With just a few lines of script, 

or by recording the processes using the AutoIT Recorder, 

any specific task can be automated effectively. 

 

V. RESULT/ BENEFITS OF AUTOMATION 

TESTING 

 

 Automating test one-liners is the practice of crafting 

succinct and targeted automated test cases that can be 

swiftly executed with minimal effort. These tests bring 

several advantages, particularly when a rapid validation 

of specific functionalities is required. The benefits of 
employing automated test one-liners include the 

following: Units 

 

 Swift Feedback:  

One-liner tests provide immediate feedback on the 

functionality being tested, facilitating early detection and 

resolution of issues before they escalate. 

 

 Efficient Regression Testing:  

One-liners are particularly useful for regression 

testing, enabling the quick verification of specific 

functionalities after code changes or updates. 
 

 Seamless Integration:  

One-liners can be easily integrated into continuous 

integration and continuous delivery (CI/CD) pipelines, 

supporting automated testing throughout the software 

development lifecycle. 

 

 Simplified Debugging:  

The concise nature of one-liner tests makes the 

debugging process more efficient, as failures are isolated to 

specific functionalities. 
 

 Expanded Test Coverage:  

By automating multiple one-liners that cover various 

aspects of the application, overall test coverage can be 

increased in a scalable and manageable manner. 

 

 Reusability:  

One-liner tests, which focus on testing individual 

functions or features, can be reused across multiple test 

cases and projects. 

 

 Test Prioritization:  

One-liners allow for easy prioritization of critical 

functionalities, enabling essential features to be tested first 

and gradually expanding test coverage. 

 

 Reduced Maintenance Effort:  

Due to their targeted nature, one-liner tests are less 

likely to require frequent updates, resulting in reduced 

maintenance efforts. 

 

 Enhanced Collaboration:  
One-liner tests can be readily shared among team 

members, promoting collaboration and knowledge-sharing 

within the testing team. 

 

 Low Overhead:  

Automating test one-liners requires minimal setup and 

overhead, making them an efficient choice for quick tests. 

 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT23SEP1815                                                              www.ijisrt.com                 2200 

 Integration with Development:  

One-liners can be seamlessly integrated with the 

development process, allowing developers to run tests 

locally during development. 

 

 Scalability:  

Automating test one-liners empowers teams to scale 

their testing efforts as needed, ensuring efficient testing in 
both small and large projects. 

 

 Productivity and Time Saving:  

Automation testing enables testers to dedicate their 

attention to more critical testing activities, as automation 

takes care of repetitive and time-consuming tests. As a 

result, productivity is enhanced within the testing process. 

 

 It is crucial to acknowledge that while one-liner tests 

offer these advantages, they may not be suitable for 

testing all scenarios comprehensively. For robust 

software quality assurance, a combination of one-liner 

tests and more extensive, detailed test cases should be 
employed. Utilizing these benefits, automation testing 

enables teams to achieve higher software quality with 

increased efficiency, resulting in enhanced customer 

satisfaction and faster time-to-market. 

 

VI. SURVEY/STATISTICS 

 

 
Fig 3 Time-Consumed within a Test Cycle for the Activities (2023) 

 

 
Fig 4 Purpose of Automation Testing (2023) 

 

 
Fig 5 The Foremost Focuses in the Realm of Software Testing 2023 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                         ISSN No:-2456-2165 

 

IJISRT23SEP1815                                                              www.ijisrt.com                 2201 

VII. RESULT/ BENEFITS OF AUTOMATION 

TESTING 

 

 Complex Scripting:  

The creation of a scripting language similar to 

conventional programming was driven by the need to 

address certain challenges associated with automated tests. 

When not adequately planned, automated tests might take 
longer to develop compared to manual tests, and their 

integration into the development workflow can prove more 

challenging. Additionally, if the tests are complex and hard 

to manage, it can adversely affect the overall quality of the 

test suite, potentially impeding the goal of achieving 

continuous testing throughout the application's lifetime. 

 

 High Cost:  

Automated testing comes with a significant drawback, 

necessitating substantial time and financial resources for its 

implementation. Nevertheless, this initial investment 

frequently pays off swiftly through enhanced developer 
productivity and consistently dependable outcomes. 

 

  Requires Updating for Every New Environment:  

Whenever there is a modification in any environment, 

it is essential to update your automated tests to maintain 

their reliability. Regrettably, achieving functionality for 

your automated test scripts across various locations such as 

your local development environment, CI system, and 

production settings will require rewriting them multiple 

times. 

 
 Can Produce Failure Due to Automation Issue:  

Whenever there is a modification in any environment, 

it is crucial to update your automated tests to maintain their 

reliability. Regrettably, this means rewriting the automated 

test scripts multiple times to ensure they function correctly 

in your local development environment and production 

settings. 

 

 Needs Precise Designing:  

Creating a comprehensive set of automated tests is a 

challenging task, and they need to be reliable enough to be 

executed repeatedly and consistently, avoiding any 
inaccurate results (false positives or negatives). On the other 

hand, your test scripts should be flexible enough to 

accommodate changes made to your application. Achieving 

this demands precise planning, skillful implementation, and 

a deep understanding of the development process. 

 

 Cannot be used for GUI Validation Like Sound:  

Although automated tests are effective in verifying the 

majority of your application's functionality, they are 

inadequate for testing graphics or sound files. This is 

because such examinations typically rely on textual 
descriptions to validate the results 

 

 

 

 

 

 

VIII. CONCLUSION 

 

Automation testing provides several advantages over 

manual testing, making it the preferred approach for various 

scenarios, particularly for repetitive tasks and regression 

runs. While automation testing brings numerous benefits, it's 

essential to acknowledge that manual testing remains 

valuable in specific situations, such as exploratory testing, 
usability testing, and when dealing with frequently changing 

test cases. Employing a balanced approach that combines 

both automation and manual testing can lead to 

comprehensive and robust software testing strategies. It's 

worth noting that while automation testing cannot 

completely replace manual testing, it can significantly 

reduce the efforts of manual testers, ultimately increasing 

productivity. 

 

REFERENCES 

 

[1]. Heidilyn V. Gamido, Marlon V. Gamido 
“Comparative review of the features of automated 

software testing tools”, 2019 

[2]. Mubarak Albarka Umar 1*, Chen Zhanfang, A Study 

of Automated Software Testing:Automation Tools and 

Frameworks, 2019 

[3]. Prachi Kunte 1, Prof. Dashrath Mane. “Automation 

Testing of Web based application with Selenium and 

HP UFT (QTP” June -2017 

[4]. Monika Sharma, Rigzin Angmo “Web based 

Automation Testing and Tools” 2014 

[5]. Sikender Mohsienuddin Mohammad “Automation 
Testing in Information Technology” 2015 

[6]. Ritu Patidar, Anubha Sharma, Rupali Dave “Survey 

on Manual and Automation Testing strategies and 

Tools for a Software Application” 2017 

[7]. https://dogq.io/blog/test-automation-statistics-for-

making-the-right-decisions/ 

 

 

 

 

 

 

http://www.ijisrt.com/

	I. INTRODUCTION
	II. LITERATURE REVIEW
	A. Importance of Manual Testing
	B. Testcase Design & Execution

	The literature often discusses the test case design and execution techniques in manual testing. Nandini Nandhakumar et al. (2019) conducted a comparative study of manual and automated test case design techniques. Their findings revealed that manual te...
	C. Test Oracles and Subjectivity
	D. Limitations and Drawbacks
	E. Integration with Automation

	III. METHODS
	A. Here is the Graphical Representation of the STLC:
	B. Here is the Graphical Representation of the ATLC
	C. Types of Software Testing Techniques
	D. Types of Software Functional Testing
	E. Types of Software Non Functional Testing

	IV. TOOLS USED FOR AUTOMATION TESTING
	V. RESULT/ BENEFITS OF AUTOMATION TESTING
	 Automating test one-liners is the practice of crafting succinct and targeted automated test cases that can be swiftly executed with minimal effort. These tests bring several advantages, particularly when a rapid validation of specific functionalitie...

	VI. SURVEY/STATISTICS
	VII. RESULT/ BENEFITS OF AUTOMATION TESTING
	VIII. CONCLUSION
	REFERENCES


