Implementation of a Personalized Adaptive Mobile Learning System

P.E. Akinwole¹; O. K. Boyinbode²; M.T. Kinga ³; P.K. Olotu⁴
Department of Information Technology, Federal University of Technology, Akure, Nigeria

Abstract:- A notable obstacle in the field of education is the restricted flexibility of traditional teaching approaches. These approaches frequently take a consistent stance, disregarding the wide range of learning preferences that pupils possess. This leads to a decrease in student motivation and engagement, which in turn produces below-average learning outcomes. This research focuses on creating an adaptive learning system that classifies learners using the Felder-Silverman model in order to overcome these problems. After then, this system creates customized recommendations based on user choices in an effort to improve learning results. In order to keep enhancing the system’s efficacy, the study have also included a feedback mechanism and performance evaluation.

Keywords:- Personalized Learning, Mobile Learning, Recommendation Systems, user Preferences, Learning Experiences, Student Engagement, Adaptive Learning, Learning Styles, Educational Technology.

I. INTRODUCTION

Within the ever-changing field of education, mobile learning, or m-learning, has become a disruptive force that is redefining traditional learning environments and pedagogical techniques. According to O’Malley et al. [1], m-learning is any type of learning that takes place outside of a set location and makes use of mobile technologies to enhance learning chances. This term emphasizes how learners are fluidly mobile, interacting with a variety of contexts and technologies to blur the boundaries between formal and informal learning environments.

The proliferation of mobile devices such as smartphones and tablets has empowered learners to access educational resources anytime, anywhere, fostering a culture of continuous and ubiquitous learning. This paradigm shift in learning has profound implications, necessitating a reevaluation of instructional design and delivery methods by educators and institutions.

Central to this paradigm shift is the acknowledgment of learners’ diverse preferences and characteristics. Traditional one-size-fits-all approaches are insufficient to address the varied needs of learners in the digital age. Consequently, personalized learning has emerged as a promising pedagogical approach that tailors’ educational experiences to individual learners’ preferences, abilities, and trajectories.

Personalization in learning encompasses adapting content, pace, instructional strategies, and assessment methods to align with learners' unique characteristics and needs. This individualized approach enhances learner engagement, motivation, and learning outcomes significantly.

The incorporation of learning style models, such as the Felder and Silverman model [6], is crucial for developing personalized instructional strategies and content delivery mechanisms.

This model categorizes learning preferences based on dimensions like active/reflective and visual/verbal, providing a robust framework for personalized learning applications.

In light of this, the purpose of this study is to investigate how to develop a customized mobile learning system that takes into account the diverse character of learners as well as the ever-changing educational environment. This system creates adaptive, interesting, and productive learning experiences across a range of topics and educational levels by utilizing data analytics, pedagogical theories, and emerging technologies.

II. REVIEW OF RELATED WORK

In this section, reviewed literature review related to Adaptive system, Personalized mobile learning system will be explored:

In a study on the impact of adaptive learning technology on student results, Johnson and Brown [9] emphasized the significance of customized approaches to accommodate a range of learning preferences and styles.

A study conducted by Thompson et al. [17] examined how mobile learning interfaces affected students' engagement and retention of information, highlighting the importance of carefully designed interfaces in improving the whole learning process.

In their investigation into the use of recommendation algorithms to the customization of instructional materials, Garcia and Martinez [8] shown how these systems have the capacity to adjust to individual preferences and enable customized learning opportunities.
In a comparative examination of adaptive learning systems, Lee et al. [12] evaluated the impact of these systems on student performance and emphasized the need for adaptive systems to continuously improve in order to satisfy changing educational expectations.

Wang and Chen [19] investigated the potential and constraints of personalized mobile learning systems, addressing important issues including data security and user privacy while also spotting ways to improve personalized learning experiences through.

Related Works and Applications

With its adaptable learning platform, Khan Academy has completely changed the face of online education. It was founded by Salman Khan and uses a mastery-based learning approach to provide individualized instruction in a range of areas. By adjusting difficulty levels and content dynamically in response to learners' success, the platform allows for the customization of the educational experience. Khan Academy's sophisticated adaptive algorithms are the reason behind its efficacy. The platform continuously assesses students' performance as they use it, finding their strengths and shortcomings so that upcoming sessions can be more specifically tailored to them. Additionally, the system tracks students' progress, providing them with information about their strengths and areas for development. The methodology used by Khan Academy goes beyond the conventional one-size-fits-all concept and makes education available to everyone.

Duolingo - Personalized Language Learning

The language-learning program Duolingo is an example of how technology and individualized instruction may coexist. Its adaptive algorithms modify language lessons to the level, speed, and preferences of individual students. By using spaced repetition techniques, changing focus based on user performance, and offering real-time feedback for an effective and entertaining learning process, Duolingo gamifies the language learning experience. The secret to Duolingo's success is its dedication to individualized language instruction, which takes into account each learner's particular path. Duolingo is a prime example of individualized language learning, demonstrating the ability of technology to meet individual learning needs through the integration of adaptive technologies, gamification aspects, and spaced repetition tactics.

III. SYSTEM ARCHITECTURE

A comprehensive architectural design for a personalized adaptive mobile learning system was developed. The system aims to revolutionize the educational experience by dynamically tailoring learning content and interactions based on individual user profiles and real-time contextual data. Key architectural components include Context-aware Data Collection, User Interface, Feedback and Iterative Improvement, Adaptation Engine, User Interface Management, Security, Scalability and Performance Optimization, and Continuous Monitoring and Maintenance are some of the features that this system offers. The integration of these components forms a robust and scalable system capable of delivering personalized learning experiences to users. See Figure 1.

User Profile Management:
User Profile Management serves as the foundation of the system, capturing crucial information about user preferences, learning styles, and contextual factors. A centralized database stores user profiles, which are updated dynamically based on user interactions and feedback.

Initial Questionnaire and Profile Updates:
An initial questionnaire gathers user preferences during onboarding, allowing users to update their profiles over time. This component ensures that the system maintains accurate and up-to-date user data for personalized adaptation.

Context-aware Data Collection:
Context-aware Data Collection utilizes technologies like GPS and sensors to capture real-time user context, including location, environmental conditions, and device capabilities. This data informs adaptive content delivery and user experience customization.

Learning Material Repository:
The Learning Material Repository houses a diverse range of educational content, categorized and tagged for personalized recommendations. Content includes text-based materials, multimedia resources, interactive exercises, and assessments.

Adaptation Engine:
The system's intelligent center is the Adaptation Engine., employing recommendation algorithms, rule-based engines, and machine learning models to personalize learning experiences. It integrates user profiles, contextual data, and feedback to deliver tailored content and interactions.

User Interface:
The User Interface provides a user-friendly platform for learners to access personalized content and engage with learning materials. It incorporates intuitive design principles, interactive elements, and responsive layouts for seamless user experiences across devices.

Feedback and Iterative Improvement:
Feedback mechanisms collect user input on suggested materials and system performance, driving iterative improvements to recommendation algorithms, content selection, and user interface design. This continuous feedback loop enhances the system's adaptability and effectiveness.

Security and Data Privacy:
Robust security measures, including encryption protocols, access controls, and compliance frameworks, safeguard user data and ensure privacy. These measures are integrated across all components to maintain user trust and regulatory compliance.
Scalability and Performance Optimization:

Scalability and Performance Optimization strategies, such as load balancing, caching, and cloud infrastructure, ensure that the system can handle increasing user interactions and data processing while maintaining responsiveness and reliability.

Conclusion:

The architectural design presented in this paper lays the groundwork for a state-of-the-art personalized adaptive mobile learning system. By integrating advanced technologies, user-centric design principles, and robust security measures, the system offers a personalized and engaging learning experience, paving the way for future innovations in educational technology.

System Processing: The system processes the user's responses, applying the Felder-Silverman Learning Model to categorize their learning style.
Tailored Recommendations: Leveraging the identified learning style, the system generates personalized recommendations for study materials, balancing visual, verbal, active, and reflective, sequential elements.

Summary on Scenario 1:

The learner, shaped by diverse preferences encompassing visual, sensing, active, and sequential elements, engages in a tailored and effective learning experience, seeking clarity, practicality, collaboration, and systematic understanding.

Scenario 2: Interactive Learning Scenario

User Profile: A student preparing for exams.

Summary on Scenario 2:

These recommendations aim to guide students preparing for exams by aligning the learning strategies with their individual preferences and styles.

IV. INTERVIEW AND DATA ANALYSIS

This part offers a synopsis of the interview-based study methodology, describes the data analysis technique that was used, and conducts a thorough examination of m-learning preferences in relation to the learning styles of specific learners. A single researcher guided 123 university students who participated in the study on an individual basis. After the interviews were taped, they were transcribed to allow for a thorough data analysis. To participate in the study, each subject gave their informed consent. Each quiz took, on average, eight minutes to complete.

One of the most important aspects of developing the adaptive mobile learning system was training it with answers to a carefully constructed set of 12 questions. These inquiries, which drew inspiration from the Felder-Silverman learning styles model, served as the foundation for understanding users' unique learning preferences, styles, and contextual inclinations.
The 12 questions were carefully crafted to address a variety of aspects pertaining to learners' preferences; see Figure 3 for more information.

Fig 2 Felder Silverman Learning Model

Fig 3 Diagram Showing the Questionnaire Obtained in Excel Format
The questions were divided into categories that corresponded to the Felder-Silverman model's dimensions, including visual/verbal, sensing/intuitive, sequential/global, and active/reflective. Every question was thoughtfully created to collect data that would help customize the user's learning experience. We have crafted our survey questions to delve into certain facets of the Felder and Silverman Learning Styles Model, providing insightful information about users' inclinations about characteristics like Active versus Reflective, Sensing versus Intuitive, Visual versus Verbal, and Sequential versus Global. With the help of these data, users were categorized and the Personalized Adaptive Mobile Learning System was tailored to suit their preferred learning modes. When the system was being developed, tokenization was essential to matching user inputs to Felder and Silverman Learning Styles Model sub.

The meticulous procedure went beyond simple word-level analysis and probed users' preferred methods of learning in order to extract the nuances present in their answers. Figure 5 presents an overview of the distribution of learning styles based on the survey processing phase.
The Felder and Silverman Learning Styles Model was used to carefully process the survey responses, tokenizing them and classifying them into subgroups. This distribution provides important information about the most common learning styles within the user population. Greater frequency in particular categories indicates prevailing preferences, which form the basis of our Personalized Adaptive Mobile Learning System's later personalization and adaptation procedures. Comprehending this distribution is essential to customizing content recommendations that align with the wide range of user learning preferences. See the visualization in Figure 6 below.

![Distribution of Users Learning Profiles](image)

Fig 6 A Visual Depiction of the 123 users' Learning Preferences

Tokenization was employed by the system to enhance its comprehension of user expressions, hence facilitating an intricate alignment with the intricacies of the Felder and Silverman Learning Styles Model. This method made a substantial contribution to the system's ability to provide users with tailored and adaptable learning recommendations based on a deep understanding of their preferred learning styles.

The research, which entailed a painstaking procedure focusing on replies obtained from a set of carefully constructed questions, was used to define learning style classifications. The basis for classifying users according to their preferred learning styles was provided by these carefully crafted questions that were divided into four primary categories: processing, input, perception, and understanding. This method of classifying learning styles guarantees a detailed and personalized comprehension of the user's learning preferences. The system may personalize material recommendations that align with the most popular learning style by taking into account the majority response within each category. This makes learning more interesting and productive. The suggestions are based on an examination of user answers to an extensive survey that looks at preferences related to different aspects of learning. By utilizing the knowledge gathered from this data, the system creates unique interactive tasks for every user, resulting in a flexible and captivating educational process. In order to improve the user's educational experience, the recommendations are tailored to individual preferences in processing, perception, input, and understanding. It has individualized learning suggestions based on the Felder-Silverman paradigm for each user. Every participant has been allocated a User ID, which ranges from 1000 to 1123, allowing for customized and individualized learning. The utilization of customized advice guarantees an enhanced and captivating learning experience for every user, cultivating an adaptive mobile learning system that is unique to them. Refer to figure 6.

V. PERFORMANCE EVALUATION

An extensive performance assessment and feedback mechanism have been smoothly incorporated into the system to gauge user happiness and the efficacy of the personalized mobile learning system in place. This all-encompassing methodology incorporates both quantitative and qualitative evaluations, offering a thorough understanding of the system's impact on its users.

- **General Performance Satisfaction:**
 On a scale of 1 to 5, users indicated how satisfied they were with the learning recommendation system and how well it fulfilled their educational needs. Figure 7 shows this quantitative evaluation and the effectiveness of the system's performance.

![Overall Performance Evaluation](image)

Fig 7 Overall Performance Evaluation

- **Alignment of Recommendations with Learning Objectives:**
 The main focus of the evaluation was how well suggested learning resources matched users' learning objectives. This evaluation measures how well the system can adjust to users' evolving educational needs. For more information, see Figure 8.
Fig 8 Relevance of Recommendations of Learning Goals

- **User-Friendliness and Usability:**
 Users evaluated the system's usability and convenience of use, providing feedback on areas for improvement and the efficacy of the user interface.

Fig 9 Ease of use and User-Friendliness

- **User-Generated Improvement Suggestions:**
 Users provided specific suggestions for improving the system, providing in-depth analysis of user expectations and possible areas for development.

Fig 10 User-Defined Suggestions for Improvement

- **Gathering Additional Comments and Feedback:**
 In order to add depth to the review with a variety of user views, users were urged to offer any extra comments or feedback regarding their experience with the system.

Fig 11 Collection of Additional Comments and Feedback

- **A Customized Mobile Learning (m-Learning) Application Tailored to Individual m-Learning Preferences.**
 There are two stated instances where students have different preferences for m-learning.

VI. **CONCLUSION AND FUTURE WORKS**

In order to determine the wide range of learning preferences among the 123 participants surveyed, this study examined customized learning using the Felder-Silverman Learning Model. The Felder-Silverman categories analysis of the responses gave important information about the most common learning styles. Customized recommendations are made available to newcomers via an easy-to-use Google Form, showcasing the project's potential to revolutionize teaching methods. This approach promotes inclusion and active engagement by fusing user-friendly interfaces with data-driven insights. Future developments could incorporate machine learning techniques for automated and improved learning recommendations. Furthermore, expanding the dataset and carrying out a more thorough user survey may improve the learning model’s resilience and applicability. Working together with academic institutions or platforms, we might implement and assess the system in real-world settings, providing insightful information and confirming the effectiveness of our recommendations for individualized learning. Frequent system upgrades and improvements based on user feedback and changing pedagogical approaches would guarantee the system’s applicability and flexibility in a changing educational environment.
REFERENCES

