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Abstract:- Conventional regularization techniques like 

LASSO, SCAD and MCP have been shown to perform 

poorly in the presence of extremely large or ultra-high 

dimensional covariates. This has created the need for 

and led to the development and reliance on filtering 

technique like screening. Screening techniques (such as 

SIS, DC-SIS, and DC – RoSIS) have been shown to 

reduce the computational complexity in selecting 

important covariates from ultrahigh dimensional 

candidates. To this end, there have been various 

attempts to hybridize the conventional regularization 

techniques. In this paper, we combine some 

regularization techniques (LASSO and SCAD) with a 

screening technique (DC – RoSIS) to form new hybrid 

methods with a view to achieving better dimension 

reduction and variable selection simultaneously. 

Extensive simulation results and real life data 

performance show that the proposed methods perform 

better than the conventional methods. 

 

Keywords:- Regularization Techniques,  Screening 

Technique, LASSO DC–RoSIS, SCAD DC – RoSIS. 

 

I. INTRODUCTION 

 

Regression analysis, a form of predictive modeling 

technique mostly used in investigating relationship between 

a dependent variable and a set of predictors, is a widely 

known technique for fitting models to data. It is a reliable 

method of identifying which variables have impact on or 

greatly influence the problem of interest. To significantly 
explain the functional relationship between the predictor 

variables and the outcome variables, one would need to 

select a parsimonious model in other to achieve a good 

prediction performance. When models are fitted by least 

squares regression each additional useful covariates adds to 

the actual variance of the final regression equation. In 

medical studies or clinical research, it is common to collect 

data with numerous variables, however the number of 

observations may be small due to cost or constraints. 

Datasets with more variables (features) are known as high 

dimensional. When the covariates dimension is high, it is 
natural to assume that some covariates are irrelevant. 

Specifically, when the number of covariates (predictors) 𝑝  

rivals or exceeds  𝑛 (the number of observations), we often 

seek, for the sake of interpretation, a smaller set of variables. 

Hence, we want to our fitting procedure to make only a 

subset of the coefficients large and others small or even 

zero. These shortcomings are of high-dimensionality in 

regression setting.  The traditional method (OLS) tends to 

over fit the model also the method becomes unusable as the 
coefficients estimate is no longer unique and its variance 

becomes infinite. 

 

To deal with such problems, coefficient shrinkage 

(regularization) is employed to  shrink the estimated 

coefficients towards zero relative to the least squares 

estimates. Depending on what type of shrinkage is 

performed, these procedures are capable of reducing the 

variance and can also perform variable selection. Some of 

these procedures like the least absolute shrinkage selection 

Operator (LASSO), SCAD (smoothly clipped absolute 
deviation) (Fan and Li, 2001)[2] and the MCP (minimax 

concave penalty) (Zhang, 2010) [3] enable variable selection 

such that only the important predictor variables stay in the 

model (Szymczack, et al., 2009)[1]. 

 

The high volume of data currently processed due to the 

great evolution in social media and other data intensive tasks 

has led to the collection of extremely large or ultra-high 

dimensional covariates. This makes conventional 

regularization techniques fail or underperform well due to 

expediency and algorithmic stability (Fan, Samworth and 

Wu, 2009)[4]. This has led to the use filtering techniques like 
screening, which naturally focuses on the extremes and 

consistently outperform the usual form of regression 

analysis. These screening techniques further reduces the 

computational complexity in selecting important covariates 

from ultrahigh dimensional candidates. Such techniques are 

the SIS (Sure Independence Screening) (Fan and Lv 

2008)[5], DC-SIS (SIS based on Distance Correlation) (Li, 

Zhong and Zhu 2012)[6], DC – RoSIS (Robust SIS based on 

Distance Correlation) (Zhong et al, 2016)[7] . 

 

When the covariate dimension is high in regression 
modelling, it is natural to assume that some covariates are 

irrelevant. The presence of irrelevant covariates may 

substantially deteriorate the precision of parameter 
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estimation and the accuracy of response prediction (Altham, 

1984)[8]. In the context of linear regression or generalized 

linear regression, many regularization methods and general 

penalty functions have been proposed to remove irrelevant 

covariates and simultaneously estimate the nonzero 

coefficients. However, when there are outliers in the 

response data, the above-mentioned techniques do not 

perform optimally. Freue et al (2019)[9] introduced penalized 
M-Estimation technique for high dimensional data with 

outliers in the response data. However, each of these 

methods have their shortcomings ranging from being 

impractical, poor performance, to algorithm instability. It is 

expected that incorporating screening with these methods 

will reduce the computational complexity in selecting 

important covariates from ultrahigh dimensional settings 

leading to improved performance and more stable 

computations. We perform extensive simulation and on real 

life data  demonstration to evaluate the performance of the 
proposed techniques viz-a-viz existing alternatives. 

 

 

II. METHODOLOGY 

 

This section presents the methodology employed in this paper with a focus on the traditional linear regression techniques. 

 

 Linear Regression 

Consider the multiple linear regression models where 𝑌 denote the response variable (also called the dependent variable) and 

𝑋1 , 𝑋2  …, 𝑋𝑝 , denote the explanatory variables (also called predictors, features or independent variables). The relationship 

between 𝑌 and 𝑋1, 𝑋2  …, 𝑋𝑝 can be expressed as  

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝 + 𝜀                                                                                                                                                             (1) 
 

The parameters 𝛽0 , 𝛽1…𝛽𝑝 are called regression coefficients and ε is the random error term 

 

Given a data set {𝑦𝑖, 𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑝,}𝑖=1
𝑛  of 𝑛 statistical units, each statistical unit can be expressed as  

 

𝑌𝑖 = 𝛽0 + 𝛽𝑖𝑋𝑖1 + 𝛽2𝑋𝑖2 +⋯+𝛽𝑝𝑋𝑖𝑝 + 𝜀𝑖 , 1,2,… , 𝑛                                                                                                                              (2) 

 

Where 𝑦𝑖  is the 𝑖th response observation, 𝛽0, 𝛽1, 𝛽2,… , 𝛽𝑝  are the unknown parameters and  

 

𝜀𝑖~𝑁(0, 𝛿𝑖
2) . Often those 𝑛 equations can be rewritten in vector form as   

 

 𝑌 = 𝑋𝛽 + 𝜀                                                                                                                                                                                                                (3) 
 

 𝑋 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

 𝑌 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠e vector 

 𝛽 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑒𝑐𝑡𝑜𝑟 
 ε is the error vector 

 
 Assumptions of Multiple Linear Regression 

 

 Linearity:  

The relationship between the explanatory variables and the response variable is linear. This is the only restriction on the 

parameters (not explanatory variables), since the explanatory variables are regarded as fixed values.  

 

 Independence:  

There are two types of independence. 

 

 Each combination of explanatory variable and error is independent. 

 The error terms are independent. Therefore, 𝐶𝑜𝑟(𝜀𝑖,𝜀𝑗) = 0 for all 𝑖 ≠ 𝑗. 

 

 Normality:  

The error terms follow normal distribution. 

 

𝜀𝑖~𝑁(0, 𝛿𝑖
2), 
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Where 

 

𝛿2 = (

𝜎2 0 ⋯ 0
0 𝜎2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜎2

) 

 

 Equal Variance:  

Error terms are assume to have equal variances. 

 

𝑉𝑎𝑟(𝜀𝑖) = 𝜎
2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

 

𝑉𝑎𝑟(𝑌𝑖) = 𝜎
2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

 

The ordinary Least Squares (OLS) is the traditional technique used to estimate the parameters of the multiple linear 

regression model. The OLS estimator, which minimizes the residual sum of squares, 

 

𝑅𝑆𝑆 =    (𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽)                                                                                                                                                                               (4)  
 

Is given as 

 

𝛽̂0𝐿𝑆 = (𝑋
𝑇𝑋)−1𝑋𝑇𝑌. 

 

 Penalization Methods 

We consider a linear regression model given with 𝑛 observations on a dependent variable 𝑌 having p predictors. Penalized 

regression approaches have been used in cases where 𝑝 < 𝑛, and in the case with 𝑝 ≥ 𝑛. In general, the Penalized Least Squares 

(PLS) is aimed at minimizing Residual Sum of Squares  

 

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽)  
 

Subject to 𝑃𝑒𝑛(𝛽) ≤ 𝑡,  where 𝑃𝑒𝑛(𝛽) (specific penalty) is a function of 𝛽 = (𝛽0,𝛽1,… ,𝛽𝑝)
𝑇
and 𝑡 is a tuning parameter. 

This constrained optimization problem can be solved with the equivalent Lagrangian formulation which minimizes. 

 

𝑃𝐿𝑆 = 𝑂𝐿𝑆 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 =
     

(𝑌 − 𝑋𝛽)
𝑇
(𝑌 − 𝑋𝛽)  

 

+𝜆𝑃𝑒𝑛(𝛽)                                                                                                                                                                                                                  (5) 
 

Where 𝜆 is a tuning parameter and controls the strength of shrinkage. For example,𝜆 = 0, no penalty is applied and we have 

the ordinary least squares regression. When 𝜆 gets larger, more weight is given to the penalty term. Desirable properties of 

penalization include variable selection and grouping effect.  

 

 LASSO Penalty 

The Least Absolute Shrinkage and Selection Operator (LASSO) regression method was introduced by Tibshirani (1996) as 

an estimation and variable selection method. It is also called L1 penalized regression. The LASSO is a penalized least squares 

procedure that minimizes RSS subject to the non-differentiable constraint expressed in terms of the L1 norm of the coefficients. 

The penalty function is given by  

 

  𝑃𝑒𝑛(𝛽) = 𝜆∑|𝛽𝑖|

𝑝

𝑖=1

                                                                                                                                                                                                (6) 

 

The objectives is to minimize 

 

𝛽̂𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝜖𝑅𝑝(𝑌 − 𝑋𝛽)
𝑇(𝑌 − 𝑋𝛽) + 𝜆∑|𝛽𝑖|

𝑝

𝑖=1

                                                                                                                                 (7) 

 

Where 𝜆 is a non-negative regularization parameter. 
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Since the LASSO penalty term is no longer quadratic, there is no explicit formula for the mean squared error of the LASSO 

estimator. Generally, the 𝐵𝑖𝑎𝑠(𝛽̂𝐿𝐴𝑆𝑆𝑂 ) also increases as the tuning parameter 𝜆  increases, while the variance, 𝑉𝑎𝑟(𝛽̂𝐿𝐴𝑆𝑆𝑂 ) 

decreases. For instance  

 

Where  𝜆 = 0 

𝑀𝑆𝐸(𝛽̂𝐿𝐴𝑆𝑆𝑂) = 𝑀𝑆𝐸(𝛽̂𝑂𝐿𝑆). 

And when 𝜆 → ∞ 

𝑀𝑆𝐸(𝛽̂𝐿𝐴𝑆𝑆𝑂) = 𝑡𝑟𝑎𝑐𝑒 (𝑉𝑎𝑟(𝛽̂𝐿𝐴𝑆𝑆𝑂)) + 𝐵𝑖𝑎𝑠
𝑇(𝛽̂𝐿𝐴𝑆𝑆𝑂)𝐵𝑖𝑎𝑠(𝛽̂𝐿𝐴𝑆𝑆𝑂)  → 0. 

 

Since 𝐵𝑖𝑎𝑠𝑇(𝛽̂𝐿𝐴𝑆𝑆𝑂)𝐵𝑖𝑎𝑠(𝛽̂𝐿𝐴𝑆𝑆𝑂)𝑎𝑛𝑑  𝑡𝑟𝑎𝑐𝑒 (𝑉𝑎𝑟(𝛽̂𝐿𝐴𝑆𝑆𝑂))  move to opposite directions as the tuning parameter 𝜆 

increases, thus, we can choose an optimal value of the parameter 𝜆  that minimizes 𝑀𝑆𝐸(𝛽̂𝐿𝐴𝑆𝑆𝑂). 
 

 The Smoothly Clipped Absolute Deviation (SCAD) 

The SCAD penalty (Fan and Li, 2001) is 

 

𝑃𝑒𝑛𝑆𝐶𝐴𝐷(𝛽) = ∑ p𝜆(𝛽𝑖)
𝑝
𝑖=1                                                                                                                                                                 (8) 

 

Where 

 

p𝜆(𝛽𝑖) = 𝜆|𝛽𝑖|𝐼(𝑂 ≤ 𝜆) +
𝑎𝜆|𝛽𝑖| − (𝛽𝑖

2 + 𝜆2)/2

𝑎 − 1
𝐼(𝜆 ≤ |𝛽𝑖| ≤ 𝑎𝜆) +

(𝑎 + 1)𝜆2

2
𝐼(|𝛽𝑖|                      > 𝑎𝜆), 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎 > 2, 𝜆 > 0 

 

Where 𝐼(∙) is the indicator function and  a =  3.7 is suggested by Fan and Li (2001). 

 

The SCAD estimator 𝛽̂𝑆𝐶𝐴𝐷 is given as the minimizer of 

  

𝐿(𝜆1, 𝜆2, 𝛽) = (𝑌 − 𝑋𝛽)
𝑇(𝑌 − 𝑋𝛽) + 𝑃𝑒𝑛𝑆𝐶𝐴𝐷(𝛽)                                                                                                                                         (9)  

 

 Penalized M-Estimation 

It is common to for the response variable in a regression problem to contain outliers. The OLS procedure and penalized 

methods discussed earlier do not perform adequately when there are outliers in the response data. One robust approach that 

handles the problem of outliers is M-Estimation. The letter M indicates that M estimation is an estimation of the maximum 

likelihood type. M estimation principle is to minimize the residual function. 

 

𝛽̂𝑀 = min
𝛽
𝜌 (
𝑦𝑖 − 𝛽0 −∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1

𝜎
),                                                                                                                                                               (10) 

 

Where 𝜌 is some function with the following properties: 

 

 𝜌(𝑟) ≥ 0 for all r and has a minimum at 0 

 𝜌(𝑟) = 𝜌(−𝑟) for all 𝑟 
 𝜌(𝑟) increases as r increases from 0, but doesn’t get too large as 𝑟 increases 

 

If the 𝜌 function can be differentiated, the M-estimator is said to be a 𝜓-type. Otherwise, the M-estimator is said to be a 𝜌-

type. Note that the OLS estimator is a special case of the M-estimator. 

 

Common 𝜌 functions are the Tukey’s bisquare, Andrew’s and Huber’s functions. Tukey’s 𝜌 function is given as  

 

𝜌(𝑟𝑖) =

{
 

 
𝑟𝑖
2

2
−
𝑟𝑖
4

2𝑐2
+
𝑟𝑖
6

6𝑐4
,                 𝑖𝑓 |𝑟𝑖| ≤ 𝑐

𝑐2

6
,                                          𝑖𝑓 |𝑟𝑖| > 𝑐

, 

 

Where 𝑐 is a constant. 

 

Huber’s 𝜌 function is given as  
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𝜌(𝑟𝑖) = {

1

2
𝑟𝑖
2,                                               𝑖𝑓 |𝑟𝑖| < 𝑐

𝑐|𝑟𝑖| −
1

2
𝑐2,                                 𝑖𝑓 |𝑟𝑖| ≥ 𝑐

. 

 

Andrew’s 𝜌 function is given as  

 

𝜌(𝑟𝑖) = {
1 − cos(𝑟𝑖) ,                      𝑖𝑓 |𝑟𝑖| ≤ 𝜋

0,                                         𝑖𝑓 |𝑟𝑖| > 𝜋
. 

 

The M-estimation algorithm using the Tukey’s bisquare function is given as follows: 

 

 Estimate regression coefficients 𝛽0 on the data using OLS. 

 Calculate residual value 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖. 
 Calculate value 𝜎̂𝑖 = 1.4826 𝑀𝐴𝐷(𝑒1,… , 𝑒𝑛), where 𝑀𝐴𝐷(𝑒1, … , 𝑒𝑛) = 𝑀𝑒𝑑𝑖𝑎𝑛|𝑒𝑖 −𝑀𝑒𝑑𝑖𝑎𝑛(𝑒1,… , 𝑒𝑛)|. 

 Calculate value 𝑟𝑖 =
𝑒𝑖

𝜎̂𝑖
. 

 Calculate the weighted value 

 𝑤𝑖 = {
[1 − (

𝑟𝑖

4.685
)
2

]
2

,                    𝑖𝑓 |𝑟𝑖| ≤ 4.685

0,                                              𝑖𝑓 |𝑟𝑖| > 4.685

 

 Calculate 𝛽̂𝑀  using weighted least squares (WLS) method with weights 𝑤𝑖. 
 Repeat steps 2-6 to obtain a convergent value of 𝛽̂𝑀 . Note that at step 2, 𝑒𝑖 is recalculated based on the fitted model in the 

current iteration. 

 

While the M-estimation technique may be robust against outliers, it doesn’t cater for other problems associated with 

regression such as high- dimensionality and multicollinearity (Freue et al, 2019). In order to solve the problem of high-

dimensionality or multicollinearity a penalized M-Estimation procedure may be used. 

 

A penalized M-Estimator is defined as the minimizer of 

 

𝜌 (
𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1

𝜎
)+ 𝜆𝑃𝑒𝑛(𝛽),                                                                                                                                                              (11) 

 

Freue et al (2019) introduced efficient algorithms for penalized M-Estimators using the LASSO and Elastic-Net penalties. 

The pense R package contains implementation of M-Estimation using the LASSO and Elastic-Net penalties. 

 

 Robust Variable Screening based on Distance Correlation (DC-RoSIS) 

In this study, a robust feature screening procedure for regression models using distance correlation proposed by Zhong et al 

(2016) will be adopted. The definition of distance correlation according to Szekely et al (2007) is given as follows: the distance 

covariance between random variables 𝑋 and 𝑌 is 
 

𝑑𝑐𝑜𝑣2(𝑋, 𝑌 ) =  𝑆1  +  𝑆2  −  2𝑆3,                                                                                                                                                                      (12) 
 

Where 𝑆1 = 𝐸(|𝑋 − 𝑋̃||𝑌 − 𝑌̃|), 𝑆2 = 𝐸(|𝑋 − 𝑋̃||𝑌 − 𝑌̃|), 𝑆3 = 𝐸(|𝑋 − 𝑋̃||𝑌 − 𝑌̃|),   and (𝑋̃, 𝑌̃) is an independent copy of 

(𝑋, 𝑌). The distance correlation between 𝑋 and 𝑌 is 

 

 𝑑𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
𝑑𝑐𝑜𝑣(𝑋, 𝑌)

√𝑑𝑐𝑜𝑣(𝑋, 𝑌) 𝑑𝑐𝑜𝑣(𝑋, 𝑌)
                                                                                                                                                       (13) 

 

Szekely et al (2007) pointed out that 𝑑𝑐𝑜𝑟𝑟(𝑋, 𝑌)  =  0 if and only if 𝑋 and 𝑌 are independent and 𝑑𝑐𝑜𝑟𝑟(𝑋, 𝑌 ) is strictly 

increasing in the absolute value of the Pearson correlation between 𝑋 and 𝑌. Motivated by these properties, Li et al (2012) 

proposed a sure independence screening to rank all predictors using their distance correlations with the response variable, termed 

DC-SIS, and proved its sure screening property for ultrahigh-dimensional data. 

 

Following Zhong et al (2016), let 𝑋𝑘  denote the 𝑘𝑡ℎ predictor with 𝑘 =  1, . . . , 𝑝𝑛 , this work proposes to quantify the 

importance of 𝑋𝑘  is through its distance correlation with the marginal distribution function of  𝑌, denoted by 𝐹(𝑌). That is, 

 

𝜔𝑘 = 𝑑𝑐𝑜𝑟𝑟{𝑋𝐾 , 𝐹(𝑌)},  
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Where 𝐹(𝑌)  =  𝐸 {𝟏(𝑌 ≤  𝑦)}. This is a modification of the marginal utility in Li et al (2012) in that here 𝐹(𝑌 ) is used 

instead of 𝑌. 

 

The distance correlation has several advantages compared with existing measurements: 𝑑𝑐𝑜𝑟𝑟{𝑋𝑘 , 𝐹(𝑌 )}  =  0 if and only if 

𝑋𝑘  and 𝑌 are independent, and following Li et al (2012), we can see that the screening procedure is model-free and hence is 

applicable for both dense and sparse situations ; since 𝐹(𝑌) is a bounded function for all types of 𝑌, it can be expected that the 
procedure has a reliable performance when the response is the heavy-tailed and when extreme values are present in the response 

values; If one suspects that the covariates also contain some extreme values, then one can use 𝜔𝑘
𝑏 = 𝑑𝑐𝑜𝑟𝑟{𝐹𝑘(𝑋𝑘), 𝐹(𝑌 )} to rank 

the importance of the 𝑋𝑘, where 𝐹𝑘(𝑥)  =  𝐸 {𝟏(𝑋𝑘  ≤  𝑥)}. 
 

Zhong et al (2016) showed how to implement the marginal utility in the screening procedure as follows. Let {(𝑿𝒊, 𝑌𝑖), 𝑖 =
 1,··· , 𝑛} be a random sample from the population (𝑿, 𝑌). The distance covariance between 𝑋𝑘  and 𝐹(𝑌 ) is first estimated through 

the moment estimation method, 

 

𝑑𝑐𝑜𝑣̂2{𝑋𝑘 , 𝐹(𝑌)} =  𝑆̂𝑘,1 + 𝑆̂𝑘,2 − 2𝑆̂𝑘,3,                                                                                                                                                           (14) 
 

Where 

 

𝑆̂𝑘,1 =
1

𝑛2
∑∑|𝑋𝑖𝑘 − 𝑋𝑗𝑘||𝐹𝑛(𝑌𝑖) − 𝐹𝑛(𝑌𝑗)|

𝑛

𝑗=1

𝑛

𝑖=1

, 

 

𝑆̂𝑘,2 =
1

𝑛2
∑∑|𝑋𝑖𝑘 − 𝑋𝑗𝑘|

1

𝑛2
∑∑|𝐹𝑛(𝑌𝑖) − 𝐹𝑛(𝑌𝑗)|

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑖=1

, 

 

And 

 

𝑆̂𝑘,3 =
1

𝑛3
∑∑∑|𝑋𝑖𝑘 − 𝑋𝑙𝑘||𝐹𝑛(𝑌𝑖) − 𝐹𝑛(𝑌𝑗)|

𝑛

𝑙=1

𝑛

𝑗=1

𝑛

𝑖=1

 

 

Are the corresponding estimators of 𝑆𝑘,1, 𝑆𝑘,2, 𝑆𝑘,3, 𝑎𝑛𝑑 𝐹𝑛(𝑦)  =  𝑛
−1  ∑ 1𝑛

𝑖=1 (𝑌𝑖  ≤  𝑦). We estimate 𝜔𝑘  with 

 

𝜔̂𝑘 = 𝑑𝑐𝑜𝑟𝑟 ̂ {𝑋𝑘 , 𝐹(𝑌)} =
𝑑𝑐𝑜𝑣 ̂ (𝑋𝑘 , 𝐹(𝑌))

√𝑑𝑐𝑜𝑣 ̂ (𝑋𝑘 , 𝑋𝑘) 𝑑𝑐𝑜𝑣 ̂ (𝐹(𝑌), 𝐹(𝑌))

 

 

Larger than a user-specified threshold. Let Â  =≤ {k ∶  𝜔̂𝑘 ≥ cn
−κ, for 1 ≤ k ≤  p𝑛} . The independence screening 

procedure retains the covariates with the 𝜔𝑘values for some pre-specified thresholds c > 0 and 0 κ < 1/2. The constants c and κ 

control the signal strength (see Zhong et al, 2016). Zhong et al (2016) referred to this approach as the distance correlation based 

robust independence screening procedure (DC-RoSIS). 

 

Additionally, in this study, an estimate of 𝜔̂𝑘
𝑏  which is based on the marginal distribution function of both 𝑋 and  𝑌 is 

introduced and is defined as 

 

𝜔̂𝑘
𝑏 = 𝑑𝑐𝑜𝑟𝑟̂{𝐹(𝑋𝐾), 𝐹(𝑌)} =

𝑑𝑐𝑜𝑣 ̂ (𝐹(𝑋𝐾), 𝐹(𝑌))

√𝑑𝑐𝑜𝑣 ̂ (𝐹(𝑋𝐾), 𝐹(𝑋𝐾)) 𝑑𝑐𝑜𝑣 ̂ (𝐹(𝑌), 𝐹(𝑌))

 

 

Where, 

 

𝑑𝑐𝑜𝑣̂2(𝐹(𝑋𝐾), 𝐹(𝑌)) = 𝑆̂𝑘,1
𝑏  + 𝑆̂𝑘,2

𝑏 − 2𝑆̂𝑘,3
𝑏 , 

 

𝑆̂𝑘,1
𝑏 =

1

𝑛2
∑∑|𝐹𝑛(𝑋𝑖𝑘) − 𝐹𝑛(𝑋𝑗𝑘)||𝐹𝑛(𝑌𝑖) − 𝐹𝑛(𝑌𝑗)|

𝑛

𝑗=1

𝑛

𝑖=1

, 
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𝑆̂𝑘,2
𝑏 =

1

𝑛2
∑∑|𝐹𝑛(𝑋𝑖𝑘) − 𝐹𝑛(𝑋𝑗𝑘)|

1

𝑛2
∑∑|𝐹𝑛(𝑌𝑖) − 𝐹𝑛(𝑌𝑗)|

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑖=1

, 

 

And 

 

𝑆̂𝑘,3
𝑏 =

1

𝑛3
∑∑∑|𝐹𝑛(𝑋𝑖𝑘) − 𝐹𝑛(𝑋𝑗𝑘)||𝐹𝑛(𝑌𝑖) − 𝐹𝑛(𝑌𝑗)|

𝑛

𝑙=1

𝑛

𝑗=1

𝑛

𝑖=1

 

 

The use of 𝜔̂𝑘
𝑏 may produce better results if the covariates also contain some extreme values. 

 
 Sure Screening Property of DC-RoSIS 

We first state the consistency of  𝜔̂𝑘 screening property of the DC-RoSIS procedure, which paves the road to proving the 

sure screening property of the DC-RoSIS procedure. 

 

 Theorem 1. Under the condition (C1) that there exist positive constants 𝑡𝑜 and 𝐶 such that 

max
1≤𝑘≤𝑃𝑛

𝐸{exp(𝑡|𝑋𝑘|)} ≤ 𝐶 < ∞,  𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑡0, for any 0 < 𝛾 < 1/2 − 𝜅, there exist positive constants 𝑐1  and 𝑐2  such that 

 

𝑃𝑟 (max
1≤𝑘≤𝑝

|𝜔𝑘̂ −𝜔𝑘| ≥ 𝑐𝑛
−𝑘) ≤ 𝑂(𝑝[𝑒𝑥𝑝{−𝑐1𝑛

1−2(𝑘+𝛾)} + 𝑛 exp (−𝑐2𝑛
𝛾)]),                                                                       (15) 

 

We remark here that to derive the consistency of the estimated marginal utility, we do not need any moment condition on the 

response. To prove the sure screening property, we make use of further assumption (C6) - the marginal utility satisfies min
𝑘∈𝐴

𝜔𝑘 ≥

 2𝑐𝑛−𝜅, for some constants 𝑐 >  0 𝑎𝑛𝑑 0 ≤  𝜅 <  1/2. 

 

Condition (C6) allows the minimal signal of the active covariates to converge to zero as the sample size diverges, while it 

requires the minimum signal of active covariates be not too small. 

 

 Theorem 2 (Sure Screening Property). Under (C6) and the conditions in Theorem 1, it follows that 𝑃𝑟(𝐴 ⊆  𝐴̂)  ≥  1 −

 𝑂(𝑠𝑛[𝑒𝑥𝑝{−𝑐1
𝑛1−2(𝑘+𝛾)} +  𝑛𝑒𝑥𝑝(−𝑐2𝑛

𝛾)]), where 𝑠𝑛  is the cardinality of 𝐴. Thus, 𝑃𝑟(𝐴 ⊆ 𝐴̂)  →  1 as 𝑛 →  ∞. 

 

III. THE PROPOSED DC-ROSIS PENALIZED 

REGRESSION 
 

In this paper, we propose some new estimators by 

combining the DC-RoSIS with some penalized regression 

estimators, namely, the LASSO, SCAD and MCP. We 

achieve this by first utilizing the DC-RoSIS to select 𝑑 =

2 [
𝑛

𝑙𝑜𝑔(𝑛)
] (see Zhong et al, 2016) top ranked covariates and 

then applying penalized linear regression to estimate the 

direction of 𝛽 . The combination gives rise to LASSO-

DCRoSIS, SCAD-DCRoSIS and LASSO-M-DCRoSIS. 

Hence, the proposed method is a two-stage method. First, 
DCRoSIS is used to to reduce the covariate dimension to a 

moderate scale and then, based on the reduced model, 

penalized linear regression further estimates and refines 

selection of important covariates. 

 

The need for this hybridization stems from the fact that 

from a practical perspective, when the covariate dimension 

is extremely large, it is hoped that the DCRoSIS offers a 

useful complement to penalized regression since it helps to 

reduce the computational complexity in selecting important 

covariates from ultrahigh dimensional candidates.  More so 
in our previous work (Buba, Usman, Musa, and Hamza, 

2023), the hybridization of Elastic Net, SCAD and MCP 

gave rise to some visible improvements. 

 

 

From a practical perspective, when the covariate 
dimension is extremely large, it is hoped that the DCRoSIS 

offers a useful complement to penalized regression since it 

helps to reduce the computational complexity in selecting 

important covariates from ultrahigh dimensional candidates. 

 

Since 𝐹 is bounded and monotone, we can reasonably 

expect that the procedure still works in the presence of 

outliers or extreme values in the covariate or response 

variable. It is computationally efficient and hence offers a 

useful complement, rather an alternative, to the penalized 

regression approach since the proposed independence 
screening can precede the penalized regression when the 

latter fails to produce a reliable solution within a tolerable 

time.  Zhong et al (2016) showed that this new 

independence screening procedure has the sure screening 

property even when 𝑝 is ultrahigh. 

 

 The LASSO-DCRoSIS Penalized Regression 

Considering the model given by (3), 𝑋 is the matrix 

with 𝑝  columns representing all the predictors. The 

DCRoSIS technique is used to compute 𝜔̂𝑗  (or 𝜔̂𝑘
𝑏 ), 𝑗 =

1, … , 𝑝. Thereafter, the 𝜔̂𝑗’s are ranked. Let  𝑋𝐴 denote the 

matrix with columns containing the top 𝑑  predictors 

corresponding to the top 𝑑  ranked 𝜔̂𝑗 ’s. Also, let 𝛽𝐴 =
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(𝛽𝐴0, 𝛽𝐴1, 𝛽𝐴2, … , 𝛽𝐴𝑝)  denote the regression coefficients 

associated with 𝑋𝐴. Then, 

 

The minimization problem given by (20) can be solved 

by a number of algorithms including as coordinate descent 

(Fu, 1998), proximal methods (Beck and Teboulle, 2009) 

and quadratic solver (Grandvalet et al, 2017). 

 

 The SCAD-DCRoSIS Penalized Regression 

Given that the earlier definitions of 𝑋 , 𝑋𝐴  and 𝛽𝐴 

remain unchanged. Then, the SCAD-DCRoSIS estimator 

𝛽̂SCAD−DCRoSIS is given as 

𝛽̂SCAD−DCRoSIS = argmin𝛽𝐴𝜖𝑅𝑝(𝑌 − 𝑋𝐴𝛽𝐴)
𝑇(𝑌 − 𝑋𝐴𝛽𝐴) +∑p𝜆(𝛽𝐴𝑖)

𝑝

𝑖=1

,                                                                                                  (16) 

 

Where, 

 

p𝜆(𝛽𝐴𝑖) = 𝜆|𝛽𝐴𝑖|𝐼(0 ≤ 𝜆) +
𝑎𝜆|𝛽𝐴𝑖| −

𝛽𝐴𝑖
2 + 𝜆2

2
𝑎 − 1

𝐼(𝜆 ≤ |𝛽𝐴𝑖| ≤ 𝑎𝜆) +
(𝑎 + 1)𝜆2

2
𝐼(|𝛽𝐴𝑖| > 𝑎𝜆), 

 

For some 𝑎 > 2, 𝜆 > 0 and 𝐼(∙) is the indicator function. The minimization problem in (22) can be solved using coordinate 

descent algorithms. 

 
 The LASSO-M-DCRoSIS Penalized Regression 

Given that 𝑋, 𝑋𝐴 and 𝛽𝐴 are as earlier defined. Then, the LASSO-M-DCRoSIS estimator 𝛽̂LASSO−M−DCRoSIS is given as 

 

𝛽̂LASSO−M−DCRoSIS = argmin𝛽𝐴𝜖𝑅𝑝𝜌 (
𝑌 − 𝑋𝐴𝛽𝐴
𝜎

) + 𝜆∑|𝛽𝐴𝑖|

𝑝

𝑖=1

,                                                                                                                 (17) 

 

Where  𝜌(∙) is the Tukey’s bisquare function defined in section 3.3. 

 

The minimization problem in (24) can be solved by a weighted LASSO least squares technique proposed by Freue et al (2019). 

 

IV. ANALYSIS AND RESULTS 

 

This section presents details description of the 

proposed LASSO-DCRoSIS, LASSO-M-DCRoSIS and 

SCAD-DCRoSIS. The section also shows the results of the 
evaluation of the proposed hybrid methods against 

themselves and other classical methods under different 

sample size settings and outlier severity. It is worthy to note 

that all implementations of the methods, simulations and 

computations were carried out using R(R Core Team, 2019) 

while tables and plots are used to present the results. 

 

 Simulation Design 

The performances of the LASSO-DCRoSIS, LASSO-

M-DCRoSIS and SCAD-DCRoSIS for variable selection 

and estimation are evaluated via simulation at various 

sample sizes and level of contamination by outliers. Each 
simulated data consists of a training set for fitting the model, 

a validation set for selecting the tuning parameters, and a 

test set on which the test errors are computed for evaluation 

of performance. The notation ·/·/· is used to represent the 

number of observations in the training, validation and test 

set, respectively. 

 

 Case 1 

The true underlying regression model from which we 

simulate data is given by 

 

𝑌 = 𝑋𝑇𝛽∗ + 𝜎∗𝜖, 𝜖~𝑁(0,1). 
 

In this case, the simulated data sets consist of 𝑛/10𝑛/
100  observations and 200 predictors and we set 𝛽 =
(5, … ,5⏟  

20

, 0, … ,0⏟  
180

), 𝑛 = 100, 𝜎 = 12 and 𝜌(𝑖, 𝑗) = 0.5|𝑖−𝑗|  for 

all 𝑖, 𝑗. 
 

 Case 2 

In this case, a linear model only is considered and is 

 

𝑌𝑖 = 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝛽7𝑋𝑖7 + 𝜀𝑖 , 𝑖 = 1,2,… , 𝑛. 
 

𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝)
𝑇

was generated from 𝒩(0, Σ) , 

where Σ = (𝜎𝑖𝑗)𝑝×𝑝
 with 𝜎𝑖𝑗 = 0.5

|𝑖−𝑗|. Here, 𝑝  was set to 

1000 and 𝑛 = 50,100 and 200. It should be noted that out 

of the 1000 generated covariates, only three (𝑋1, 𝑋2 and 𝑋7) 
are useful in the model. Hence, 𝛽  was set such that 𝛽 =
(3,1.5, 0,0,0,0,2,0… , 0)𝑇 . 

 

 Case 3: 

In this case, the simulated data sets consist of 𝑛/10𝑛/
200  observations and 1000 predictors and we set 𝛽 =
(0, … ,0⏟  
485

, 2, … ,2⏟  
15

, 0, … ,0⏟  
485

, 2, … ,2⏟  
15

), 𝑛 ∈ { 50, 100} , 𝜎 = 2  and 

𝜌(𝑖, 𝑗) = 0.5|𝑖−𝑗|  for all 𝑖, 𝑗 . In this case there are 1000 

sparse grouped predictors with only 30 being relevant. 

 

 Case 4: 

In this case, the simulated data sets consisting of 

𝑛/10𝑛/200 observations and 1000 predictors and we set 

http://www.ijisrt.com/


Volume 8, Issue 9, September – 2023                International Journal of Innovative Science and Research Technology                                                 

                                                      ISSN No:-2456-2165 

 

IJISRT23SEP1925                                                              www.ijisrt.com                                                            2487 

𝛽 = (3, … ,3⏟  
15

, 0, … ,0⏟  
985

) , 𝑛 ∈ { 50, 100}  and 𝜎 = 15 . The 

predictors 𝑋 are generated as follows: 

 

𝑋𝑖 = 𝑍1 +𝑤𝑖
𝑥,  𝑍1~𝑁(0,1), 𝑖 = 1,… ,5, 

𝑋𝑖 = 𝑍2 +𝑤𝑖
𝑥,  𝑍2~𝑁(0,1), 𝑖 = 6,… ,10, 

𝑋𝑖 = 𝑍3 +𝑤𝑖
𝑥,  𝑍3~𝑁(0,1), 𝑖 = 11,… ,15. 

 

𝑋𝑖  are independent identically distributed (iid) 

𝑁(0,1), for 𝑖 = 16, … ,1000 and 𝑤𝑖
𝑥 are iid 𝑁(0,0.01). This 

setting implies there are three equally important groups with 

each containing 5 members. Under each case, the situation 

where the observations on the response variable 𝑌 contain 

outliers are also considered. In order to contaminate 𝑌 with 

outliers, the error 𝜀𝑖, 90% of the errors were independently 

generated from 𝒩(0,1) and while the remaining 10% were 

generated from 𝑁(20,2). 
 

The proposed LASSO-DCRoSIS, LASSO-M-

DCRoSIS and LASSO-DCRoSIS were applied to estimate 

𝛽. To facilitate comparison, the classical LASSO and SCAD 

were applied too. The data simulation, variable screening 

and estimation were replicated 100 times and the 

performance of the technique is evaluated based on the 

following: 

 

 𝑆: the average number of non-zero estimated regression 

coefficients 

 𝑆𝐸: the absolute difference between 𝑆 and the actual size 

of the model defined here by  |𝑆 − 𝑇𝑆|, where 𝑇𝑆 is the 

true model size. 

 𝐶 : the average number of truly non-zero coefficients 

correctly estimated to be non-zero 

 𝐼𝐶 : the average number of truly zero coefficients 

incorrectly estimated to be non-zero 

 𝑀𝑆𝐸𝑌 : prediction mean-squared errors defined as 
1

𝑛𝑡𝑒𝑠𝑡
‖𝑌𝑡𝑒𝑠𝑡 − 𝑋𝑡𝑒𝑠𝑡

𝑇 𝛽̂‖
2
 

 𝑀𝑆𝐸𝛽 : mean-squared errors of estimates defined as 

‖𝛽̂ − 𝛽‖
2
 

 𝐴𝐸 : the total average absolute estimation error of 𝛽̂ , 

defined by ∑ |𝐸(𝛽̂𝑗) − 𝛽𝑗|
𝑝

𝑗=1
. 

 

 Case 1 
The simulation results are presented in this section. 

The results are based on 100 replications and the evaluation 

criteria are  𝑆, 𝑆𝐸, 𝐶, 𝐼𝐶,𝑀𝑆𝐸𝑌,𝑀𝑆𝐸𝛽  and 𝐴𝐸. 

 

The simulation results are presented in this section. 

The results are based on 100 replications and the evaluation 

criteria are  𝑆, 𝑆𝐸, 𝐶, 𝐼𝐶,𝑀𝑆𝐸𝑌,𝑀𝑆𝐸𝛽  and 𝐴𝐸. 

 

Table 1 Simulation Results for Case 1 at 𝑛 = 50, 100, 150, 200,  with no Outliers, based on 100 Replications 

 
 

𝑺 𝑺𝑬 𝑪 𝑰𝑪 𝑴𝑺𝑬𝜷 AE 𝑴𝑺𝑬𝒀 

𝒏 = 𝟓𝟎 

LASSO-DCRoSIS 26 6 16 10 207.348 30.567 213.200 

SCAD-DCRoSIS 19 1 13 6 348.516 26.994 270.275 

LASSO-M-DCRoSIS 23 3 16 8 166.630 18.358 129.842 

LASSO 28 8 20 8 57.500 21.075 65.991 

SCAD 17 3 10 7 547.868 29.072 463.314 

𝒏 = 𝟏𝟎𝟎 

LASSO-DCRoSIS 41 21 20 21 3.108 3.680 6.856 

SCAD-DCRoSIS 20 0 20 0 2.050 3.271 5.810 

LASSO-M-DCRoSIS 31 11 20 11 1.116 3.566 5.018 

LASSO 41 21 20 21 3.183 3.571 7.029 

SCAD 20 0 20 0 1.638 1.790 5.288 

𝒏 = 𝟏𝟓𝟎 

LASSO-DCRoSIS 42 22 20 22 1.658 2.637 5.609 

SCAD-DCRoSIS 20 0 20 0 0.998 0.770 4.802 

LASSO-M-DCRoSIS 31 11 20 11 0.623 1.890 4.496 

LASSO 43 23 20 23 1.802 2.726 5.697 

SCAD 20 0 20 0 0.957 0.499 4.753 

𝒏 = 𝟐𝟎𝟎 

LASSO-DCRoSIS 36 16 20 16 1.145 1.033 4.830 

SCAD-DCRoSIS 20 0 20 0 0.751 0.514 4.445 

LASSO-M-DCRoSIS 31 11 20 11 0.466 1.428 4.396 

LASSO 45 25 20 25 1.186 2.197 5.155 

SCAD 20 0 20 0 0.741 0.439 4.447 

 

Simulation results when there are no outliers in the response variable for case 1 are given in Table 1. The table contains 

medians of 𝑆, 𝑆𝐸, 𝐶, 𝐼𝐶, 𝑀𝑆𝐸𝑌, 𝐴𝐸 and 𝑀𝑆𝐸𝛽 over 100 replications at sample sizes 50, 100, 150 and 200. The true size of the 

model for this case is 20. In terms of variable selection SCAD and SCAD-DCRoSIS correctly  select the important variables and 
correctly leave out the unimportant ones. However, SCAD-DCRoSIS outperforms the SCAD in terms of estimation and prediction 

at sample size 50. Also, LASSO tend to select larger models compared to the proposed LASSO-DCRoSIS and LASSO-M-

DCRoSIS. Similar behaviour can be observed at sample sizes 150 and 200. 
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Table 2 Simulation Results for case 1 at 𝑛 = 50, 100, 150, 200,  with 10% Outliers in 𝑌, based on 100 Replications 

 
 

𝑺 𝑺𝑬 𝑪 𝑰𝑪 𝑴𝑺𝑬𝜷 AE 𝑴𝑺𝑬𝒀 

𝒏 = 𝟓𝟎 

LASSO-DCRoSIS 29 9 17 13 228.839 35.226 270.052 

ENET-DCRoSIS 28 8 15 13 225.676 30.699 271.707 

SCAD-DCRoSIS 21 1 12 9 471.181 32.602 433.153 

MCP-DCRoSIS 19 1 12 8 476.287 32.941 438.463 

LASSO-M-DCRoSIS 24 4 16 8 156.260 14.845 149.378 

ENET-M-DCRoSIS 24 4 16 8 154.718 14.976 149.378 

LASSO 44 24 18 27 224.143 30.550 270.027 

ENET 47 27 19 28 143.432 28.087 200.692 

SCAD 29 9 14 15 573.576 27.475 469.810 

MCP 25 5 14 12 598.667 25.885 471.252 

𝒏 = 𝟏𝟎𝟎 

LASSO-DCRoSIS 37 17 20 14 52.831 10.445 75.917 

SCAD-DCRoSIS 27 7 20 9 70.970 8.346 84.054 

LASSO-M-DCRoSIS 26 6 19 7 31.108 4.283 52.914 

LASSO 42 22 20 22 33.792 11.560 77.480 

SCAD 41 21 20 21 93.324 10.848 101.754 

𝒏 = 𝟏𝟓𝟎 

LASSO-DCRoSIS 33 13 20 14 10.855 6.426 53.967 

SCAD-DCRoSIS 23 3 20 3 14.289 4.305 50.453 

LASSO-M-DCRoSIS 27 7 20 7 0.502 1.526 45.011 

LASSO 43 23 20 23 11.621 7.129 54.537 

SCAD 47 27 20 27 38.879 8.527 63.101 

𝒏 = 𝟐𝟎𝟎 

LASSO-DCRoSIS 35 15 20 15 6.025 4.435 49.315 

SCAD-DCRoSIS 20 0 20 0 7.503 2.627 46.542 

LASSO-M-DCRoSIS 29 9 20 9 0.363 1.323 44.757 

LASSO 42 22 20 22 6.611 5.178 50.391 

SCAD 31 11 20 11 10.934 5.009 49.401 

 

Simulation results for case 1 with outliers introduced 

into the response are given in Table 2. SCAD-DCRoSIS 
outperforms SCAD in terms of estimation and prediction. 

SCAD seems to be strongly affected by the presence of 

outliers.  At sample sizes 150 and 200, LASSO-M-

DCRoSIS significantly outperform others showing that they 

are superior when outliers are present. 

 

 Case 2 

The simulation results are presented in this section. 

The results are based on 100 replications and the evaluation 

criteria are 𝑆, 𝑆𝐸, 𝐶, 𝐼𝐶,𝑀𝑆𝐸𝑌 ,𝑀𝑆𝐸𝛽  and 𝐴𝐸. 

Simulation results when there are no outliers in the 

response variable for case 2 are given in Table 3. The true 
size of this model is 3. At sample size 50, LASSO-M-

DCRoSIS outperforms the rest in terms of prediction and 

estimation accuracy but SCAD-DCRoSIS has the best 

performance in terms of variable selection. At sample sizes 

100, 150 and 200, SCAD-DCRoSIS has the best 

performance in terms of variable selection, estimation and 

prediction. In this setting, all methods correctly selects the 

important variables into the model, however, larger models 

are selected by LASSO and SCAD. 

 

Table 3 Simulation Results for Case 2 at 𝑛 = 50, 100, 150, 200,  with no Outliers, based on 100 Replications 

 
 

𝑺 𝑺𝑬 𝑪 𝑰𝑪 𝑴𝑺𝑬𝜷 AE 𝑴𝑺𝑬𝒀 

𝒏 = 𝟓𝟎 

LASSO-DCRoSIS 13 10 3 10 1.797 3.296 6.049 

SCAD-DCRoSIS 9 6 3 6 1.799 2.304 5.485 

LASSO-M-DCRoSIS 7 4 3 4 0.462 1.629 4.524 

LASSO 21 18 3 18 2.333 3.691 6.452 

SCAD 17 14 3 14 2.481 2.603 5.737 

𝒏 = 𝟏𝟎𝟎 

LASSO-DCRoSIS 14 11 3 11 0.867 2.045 4.816 

SCAD-DCRoSIS 8 5 3 5 0.301 0.909 4.209 

LASSO-M-DCRoSIS 9 6 3 6 0.251 1.066 4.212 

LASSO 19 16 3 16 0.871 2.167 4.862 

SCAD 19 16 3 16 0.466 1.297 4.408 

𝒏 = 𝟏𝟓𝟎 LASSO-DCRoSIS 12 9 3 9 0.439 1.493 4.375 
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SCAD-DCRoSIS 6 3 3 3 0.109 0.420 4.108 

LASSO-M-DCRoSIS 9 6 3 6 0.156 0.844 4.251 

LASSO 19 16 3 16 0.503 1.730 4.605 

SCAD 12 9 3 9 0.181 0.846 4.305 

𝒏 = 𝟐𝟎𝟎 

LASSO-DCRoSIS 12 9 3 9 0.322 1.269 4.353 

SCAD-DCRoSIS 6 3 3 3 0.092 0.314 4.075 

LASSO-M-DCRoSIS 9 6 3 6 0.129 0.764 4.080 

LASSO 21 18 3 18 0.364 1.442 4.374 

SCAD 9 6 3 6 0.110 0.480 4.086 

 

Table 4 Simulation Results for Case 2 at 𝑛 = 50, 100, 150, 200,  with 10% Outliers in 𝑌, based on 100 Replications 

 
 

𝑺 𝑺𝑬 𝑪 𝑰𝑪 𝑴𝑺𝑬𝜷 AE 𝑴𝑺𝑬𝒀 

𝒏 = 𝟓𝟎 

LASSO-DCRoSIS 6 3 1 5 12.092 7.055 58.209 

SCAD-DCRoSIS 14 11 1 13 39.305 15.409 76.091 

LASSO-M-DCRoSIS 6 3 3 3 0.312 1.605 45.207 

LASSO 10 7 1 9 11.663 7.303 57.176 

SCAD 26 23 2 24 57.192 15.742 92.875 

𝒏 = 𝟏𝟎𝟎 

LASSO-DCRoSIS 10 7 2 8 7.132 5.809 51.648 

SCAD-DCRoSIS 29 26 2 27 33.056 15.089 71.621 

LASSO-M-DCRoSIS 8 5 3 5 0.101 0.787 44.190 

LASSO 14 11 2 12 7.512 6.147 51.868 

SCAD 47 44 2 45 54.290 17.512 91.307 

𝒏 = 𝟏𝟓𝟎 

LASSO-DCRoSIS 12 9 3 9 5.067 4.861 49.362 

SCAD-DCRoSIS 30 27 3 27 17.286 11.647 58.306 

LASSO-M-DCRoSIS 9 6 3 6 0.064 0.632 43.472 

LASSO 16 13 3 13 4.951 5.122 49.192 

SCAD 64 61 2 61 46.938 17.123 80.462 

𝒏 = 𝟐𝟎𝟎 

LASSO-DCRoSIS 13 10 3 10 2.048 3.208 46.450 

SCAD-DCRoSIS 33 30 3 30 6.480 6.796 47.835 

LASSO-M-DCRoSIS 9 6 3 6 0.049 0.477 44.033 

LASSO 20 17 3 17 2.325 3.537 46.323 

SCAD 79 76 3 76 11.007 9.217 53.441 

 

Table 4 present simulation results for case 2 with 10% outliers introduced into the response variable for case 2. Across all 

sample sizes LASSO-M-DCRoSIS outperformed the rest in terms of variable selection, prediction and estimation accuracy while 

SCAD produced the worst performance indicating that they don’t do well in the presence of outliers. In this setting also, SCAD 

always selects larger models while all the proposed methods always select more parsimonious models compared to existing 
methods. 

 

 Case 3 

 

Table 5 Simulation Results for Case 3 at 𝑛 = 50, 100, 150, 200,  with no Outliers, based on 100 Replications 

 
 

𝑺 𝑺𝑬 𝑪 𝑰𝑪 𝑴𝑺𝑬𝜷 AE 𝑴𝑺𝑬𝒀 

𝒏 = 𝟓𝟎 

LASSO-DCRoSIS 22 8 9 12 118.178 51.043 219.490 

SCAD-DCRoSIS 14 16 7 8 162.370 49.502 249.613 

LASSO-M-DCRoSIS 19 11 11 8 110.334 34.909 151.395 

LASSO 35 5 24 11 56.869 20.174 61.112 

SCAD 18 12 7 9 125.117 53.103 249.119 

𝒏 = 𝟏𝟎𝟎 

LASSO-DCRoSIS 43 13 22 21 57.359 25.915 66.021 

SCAD-DCRoSIS 29 1 17 12 101.739 23.268 91.621 

LASSO-M-DCRoSIS 36 6 23 13 44.165 13.223 38.862 

LASSO 76 46 30 46 13.545 17.941 16.593 

SCAD 34 4 15 19 145.221 36.416 125.094 

𝒏 = 𝟏𝟓𝟎 

LASSO-DCRoSIS 52 22 28 24 16.553 11.280 16.756 

SCAD-DCRoSIS 37 7 27 10 18.981 6.790 14.961 

LASSO-M-DCRoSIS 44 14 28 16 13.315 6.187 12.927 
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LASSO 85 55 30 55 4.580 7.534 8.864 

SCAD 50 20 22 28 71.154 21.348 39.160 

𝒏 = 𝟐𝟎𝟎 

LASSO-DCRoSIS 58 28 29 29 6.668 6.567 7.901 

SCAD-DCRoSIS 33 3 30 3 1.875 2.657 5.695 

LASSO-M-DCRoSIS 50 20 29 20 5.814 3.837 7.347 

LASSO 83 53 30 53 2.520 5.449 6.707 

SCAD 32 2 30 2 1.170 0.832 4.804 

 

Simulation results when there are no outliers in the 

response variable for case 3 are given in Table 5. The true 

size of this model is 30 but the values of the coefficients are 

relatively small and the importance of the corresponding 

predictors may be harder to detect. At sample size 50,100, 

and 150, the LASSO outperforms the rest in terms of 
prediction, estimation accuracy and selection of important 

variables. However, at sample size 200, SCAD followed by 

SCAD-DCRoSIS have the best performance in terms of 

variable selection, estimation and prediction. In this setting, 

all the methods except LASSO correctly selects the 

important variables into the model at small sample sizes. 

This is an indication that the LASSO is quite conservative in 

terms of variable selection. 

 

Table 6 present simulation results for case 3 with 10% 
outliers introduced into the response variable for case 2. 

Across all sample sizes LASSO-M-DCRoSIS outperform 

the rest in terms of prediction and estimation accuracy while 

SCAD produced the worst performance. 

 

Table 6 Simulation Results for Case 3 at 𝑛 = 50, 100, 150, 200,  with 10% Outliers in 𝑌, based on 100 Replications 

 
 

𝑺 𝑺𝑬 𝑪 𝑰𝑪 𝑴𝑺𝑬𝜷 AE 𝑴𝑺𝑬𝒀 

𝒏 = 𝟓𝟎 

LASSO-DCRoSIS 17 13 7 10 125.476 56.116 287.257 

SCAD-DCRoSIS 18 12 6 13 269.223 65.477 390.465 

LASSO-M-DCRoSIS 19 11 9 9 109.214 35.836 196.114 

LASSO 30 0 13 17 113.895 53.630 214.896 

SCAD 36 6 0 36 829.179 93.528 1045.335 

𝒏 = 𝟏𝟎𝟎 

LASSO-DCRoSIS 40 10 19 21 79.008 34.611 147.307 

SCAD-DCRoSIS 38 8 16 22 176.564 37.161 176.564 

LASSO-M-DCRoSIS 36 6 22 14 45.706 12.422 80.393 

LASSO 83 53 23 60 77.679 33.938 132.499 

SCAD 62 32 2 60 706.323 100.389 875.419 

𝒏 = 𝟏𝟓𝟎 

LASSO-DCRoSIS 52 22 27 25 41.602 22.631 84.648 

SCAD-DCRoSIS 47 17 22 25 79.892 21.809 102.168 

LASSO-M-DCRoSIS 44 14 27 17 17.283 6.794 55.770 

LASSO 79 49 28 51 41.121 22.821 89.129 

SCAD 80 50 7 73 498.179 80.622 576.196 

𝒏 = 𝟐𝟎𝟎 

LASSO-DCRoSIS 57 27 29 28 17.282 13.351 60.556 

SCAD-DCRoSIS 50 20 29 22 25.882 9.305 59.041 

LASSO-M-DCRoSIS 49 19 29 19 5.486 3.556 46.806 

LASSO 84 54 30 54 15.058 13.895 61.126 

SCAD 85 55 21 63 96.376 26.282 103.093 

 

 Case 4 

 

Table 7 Simulation Results for Case 4 at 𝑛 = 50, 100, 150, 200,  with no Outliers, based on 100 Replications 

 
 

𝑺 𝑺𝑬 𝑪 𝑰𝑪 𝑴𝑺𝑬𝜷 AE 𝑴𝑺𝑬𝒀 

𝒏 = 𝟓𝟎 

LASSO-DCRoSIS 10 5 5 6 404.660 6.619 5.062 

SCAD-DCRoSIS 3 12 3 0 531.851 6.855 4.635 

LASSO-M-DCRoSIS 9 6 5 3 373.798 7.040 4.395 

LASSO 28 13 4 23 393.286 23.812 7.249 

SCAD 3 12 3 0 538.689 71.909 4.378 

𝒏 = 𝟏𝟎𝟎 

LASSO-DCRoSIS 13 2 5 8 369.792 7.686 4.587 

SCAD-DCRoSIS 3 12 3 0 538.511 7.292 4.318 

LASSO-M-DCRoSIS 11 4 6 5 334.217 6.225 4.292 

LASSO 24 9 5 18 379.969 6.6767 5.134 

SCAD 3 12 3 0 539.963 71.878 4.371 

𝒏 = 𝟏𝟓𝟎 LASSO-DCRoSIS 14 1 6 8 343.050 7.792 4.505 
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SCAD-DCRoSIS 3 12 3 0 537.645 8.817 4.023 

LASSO-M-DCRoSIS 14 1 7 7 282.709 7.059 4.082 

LASSO 27 12 6 21 327.214 7.855 4.770 

SCAD 3 12 3 0 538.411 71.925 4.025 

𝒏 = 𝟐𝟎𝟎 

LASSO-DCRoSIS 15 0 7 8 302.801 5.810 4.188 

SCAD-DCRoSIS 3 12 3 0 537.110 5.815 4.046 

LASSO-M-DCRoSIS 16 1 7 9 251.832 5.095 4.176 

LASSO 28 13 6 22 303.060 4.790 4.470 

SCAD 15 0 7 8 302.801 5.810 4.188 

 

Simulation results when there are no outliers in the response variable for case 4 are given in Table 7. The true size of this 

model here is 15 and the important predictors are divided into three groups such that predictors within each group are strongly 

correlated. All the methods perform similarly with respect to prediction. However, LASSO, LASSO-DCRoSIS, LASSO-M-

DCRoSIS, SCAD, and SCAD-DCRoSIS tend to select one of the important variables in each group with none having the ability to 

do group selection. 

 

Table 8 Simulation Results for Case 4 at 𝑛 = 50, 100, 150, 200,  with 10% Outliers in 𝑌, based on 100 Replications 

 
 

𝑺 𝑺𝑬 𝑪 𝑰𝑪 𝑴𝑺𝑬𝜷 AE 𝑴𝑺𝑬𝒀 

𝒏 = 𝟓𝟎 

LASSO-DCRoSIS 9 6 3 6 434.349 15.012 58.394 

SCAD-DCRoSIS 3 12 3 0 510.214 12.619 45.612 

LASSO-M-DCRoSIS 8 7 5 3 392.046 7.673 44.489 

LASSO 24 9 3 21 76.333 15.370 368.988 

SCAD 3 12 3 0 537.854 73.312 43.118 

𝒏 = 𝟏𝟎𝟎 

LASSO-DCRoSIS 11 4 4 7 416.201 12.853 51.732 

SCAD-DCRoSIS 3 12 3 0 537.374 12.021 42.660 

LASSO-M-DCRoSIS 12 3 6 6 323.962 5.098 43.871 

LASSO 22 7 4 18 412.615 10.085 55.300 

SCAD 3 12 3 0 543.058 72.047 41.198 

𝒏 = 𝟏𝟓𝟎 

LASSO-DCRoSIS 12 3 4 8 407.867 8.031 49.090 

SCAD-DCRoSIS 3 12 3 0 530.967 10.459 41.530 

LASSO-M-DCRoSIS 13 2 7 6 277.646 4.997 44.103 

LASSO 22 7 4 19 410.733 11.271 50.458 

SCAD 3 12 3 0 537.219 71.810 40.594 

𝒏 = 𝟐𝟎𝟎 

LASSO-DCRoSIS 12 3 4 8 432.346 9.929 46.403 

SCAD-DCRoSIS 3 12 3 0 537.457 12.747 41.320 

LASSO-M-DCRoSIS 14 1 7 7 252.355 4.848 43.932 

LASSO 23 8 4 19 413.570 14.299 46.930 

SCAD 3 12 3 0 543.027 71.980 40.471 

 
Table 8 present simulation results for case 4 with 10% 

outliers introduced into the response variable for case 4. 

Across all sample sizes, SCAD has the worst performance in 

all criteria and just like when there were no outliers, 

LASSO, LASSO-DCRoSIS, LASSO-M-DCRoSIS, SCAD, 

and SCAD-DCRoSIS, select one of the important variables 

in each group. 

  

 Application to Real Life Datasets 

In this section, application of the proposed methods 

(LASSO-DCRoSIS, LASSO-M-DCRoSIS, and SCAD-

DCRoSIS on a real life dataset is considered. The dataset is 
the gene expression data from the microarray experiments 

on 120 mammalian eye tissue samples by Scheetz et al. 

(2006). The dataset consist of 200 predictors which 

represents 200 gene probes of 120 rats. The response is the 

expression level of TRIM32 gene. 

 

Firstly, the data were randomly split into a training set 

with 100 observations, and a test set with 20 observations. 

The training dataset were used for model fitting and 
selection of tuning parameters by10-fold cross validation. 

The performance of the methods are then compared based 

on their prediction mean squared error (MSEy) on the test 

dataset and number of non-zero coefficients. The process of 

data splitting, model fitting and computation of MSEy were 

repeated 100 times. The results for both datasets are 

summarized in Table 6. 

 

The boxplot and the histogram of 𝑌  (TRIM32 gene) 

are displayed in Figures 1 and 2. Both indicate that the 

response distribution may be heavy-tailed and the data 
contain outliers. 
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Fig 1 Histogram of the Response Variable (the Expression 

Level of TRIM32 Gene) for the Gene Expression Data 

 

 
Fig 2 Boxplot of the Response Variable (the Expression 

Level of TRIM32 Gene) for the Gene Expression Data 

 

After the DC-RoSIS screening, only 50 predictors were 

left in the model. The penalized regression was further used 

to select important predictors and estimate the coefficients 

using the considered penalty functions. Table 9 gives the 
size (number of predictors selected) of the model produced 

by the considered penalty functions, the selected predictors 

and corresponding estimates.  

 

Table 9 Median mean squared errors of prediction (𝐌𝐒𝐄𝐘) 
and median estimated model sizes (𝐒), based on  

100 replications 

Method 
Eye Tissue Data 

𝑴𝑺𝑬𝒀 𝑺 

LASSO-DCRoSIS 0.0091 13 

SCAD-DCRoSIS 0.0101 7 

LASSO-M-DCRoSIS 0.0077 10 

LASSO 0.0077 25 

SCAD 0.0094 11 

 

Table 9 obviously shows that the proposed methods 
select more sparse models compared to the corresponding 

existing version with no substantial loss in prediction 

accuracy. The results indicate that the LASSO and LASSO-

M-DCRoSIS yielded the same prediction error which is the 

lowest but the LASSO-M-DCRoSIS selected fewer 

predictors underscoring the superiority of the proposed 

method for this data. The LASSO-DCRoSIS selected 12 less 

predictors than the LASSO without significant loss in 

prediction accuracy. 

 
The results from this section further show that the 

proposed methods perform considerably well for prediction 

and variable selection. 

 

V. CONCLUSION 

 

Evidence abound in literature to show that traditional 

screening techniques perform poorly in the presence of 

outliers, necessitating the need to generate new approaches 

that improve the performance of legacy screening 

techniques. In this paper, we attempt to enhance the 

performance of traditional approaches (LASSO and SCAD) 
we combined them with the robust screening technique 

(DCRoSIS) that can do well in the presence of outliers with 

a view to achieving better dimension reduction and variable 

selection simultaneously. The simulation and performance 

on real life data show that our proposed LASSO-DCRoSIS  

performs better than the rest in both circumstances. 
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