Molecular Docking Studies for the Assessment of Wound Healing Activity of Phytoconstituents in Heliotropium Indicum

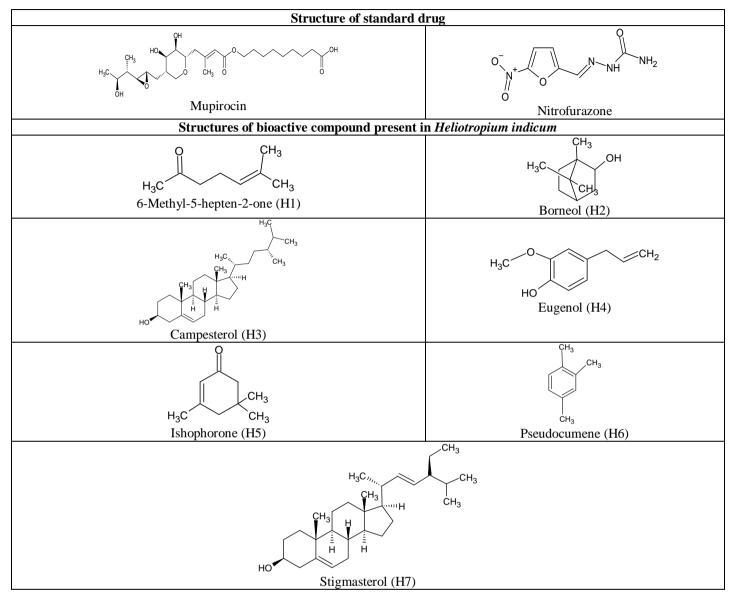
D. Nagavalli, M. Gokulkannan, S. Gurunathan Department of Pharmaceutical Chemistry Adhiparasakthi college of pharmacy, Melmaruvathur, Tamilnadu, India.

Abstract:- One of the most crucial and complex processes is the skin's multi-stage process of healing after an injury. Heliotropium indicum is a potent antibiotic, antiinflammatory, anti-neoplastic, anti-oxidant, and woundhealing agent. Heliotropium indicum Linn is the source of the chemical compound in question, which is abundant in sterols, ammines, volatile oils, and the pyrrolizidine alkaloids. Molecular docking studies were conducted on Heliotropium indicum using Argus lab 4.0.1 and Autodock 1.5.7. The proteins PDB ID:1YXO, 3V18, and 4G8R were selected because of their role in wound healing. The pieces work together with the protein responsible for mending wounds. The binding affinities of mupirocin and nitrofurazone are higher than those of the stigmasterol, eugenol, borneol. components and campesterol. In order to better customize Heliotropium indicum to our requirements, we now have a better knowledge of the components of the molecule that interact with their receptors in the wound healing process.

Keywords:- Docking, Heliotropium Indicum, Wound Healing, Software's.

I. INTRODUCTION

The skin is the body's first line of defense against bacteria and other potentially dangerous substances. Stress causes a wound by compromising the dermis (either physical or thermal). A wound is an alteration to an organism's regular form and function. A skin wound may range from being quite slight (just having a breach in the epithelium layer) to being extremely serious (affecting the deeper subcutaneous tissues and causing damage to the tendons, muscles, blood vessels, nerves, parenchymal organs, and even bone). Different factors influence the recovery of old vs new wounds. Direct contact with the skin may cause acute wounds, the severity of which varies [1-3]. Healing by itself and making progress via the healing process usually take between 5 and 10 days, and never more than 30 days. Instead, a combination of internal systems and a predisposing state led to chronic wounds. Common types of persistent wounds include leg ulcers, foot ulcers, and pressure sores. Some pathophysiological abnormalities, such poor blood flow to tissues (from blocked arteries or clogged veins) or an underlying metabolic problem, may lead to these types of wounds (such as diabetes mellitus). Wound repair involves a complex set of systems operating on cellular, humoral, and molecular scales.


V. Manikandan, V. Kamesh, N. Poongundran Department of Pharmaceutical Analysis Adhiparasakthi college of pharmacy, Melmaruvathur, Tamilnadu, India

Common cutaneous wound healing stages include coagulation, inflammation, re-epithelialization, granulation tissue development, angiogenesis, connective tissue contraction, and remodeling. Wound healing is a complex involving many different biological process and immunological systems working together. Chronic wounds are more likely to get infected with germs due to poor nutrition and metabolic imbalances [4-8]. Prolonged inflammation, poor re epithelialization, and deficient matrix remodeling are hallmarks of nonhealing wounds, which are the result of a back-and-forth between the microorganisms in the wound and the patient. Staphylococcus aureus, pseudomonas aeruginosa, and -hemolytic streptococci are some of the bacteria that may be isolated from both infected and non-infected wounds. Since a computer tool, molecular docking is essential to structure-based drug design as it accurately predicts the binding configuration of protein and ligand. Before investing in expensive in vitro and in vivo studies, in silico research may provide useful insights. Researchers in this area are primarily interested in creating new synthetic compounds with improved therapeutic efficacy and lower toxicity [9-11]. Six chemical components of Heliotropium indicum (6-Methyl-5-hepten-2-one, Borneol, Campesterol, Eugenol, Ishophorone, Pseudocumene, Stigmasterol) and three distinct proteins were studied by docking using the Argus lab 4.0.1 and Autodock programs (1YXO, 3V18, 4G8R). 1.5.7. Local communities across the world rely on Heliotropium indicum (Tab. 1) as a primary treatment for a broad range of illnesses. Alkaloids, amines, sterols, triterpenes, and volatile oils are all components. Medicinally, this herb is exclusively used in age-old, timehonored customs. The medicinal uses for this plant are many. Research by G.k. Dash et al. on the wound-healing effects of this herb in rats is currently available. Here, we investigated the efficiency with which these molecules repair tissue after it has been damaged [12].

Kingdom: Plantae	Plant Image			
Class: Dicotyledonae	_			
Order: Boraginales	and matheman			
Family: Boraginaceae	- Commenter			
Species: Heliotropium indicum				
Scientific Name: Heliotropium	and the second			
indicum Linn				
Common Name: Indian Heliotrope				

II. MATERIALS AND METHODS

A. Structures

B. Wound healing proteins

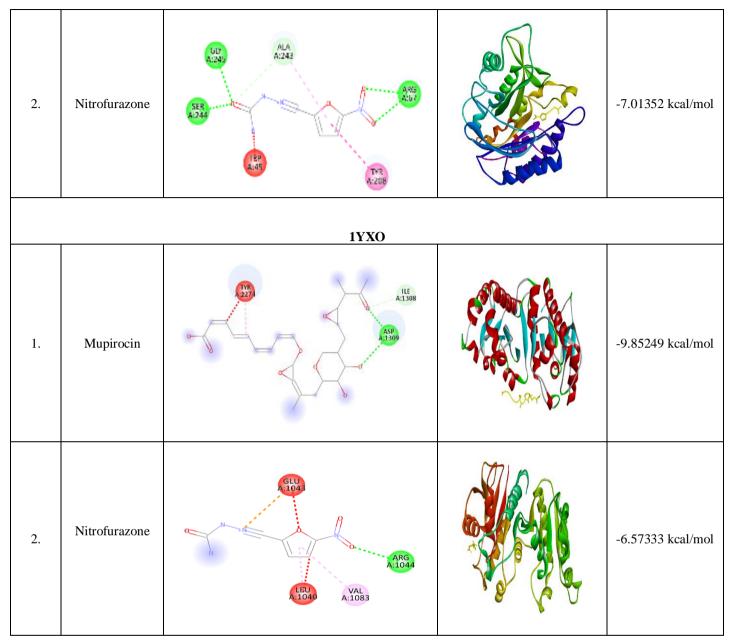
- 1YXO (Crystal Structure of pyridoxal phosphate biosynthetic protein PdxA PA0593).
- 3V18 (Structure of the Phosphatidylinositol-specific phospholipase C from Staphylococcus aureus).
- 4G8R (Crystal Structure of a novel small molecule inactivator bound to plasminogen activator inhibitor-1).

C. Docking procedure:

- Steps involved in docking by using Argus lab:
- Protein preparation
- Selection of active site
- Ligand preparation
- Docking procedure
- Visualization/ Interpretation of Docking

Steps involved in docking by using Autodock tools:

- Create a new folder
- Preparation of Protein and Ligand
- Configuration file
- Command prompt
- Analysis and Interpretation


III. RESULT AND DISCUSSION

The binding affinity of the standard drug with wound healing proteins by using Argus lab 4.0.1 (Table 2) and Autodock tools 1.5.7 (Table 4) and followed by the binding affinity of Heliotropium indicum with woud healing proteins by using above mentioned software's (Table 3 & 5). Using Autodock tools 1.5.7 and Argus lab 4.0.1. we analysed the binding impact of Heliotropium indicum's phytoconstituents with many proteins (4G8R, 1YXO, 3V18) known to play a part in the wound-healing process. Using the RMSD and

binding affinity score, we were able to predict the most productive interactions between proteins and phytoconstituents. Inhibitor type I (4G8R) plasminogen activator protein is a zymogen of plasmin, the main enzyme responsible for degrading fibrin clots. In the process of healing wounds, plasminogen and its receptors control the inflammatory response. Staphylococcus aureus and Pseudomonas aeruginosa, respectively, are the sources of the proteins 1YXO and 3V18. They raise levels of proinflammatory cytokines including IL-1 and TNF-, which contribute to wound chronicity. Overly aggressive inflammation slows the healing process. Suppressing these microbes will promote wound healing. The result obtained from Argus lab 4.0.1 (Table 6) and Autodock tools 1.5.7 (Table 7) in the respective wound healing protiens along with standard drug and Heliotropium indicum.

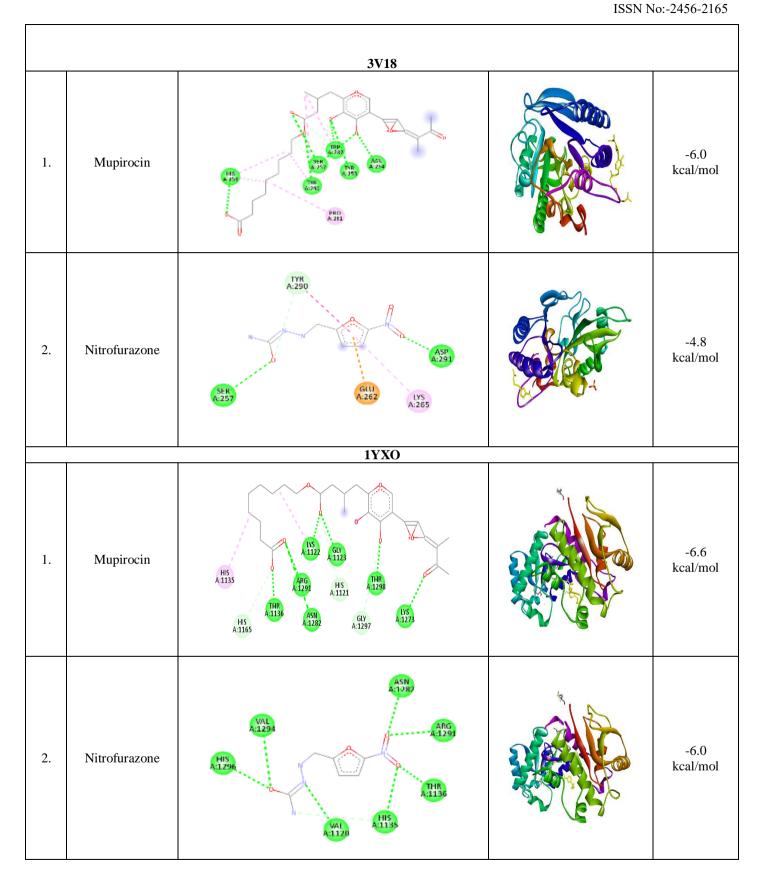
Table No. 2. Binding affinity of standard drug by Argus lab 4.0.1 Standard drug Capture				
S. No.	Standard drug	2D	3D	Final energy
		4G8R		
1.	Mupirocin	VAL Brags WE Hoge Hoge Hoge Hoge Hoge Hoge Hoge Hoge		-9.23565 kcal/mol
2.	Nitrofurazone	PIC E485 GLV R-482 R-482 R-482 R-483 R-483 R-483 R-483 R-483		-6.91681 kcal/mol
		3V18	1	
1.	Mupirocin	PHE A249 ASS ASS ASS ASS ASS ASS ASS ASS ASS AS		-10.3793 kcal/mol

Table No. 2.	Binding a	ffinity of	standard	drug by	Argus lab 4.0.1
				~~ ~ J	Langes And House

Table No. 3. Binding affinity of Heliotropium indicum by Argus lab 4.0.1

		Capture	e	
S. No.	Chemical constituent	2D	3D	Final energy
	·	4G8R		
1.	H-1	ULEU B:607 PHE B:729 PHE B:545 PHE B:545 LEU B:455 E:455 LEU B:455 E:455 LEU B:455 E:455		-10.5348 Kcal/mol

[1		SSIN IN02430-2103
2.	H-2	ALA B:419 ALA B:418 ALA B:429 B:439 B:430 B:430 B:430 B:430 B:430 B:430	-9.97975 Kcal/mol
3.	Н-3		-16.0316 kcal/mol
4.	H-4	PHE B: 438 PHE B: 438 PHE B: 438 PHE B: 385 PHE B: 385 PHE B: 385 PHE B: 383	-8.4735 Kcal/mol
5.	H-5		-10.2765 Kcal/mol
6.	H-6	HAA BAD BAD BAD BAD BAD BAD BAD BAD BAD B	-10.6224 kcal/mol
7.	H-7		-14.3211 kcal/mol
		1	


		1YX0		
8.	H-1	LEU A:1180 A:1184 HIS A:1184 A:1184 HIS A:1184 A:1204 A:12		-9.65797 kcal/mol
9.	Н-2	ARG A:1158		-10.3689 Kcal/mol
10.	Н-3	Allan Allan Allan		-13.436 Kcal/mol
11.	H-4	VVL A1283 LEU A1285 LEU A1285 PTP A1194 A1285 PTP A1194 A1285 PTP A1194 A1285 PTP A1194	A CONTRACTOR	-8.86885 Kcal/mol
12.	H-5	ATTES		-7.5779 Kcal/mol

			3511110. 2130 2103
13.	H-6	LEU A.1187 ARG A.1153 ARG A.1153 PHE A.1195 A.1195 A.1283 A.1283	-10.1213 Kcal/mol
14.	H-7		-13.8273 Kcal/mol
		3V18	
15.	H-1	RE RE A237 Pre A239	-11.2388 Kcal/mol
16.	H-2	ASP A:95 TYR A:103 ALA A:102 A:98 MET A:57	-9.954504 Kcal/mol
17.	Н-3		-13.2849 Kcal/mol
18.	H-4	Allow Allow	-9.10107 Kcal/mol

19.	H-5		-9.10107 Kcal/mol
20.	Н-б	HE A:279 PHE A:63 VAL X:237 PHE A:239 ARG A:166	-11.9344 Kcal/mol
21.	H-7		-13.2245 Kcal/mol

 Table No. 4. Binding affinity of standard drug by Autodock tools 1.5.7

S.	Stondard drive	Capture					
No	Standard drug	2D	3D	Final energy			
	4G8R						
1.	Mupirocin	HIS B.77 B.77 B.74 B.74 B.74 B.74		-4.3 kcal/mol			
2.	Nitrofurazone	TYR B:79 B:37 B:37 B:37 B:37 B:37 B:37 B:37 B:37		-5.9 kcal/mol			

	Table No. 5. Binding affinity of Heliotropium indicum by Autodock tool 1.5.7 Capture				
S. No.	Chemical constituent	2D	3D	Final energy	
	I	4G8R			
1.	H-1	ARG 8.15 8.76 ARG 8.76		-5.3 kcal/mol	
2	Н-2			-7.3 kcal/mol	
3.	Н-3	HS B-77 HS HS B-77 HS HS HS HS HS HS HS HS HS HS HS HS HS		-10 kcal/mol	
4.	H-4	ARG B 118 B 75 B 75 B 75 B 75 B 75 B 75 B 75 B 75		-5.9 kcal/mol	
5.	H-5	ASP B 95 SER B-1 TM B-79 ARG B-76 B-76		-6.3 kcal/mol	
6.	Н-6			-5.8 kcal/mol	

r	1			1102430-2103
		ARG B:76 B:118 B:79		
7.	H-7	B-35 THR B-34 THR B-34 THR B-34 THR B-33		-6.7 kcal/mol
	1	1YXO	l	
8.	H-1	RE 8 1229 8 1224		-3.2 kcal/mol
9.	Н-2	PRO B:1210 B:1244 B:1210 A:1273 B:1244 A:1273 B:1246 B:1210 B:120		-4.9 kcal/mol
10.	Н-3	A1245 A125 A1245 A125 A125 A125 A125 A125 A125 A125 A12		-8.9 kcal/mol
11.	H-4	ASP B:1246 A:1295 B:1210 B:1244		-4.4 kcal/mol

			r	
12.	Н-5	B:1244 B:1244 B:1210 B:1210 B:1210 B:1210 B:1210 B:1210 B:1214		-3.9 kcal/mol
13.	Н-6	B:1244 B:1210 B:1246		-3.9 kcal/mol
14.	H-7	PRO A1270		-4.8 kacl/mol
	1	3V18		I
15.	H-1	A:261 A:290 A:255 A:255		-4.3 kcal/mol
16.	Н-2	PRO A:261 A:25 A:290 A:291		-5.5 kcal/mol

17.	Н-3	HR A 228 A 229 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2	-7.2 kcal/mol
18.	H-4	VYS A 285	-4.4 kcal/mol
19.	H-5	A2200 A2200 A2200 A2200 A2200 A2200	-4.4 kcal/mol
20.	Н-б	PRO A:290 A:265 A:291	-4.5 kcal/mol
21	H-7		-8.5 kcal/mol

Plant name	Protein name	Standard	Phyto constituents having best affinity compared with standard drug		
	4G8R	Mupirocin	6-methyl-5-hepten- 2one Campesterol Pseudocumene Stigmasterol Ishophorone	Borneol	Eugenol
		Nitrofurazone	Campesterol Stigmasterol	-	-
Heliotropium indicum	3V18	Mupirocin	6-methyl-5-hepten- 2one Campesterol Pseudocumene Stigmasterol	Borneol Eugenol Ishophorone	-
		Nitrofurazone	Campesterol Stigmasterol	-	-
	1YXO	Mupirocin 1YXO	Borneol Campesterol Pseudocumene Stigmasterol	6-methyl-5-hepten- 2one	Eugenol Ishophorone
		Nitrofurazone	Campesterol Stigmasterol	-	-

Table No. 6. The results obtained from Argus lab 4.0.1

Table No. 7. The results obtained from Autodock tools 1.5.7

Plant name	Plant name Protein name Standard Phyto constituents having best			nts having best affinit		
	1 I Otem name	Stanuaru		standard drug		
	4G8R	Mupirocin	Borneol Campesterol Ishophorone Stigmasterol	-	-	
		Nitrofurazone	Borneol Campesterol Stigmasterol	6-methyl-5-hepten- 2-one Eugenol Pseudocumene	-	
	3V18	Mupirocine	Campesterol Stigmasterol	-	6-methyl-5-hepten- 2-one Borneol Eugenol Ishophorone Pseudocumene	
Heliotropium indicum		Nitrofurazone	Borneol Campesterol Stigmasterol	6-methyl-5-hepten- 2-one Eugenol Ishophorone Pseudocumene	-	
	1YXO	Mupirocine	Campesterol	-	6-methyl-5-hepten- 2-one Borneol Eugenol Ishophorone Pseudocumene Stigmasterol	
		Nitrofurazone	Campesterol	-	Borneol Eugenol Stigmasterol	

IV. CONCLUSION

Protein-ligand interactions are critical in understanding the structural basis of therapeutic action. The docking affinities of plant proteins for three different wound-healing proteins were evaluated using Autodock and Argus lab, and the findings were compared to those obtained using a common topical anti-bacterial medication (mupirocin or nitrofurazone) (1YXO, 3V18, 4G8R). Heliotropium indicum (6-Methyl-5heptene-2-one, Borneol, Campesterol, Eugenol, Ishophorone, Pseudocumene, Stigmasterol) has chemical components with wound healing function, according to the present study. According to the findings, Heliotropium indicum contains antibacterial, antifungal, and anti-inflammatory activities, indicating it may be effective in the treatment of wounds.

ACKNOWLEDGMENT

I acknowledge my sincere thanks to Adhiparasakthi College of pharmacy, Melmaruvathur, Tamilnadu and our beloved Principal for his support in carrying out my research work in a well-disciplined manner.

REFERENCES

- [1]. Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clinical microbiology reviews. 2001 Apr 1;14(2):244-69.
- [2]. Wright JA, Richards T, Srai SK. The role of iron in the skin and cutaneous wound healing. Frontiers in pharmacology. 2014 Jul 10;5:156.
- [3]. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research. 2009 Oct;37(5):1528-42.
- [4]. Edwards R, Harding KG. Bacteria and wound healing. Current opinion in infectious diseases. 2004 Apr 1;17(2):91-6.
- [5]. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery. 2004 Nov;3(11):935-49.
- [6]. Aminah NS, Laili ER, Rafi M, Rochman A, Insanu M, Tun KN. Secondary metabolite compounds from Sida genus and their bioactivity. Heliyon. 2021 Apr 1;7(4):e06682
- [7]. Dinda B, Das N, Dinda S, Dinda M, SilSarma I. The genus Sida L.–A traditional medicine: Its ethnopharmacological, phytochemical and pharmacological data for commercial exploitation in herbal drugs industry. Journal of ethnopharmacology. 2015 Dec 24;176:135-76
- [8]. Chandhan Sarkar, Mondal M, Khanom B, Hossain M, Sureda A, Islam MT, Martorell M, Kumar M, Sharifi-Rad J, Al-Harrasi A, Al-Rawahi A. Heliotropium indicum L.: From Farm to a Source of Bioactive Compounds with Therapeutic Activity. Evidence Based Complementary and Alternative Medicine. 2021 Jun 1;2021.

- [9]. G.K. Dash, Murthy PN. Studies on wound healing activity of Heliotropium indicum Linn. leaves on rats. International Scholarly Research Notices. 2011.
- [10]. https://www.rcsb.org/structure/1YXO.
- [11]. Goldstein R, Cheng J, Stec B, Roberts MF. Structure of the S. aureus PI-specific phospholipase C reveals modulation of active site access by a titratable π -cation latched loop. Biochemistry. 2012 Mar 27;51(12):2579-87.
- [12]. Li SH, Reinke AA, Sanders KL, Emal CD, Whisstock JC, Stuckey JA, Lawrence DA. Mechanistic characterization and crystal structure of a small molecule inactivator bound to plasminogen activator inhibitor-1. Proceedings of the National Academy of Sciences. 2013 Dec 17;110(51):E4941-9t of cellular insulin action: data from British journal of nutrition (2012), 107, 1316-1323.