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Abstract:- Precision farming is technology-driven 

agriculture which is meant for improving performance 

in agricultural activities. With the emergence of 

Artificial Intelligence (AI), deep learning models are 

used for solving problems in different domains, 

particularly in computer vision applications. In this 

paper, we proposed an intelligent framework known as 

Deep Learning Framework for Precision Farming (DLF-

PF). This framework exploits deep learning approach 

known as Convolutional Neural Network with enhanced 

layers for automatic detection of crop diseases. We 

proposed an algorithm known as Learning based Plant 

Disease Detection (LbPDD). This algorithm is designed 

to support CNN based supervised learning for detection 

of crop diseases. PlantVillege is the dataset used for 

empirical study in this paper. Our empirical study has 

revealed that the proposed model showed better 

performance over existing methods. Our framework is 

found suitable for usage in agricultural applications 

towards precision farming.  
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I. INTRODUCTION 

 
Agriculture plays a vital role in the economic growth 

of any country. With the increase of population, frequent 

changes in climatic conditions and limited resources, it 

becomes a challenging task to fulfil the food requirement of 

the present population. Precision agriculture also known as 

smart farming have emerged as an innovative tool to address 

current challenges in agricultural sustainability. The 

mechanism that drives this cutting edge technology is 

machine learning (ML). It gives the machine ability to learn 

without being explicitly programmed. ML together with IoT 

(Internet of Things) enabled farm machinery are key 

components of the next agriculture revolution [2]. Later it 
was observed that deep learning (DL) models could provide 

more useful analysis on agricultural data towards precision 

agriculture [3], [7] and [8]. In most of the recent research 

articles, supervised learning was given importance due to 

availability of vast samples in datasets such as PlantVillege 

dataset [31].  

 

 

 

 
Fig 1 An Excerpt from Plant Villege Dataset [31] 
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Figure 1 shows healthy and affected leaf samples 

across various plants available in PlantVillege dataset. Many 

researchers found in the literature focused on ML and DL 

models for crop monitoring in agriculture. In [3] deep 

learning based methodology was proposed to detect late 

blight disease in potato along with its severity. It was found 

in [5] that ML based approaches can lead to sustainable 

precision agriculture that exploits technology for decision 
making. In [18] and [19], deep learning models and 

applications used for smart agriculture are investigated. In 

[20], the researchers opined that smart farming is made 

further smarter with the usage of deep learning techniques. 

Computer vision based phenomena were investigated for the 

applications in precision agriculture as discussed in [21]. AI 

based technique is used in [22] for automatic detection of 

diseases in tomato crop. Deep learning along with transfer 

learning were explored in [23] for detection of diseases in 

rice crop. From the literature, it was understood that there is 

need for leveraging CNN based model for improving 

accuracy in disease prediction. Our contributions in this 
paper are as follows. 

 

 We proposed an intelligent framework known as Deep 

Learning Framework for Precision Farming (DLF-PF).  

 We proposed an algorithm known as Learning based 

Plant Disease Detection (LbPDD) for automatic 

detection of plant diseases.  

 We built an application to know the utility of the 

proposed framework and underlying algorithm towards 

plant disease detection.  

 
The remainder of the paper is structured as follows. 

Section 2 reviews literature on various learning based 

methods for plant disease detection. Section 3 throws light 

on the proposed system for technology enabled plant disease 

detection. Section 4 presents experimental results while 

Section 5 concludes our work.  

 

II. RELATED WORK 

 

This section reviews literature on various existing 

methods based on ML and DL techniques. Precision 
agriculture initiative has been expressed in many research 

endeavours. However, the challenges in usage of AI in 

agriculture along with its utility were studied in [1], [2], [4], 

[9], [10], [11], [12], [13], [21] and [27]. The essence of these 

investigations is that ML and DL techniques are used widely 

in agricultural research that spans crop monitoring to disease 

detection to identification of crop requirements using IoT 

technology. In [3] deep learning based methodology was 

proposed to detect late blight disease in potato along with its 

severity. It was found in [5] that ML based approaches can 

lead to sustainable precision agriculture that exploits 

technology for decision making. ML models were explored 

in [13], [15], [25] and [28] for automation of crop 

monitoring, cotton yield estimation, leaf disease detection 

and food security respectively. Since the agricultural 

research needs processing of image or video content, many 
researchers preferred deep learning. In [6], a fusion strategy 

along with a hybrid architecture using deep learning was 

used for crop species recognition. In [7] and [8] neural 

networks and deep learning are used to detect plant stress 

problems.  

 

In [14] UAV based deep learning and data fusion 

approaches are used for prediction of Soybean yield. AI 

enabled approach is used in [16] for making agricultural 

decisions. IoT technology along with UAV are used in [17 

for smart farming practices. In [18] and [19], deep learning 

models and applications used for smart agriculture are 
investigated. In [20], the researchers opined that smart 

farming is made further smarter with the usage of deep 

learning techniques. Computer vision based phenomena 

were investigated for the applications in precision 

agriculture as discussed in [21]. AI based technique is used 

in [22] for automatic detection of diseases in tomato crop. 

Deep learning along with transfer learning were explored in 

[23] for detection of diseases in rice crop. Crop yield 

prediction and attention based disease detection were 

incorporated in [25] and [26]. CNN along with autoencoder 

was used in [29] for disease detection and classification. The 
usage of deep learning in biomedicine was the main focus in 

[30]. From the literature, it was understood that there is need 

for leveraging CNN based model for improving accuracy in 

disease prediction.  

 

III. PROPOSED SYSTEM 

 

We proposed an intelligent framework known as Deep 

Learning Framework for Precision Farming (DLF-PF). This 

framework exploits deep learning approach known as 

Convolutional Neural Network with enhanced layers for 

automatic detection of crop diseases. The proposed 
framework is based on deep learning. The framework needs 

training with labelled leaf image samples. Therefore, it is 

based on supervised learning. It takes care of disease 

detection and also classification of the disease. Therefore, 

the framework supports multi-class classification. The 

proposed framework is based on an enhanced CNN model 

shown in Figure 2.  

 

 
Fig 2 Multi-Class Classification Framework based on CNN Architecture 
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The framework enables the CNN model to get trained with PlantVillege dataset. This dataset has many kinds of crops and 

their samples for training. Labelled samples are used for training the CNN model. After the training process, the model is saved 

for further reuse. In the testing phase, as shown in Figure 2, the deep learning model has different layers configured. The model is 

divided into two parts. The part 1 is for feature extraction while the part 2 is for classification of diseases. The former is made up 

of convolutional and max pooling layers. These layers are meant for feature extraction from given input test image and then 

optimize the features in order to make the classification phase easier and accurate. The classification model has knowledge to 

discriminate the given image and classify the disease with multi-class classification. We proposed an algorithm known as 

Learning based Plant Disease Detection (LbPDD). This algorithm is designed to support CNN based supervised learning for 
detection of crop diseases. PlantVillege is the dataset used for empirical study in this paper. 

 

Algorithm: Learning based Plant Disease Detection (LbPDD) 

Input: PlantVillege dataset D 

Output: Disease detection results R, performance statistics P 

1. Begin 

2. (T1, T2)PreProcess(D) 

3. model CreateCNNModel() 

4. Update model by adding conv layers 

5. Update model by adding pooling layers 

6. Update model by adding FC layers 

7. Compile the model 

8. modelTrainModel(T1) 
9. RClassify(model, T2) 

10. PPerformanceEvaluation(R) 

11. Print R 

12. Print P 

13. End 

Algorithm 1 Learning based Plant Disease Detection (LbPDD) 

 

As presented in Algorithm 1, it takes PlantVillege dataset as input and performs supervised learning process to learning from 

training data and predict diseases on given test samples. In the process, the algorithm divides dataset into training and test sets. 

Then the CNN model is created and it is updated with convolutional, pooling and fully connected layers as illustrated in Figure 2. 

The model is trained with T1 (training data) and the resulted model is used for prediction of diseases using test data T2. The 

results of predictions and statistics pertaining to performance are final outcomes of the proposed algorithm.  
 

IV. EXPERIMENTAL RESULTS 

 

We made experiments with a prototype application built. The environment used for developing application is Anaconda, a 

Python data science platform, where the application is implemented. PlantVillege dataset [31] is used for empirical study. We 

tested the system with unlabelled samples from the dataset and also live leaf images taken from agricultural crops.  

 

 
Fig 3 Results of Detection Process 

 
As presented in Figure 3, the proposed system is able to correctly classify given test images. The first image is found to be 

healthy and the second image is found to be Tomato Target Spot disease.  
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Fig 4 More Results of Disease Prediction Results 

 

As presented in Figure 4, the proposed system is able to detect three different kinds of diseases in three plants such as 

Tomato, Potato and Pepper Bell.  

 

 
Fig 5 Confusion Matrix for Multi-Class Classification 

 

As presented in Figure 5, the experimental results are provided in terms of confusion matrix for multi-class classification.  

 

 
Fig 6 Experimental Results in Terms of Loss 

 

As presented in Figure 6, the experimental results in terms of training loss and validation loss are visualized. Less in loss 

value indicates better performance. The loss is reduced as the number of epochs is increased.  
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Fig 7 Experimental Results in Terms of Accuracy 

 

As presented in Figure 7, the experimental results in 

terms of training accuracy and validation accuracy are 

visualized. Higher in accuracy value indicates better 

performance. The accuracy is increased as the number of 

epochs is increased. The proposed model showed highest 
performance with 96.98% accuracy with 25 epochs. 

 

V. CONCLUSION AND FUTURE WORK 

 

We proposed an intelligent framework known as Deep 

Learning Framework for Precision Farming (DLF-PF). This 

framework exploits deep learning approach known as 

Convolutional Neural Network with enhanced layers for 

automatic detection of crop diseases. We proposed an 

algorithm known as Learning based Plant Disease Detection 

(LbPDD). This algorithm is designed to support CNN based 

supervised learning for detection of crop diseases. 
PlantVillege is the dataset used for empirical study in this 

paper. Our empirical study has revealed that the proposed 

model showed better performance over existing methods. 

The proposed model showed highest performance with 

96.98% accuracy. In future, we intend to improve our 

framework with a hybrid feature selection method along 

with deep learning for leveraging leaf disease detection 

process.  
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