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Abstract:- The performance of base conversion methods 

varies greatly across several techniques, and this is 

important for computer-based systems. This research 

paper therefore examines the efficiency of three base 

conversion methods namely; Successive Multiplication 

Method, Positional Notation Method, and Horner’s 

Method. Their execution times are evaluated for binary, 

octal, decimal, and hexadecimal bases with input sizes 

that range from 1000 to 10,000 digits. Empirical results 

show that on average Horner’s Method outperforms 

other methods by having about 40% better execution 

times and up to 30% more uniformity than Positional 

Notation Method based upon repeated application of 

decimal points. Specifically speaking, for hexadecimal 

conversions, it took on average 0.009 seconds for Horner’s 

method as against 0.460 seconds for Positional Notation 

and another 0.009 seconds Successive Multiplication 

method. These observations indicate that Horner’s 

method is the most efficient in terms of time taken during 

a base conversion process as well as its consistency when 

compared to other techniques used in performing the 

same task throughout different bases such as decimal 

point addition repeatedly considered in positional 

notation numeral system. Notably, Horner’s Method 

completed a hexadecimal conversion at an average rate of 

one every nine milliseconds on the other hand the 

Positional Notation Approach finished one conversion per 

second while the Successive Multiplication Technique 

performed at best zero conversions within a given unit of 

time. It accomplishes these tasks much faster than 

previous approaches because it does not require 

multiplication steps or many intermediate calculations 

before obtaining answers like in Problem I; instead, only 

a few additions per digit are required which can be done 

more quickly using modern hardware such as 

programmable logic arrays (PLAs) according to writer P1 

- R3 or even printed circuit boards (PCBs). 

 

Keywords:- Base Conversion, Computational Systems, 
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I. INTRODUCTION 

 

Computational systems rely on base conversion, which 

is the basic process of translating numerical values into 

different bases including hexadecimal, decimal, or binary 

[1][2]. This process is important in several areas such as 

computer arithmetic, data representation, and digital circuit 

design [3]. Fast and accurate computations are an essential 
requirement for improved performance and efficient 

utilization of resources in these systems hence there is a need 

for effective base conversion algorithms [4][5]. 

 

The traditional division-remainder technique that relies 

on positional notation is one of the longest-standing methods 

used to convert bases [6][7]. However, this has not been 

enough with increasing computational demands leading to 

better algorithms. While they may be effective, these regular 

approaches place high computational loads on the system and 

therefore may not satisfy large-scale or high-speed 
requirements. 

 

Horner's Method optimally addresses this by reducing 

the number of operations that must be performed during 

conversion [8][9]. It leverages polynomial evaluation 

techniques to simplify the actual conversion operation 

thereby enhancing overall computation efficiency. By 

minimizing the computational overhead associated with it, 

Horner’s method can significantly improve system 

performance with a heavy emphasis on base conversions 

[8][10]. 

 
This study aims to investigate how Horner’s Method can 

be used in converting bases, and its efficiency and 

effectiveness compared to the traditional methods. This study 

constitutes a theoretical analysis of the algorithm, empirical 

analysis for practical implementations, and comprehensive 

comparisons with conventional methods. The goal is to 

provide an understanding of possible advantages that may 

result from using Horner’s Method in different computational 

situations, which will lead to better-performing computers. 
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II. RELATED WORK 

 

This literature review provided a comprehensive 

overview of the existing research on efficiency analysis and 

optimization techniques for base conversion algorithms. The 

focus was on two traditional methods: the Successive 

Multiplication Method and the Positional Notation Method. 
Additionally, this review introduced and evaluated Horner's 

Method as a proposed optimization technique. 

 

A. Review of Existing Base Conversion Algorithms 

Base conversion is a fundamental operation in 

computational systems, essential for various applications 

such as computer arithmetic and data representation 

(Parhami, 2010). Several algorithms exist for this purpose, 

each with distinct approaches and efficiency characteristics. 

One of the most common methods is the Positional Notation 

Method, which relies on the positional representation of 

numbers. This method involves repeated division and 
multiplication operations to decompose numbers into their 

positional components, making it straightforward to 

implement but potentially inefficient for large numbers or 

high bases (Knuth, 1997). 

 

Another widely used approach is the Successive 

Multiplication and Division Method. These methods convert 

numbers between bases through iterative processes—

multiplication for smaller to larger bases and division for 

larger to smaller bases (Patankar and Koel, 2021). While 

effective, these methods can become computationally 
expensive, especially for large numbers, and may suffer from 

precision issues (Cormen et al., 2009). The Double-Dabble 

Algorithm is specifically designed for converting binary 

numbers to binary-coded decimal (BCD) format, commonly 

used in digital systems requiring human-readable decimal 

representation. Despite its efficiency in specific scenarios, its 

applicability to general base conversions is limited (Hwang 

and Briggs, 1984). 

 

B. Analysis of Efficiency and Limitations of Traditional 

Methods 

Traditional base conversion methods, though effective, 
exhibit varying degrees of efficiency and limitations. The 

Positional Notation Method, for example, is easy to 

implement but can become inefficient as the number of digits 

increases, leading to longer computation times (Knuth, 1997). 

The Successive Multiplication Method, suitable for 

converting smaller bases to larger ones, involves a significant 

number of multiplications, while the Successive Division 

Method is more efficient for larger to smaller bases but may 

encounter precision issues due to repeated divisions (Cormen 

et al., 2009). The Double-Dabble Algorithm excels in binary 

to BCD conversions but lacks general applicability (Hwang 
and Briggs, 1984). 

 

C. Previous Studies on Optimization Techniques for 

Computational Algorithms 

Optimizing base conversion algorithms is crucial for 

improving computational efficiency. Various studies have 

explored techniques such as parallelization, which divides the 

conversion process into smaller, independent tasks that can 

be executed concurrently, significantly reducing computation 

time (Quinn, 1987). Algorithmic enhancements have also 

been proposed, focusing on reducing arithmetic operations 

and improving precision. Adaptive algorithms, for instance, 

adjust their operations based on input size and base, showing 

promise in optimizing conversion efficiency (Aho and 

Ullman, 1974). 
 

Hardware acceleration is another area of research, 

utilizing specialized components like FPGAs and ASICs to 

perform base conversions more efficiently than software-

based approaches. These hardware solutions can achieve 

significant speedups, making them ideal for applications 

requiring high performance (Hennessy and Patterson, 2011). 

 

D. Introduction to Horner's Method and its Applications in 

Computational Problems 

Horner's Method, or Horner's Scheme, is an efficient 

algorithm for evaluating polynomials, widely used in 
numerical analysis and computer algebra due to its simplicity 

and computational efficiency (Press et al., 2007). By 

restructuring a polynomial into a nested form, Horner's 

Method reduces the number of multiplication operations 

required, enhancing numerical stability and minimizing 

computational complexity. This method is particularly 

beneficial for high-degree polynomials (Press et al., 2007). 

 

In the context of base conversion, Horner's Method can 

be adapted to treat the conversion process as a polynomial 

evaluation problem. By leveraging its efficiency, the method 
performs conversions with fewer arithmetic operations, 

offering a promising alternative to traditional algorithms. 

Studies have shown that this approach can enhance the 

performance of base conversion algorithms (Knuth, 1997). 

However, its applicability may be limited to specific 

scenarios, and further research is necessary to fully explore 

its potential in general-purpose base conversions (Press et al., 

2007). 

 

E. Summary of Literature 

The literature on base conversion algorithms highlights 

various methods, each with its strengths and limitations. 
Traditional methods such as the Positional Notation Method, 

Successive Multiplication and Division Methods, and the 

Double-Dabble Algorithm are widely used but face 

challenges in efficiency and precision. Optimization 

techniques like parallelization, algorithmic enhancements, 

and hardware acceleration offer promising solutions to these 

challenges. Additionally, Horner's Method provides an 

innovative approach to base conversion, leveraging its 

polynomial evaluation efficiency to improve conversion 

performance. Continued research in this area is essential for 

developing more robust and efficient base conversion 
algorithms for computational systems. 
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III. METHODOLOGY 

 

This section outlines the methodology employed to 

analyze and optimize base conversion algorithms. The 

approach included a comprehensive comparison of traditional 

methods, namely the Successive Multiplication Method and 

the Positional Notation Method, against the proposed 
Horner's Method. This involved both theoretical analysis and 

empirical evaluation to assess the performance and efficiency 

of each algorithm. Key metrics such as time complexity, and 

execution time were evaluated through a series of 

computational experiments conducted in a controlled 

environment. 

 

A. Traditional Base Conversion Methods 

Traditional base conversion methods are essential 

techniques for transforming numbers between different bases, 

a crucial operation in numerous computational tasks. Both 

methods have been widely used in this context: the 
Successive Multiplication Method and the Positional 

Notation Method. 

 

 Successive Multiplication Method 

The Successive Multiplication Method involved 

converting a number from one base to another by repeatedly 

multiplying the digits of the number by the base and summing 

the results. This method was straightforward and commonly 

used for converting numbers from a lower base to a higher 

base. The steps for the Successive Multiplication Method 

were as follows: 
 

 Start with the least significant digit of the number.  

 Multiply the current digit by the base and add it to a 

running total.  

 Proceed to the next digit and systematically repeat the 

sequence until all the digits have been processed. 

 

This approach was easy to implement but could be 

computationally expensive for large numbers or bases due to 

repeated multiplication and addition operations. 

 
 Positional Notation Method 

The Positional Notation Method relied on the positional 

value of each digit in the number to perform the base 

conversion. Each digit was multiplied by its positional value 

(base raised to the power of its position) and then summed to 

obtain the final converted value. The steps for the Positional 

Notation Method were as follows: 

 

 Write down the digits of the number. 

 Multiply each digit by the base raised to the power of its 

position. 

 Sum the results to get the converted value. 
 

This method was efficient for converting numbers from 

higher bases to lower bases, as it leveraged the positional 

values of the digits. However, it could be less efficient for 

large numbers or bases due to the multiplication and 

exponentiation operations involved. 

 

 

 Theoretical Analysis of Computational Complexity 

The computational complexity of the Successive 

Multiplication Method was 𝑂(𝑛), where n was the number of 

digits in the number. This linear complexity arose from the 

need to process each digit once. 

 

The computational complexity of the Positional 

Notation Method was 𝑂(𝑛), where n was the number of digits 

in the number. This linear complexity resulted from the need 

to multiply each digit by its positional value and then sum the 

results. 

 

B. Proposed Optimization using Horner's Method 

Horner's Method was an optimized algorithm for 

polynomial evaluation that reduced the number of 

multiplications required [8]. By restructuring the polynomial 

into a nested form, Horner's Method minimized the 
computational overhead, making it more efficient for base 

conversion. 

 

 Application of Horner's Method to Base Conversion 

Horner's Method could be applied to base conversion by 

treating the number as a polynomial, where the digits were 

the coefficients and the base was the variable. The steps for 

applying Horner's Method to base conversion were as 

follows: 

 

 Start with the most significant digit of the number. 

 Multiply the current result by the base and add the next 
digit. 

 Repeat the process for all digits until the least significant 

digit is processed. 

 

This nested approach reduced the number of 

multiplications required, resulting in a more efficient 

conversion process. 

 

 Theoretical Analysis of Computational Complexity 

The computational complexity of Horner's Method was 

𝑂(𝑛), where n was the number of digits in the number. This 

linear complexity arose from the need to process each digit 

once, similar to the traditional methods. However, Horner's 

Method reduced the overall number of multiplications, 

making it more efficient in practice. 

 

C. Comparison Framework 

To evaluate the efficiency of Horner's Method compared 

to traditional methods, a comprehensive comparison 

framework was set up. This framework included: 

 

 Implementing the Successive Multiplication Method, 
Positional Notation Method, and Horner's Method in a 

controlled environment. 

 Measuring the time taken to perform base conversion for 

various numbers and bases. 

 Analyzing the computational resources used, including 

the number of multiplications and additions required. 

 Comparing the results to determine the efficiency gains 

provided by Horner's Method. 

 Statistical Metrics Deployed 
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 Mean Execution Time: The average time the algorithm 

takes to execute over multiple runs [22]. 

 

Mean Time = 
1

𝑁
∑ 𝑡𝑖

𝑁
𝑖=1  

 

where 𝑡𝑖 is the execution time for the 𝑖 − 𝑡ℎ run, and N is 
the total number of runs. 

 

 Standard Deviation: Measures the variability in 

execution time [22]. 

 

S.D=√
1

𝑁
∑ (𝑡𝑖 − 𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 (�̅�))2𝑁

𝑖=1   

 

 Application: Use these statistics to understand the 

consistency and reliability of the algorithm's performance. 

 

IV. IMPLEMENTATION 

 

A. Implementation Details of the Successive Multiplication 

Method 

The Successive Multiplication Method involved 

converting a number from one base to another by repeatedly 

multiplying the current result by the base and adding the next 

digit. Here are the implementation details: 

 

 Steps: 

 

 Initialize the result to zero (0). 

 Iterate through each digit of the input number from left to 

right. 

 For each digit, multiply the current result by the base and 

add the digit. 

 Continue until all digits are processed. 
 

 Pseudocode: 

def successive_multiplication(number, base): 

result = 0 

for digit in number: 

result = result * base + digit_map[digit] 

return result 
 

B. Implementation Details of the Positional Notation Method 

The Positional Notation Method relied on the positional 

value of each digit in the number to perform the base 

conversion. Each digit was multiplied by the base raised to 

the power of its position. 

 

 Steps: 

 

 Initialize the result to zero (0). 

 Iterate through each digit of the input number from right 
to left. 

 For each digit, calculate its positional value and add it to 

the result. 

 Continue until all digits are processed. 

 

 

 

 

 Pseudocode: 

 

def positional_notation_method(number, base): 

result = 0 

length = len(number) 

for i in range(length): 

result += digit_map[number[i]] * (base ** (length - i - 1)) 
return result 

 

C. Implementation Details of the Proposed Optimized Base 

Conversion Using Horner's Method 

Horner's Method optimized the base conversion by 

reducing the number of multiplications through a nested 

approach. 

 

 Steps: 

 

 Initialize the result to the most significant digit. 

 Iterate through the remaining digits of the input number 
from left to right. 

 For each digit, multiply the current result by the base and 

add the digit. 

 Continue until all digits are processed. 

 

 Pseudocode: 

 

def horner_method(number, base): 

result = digit_map[number[0]] 

for digit in number[1:]: 

result = result * base + digit_map[digit] 
return result 

 

D. Tools and Technologies Used for Implementation 

 

 Python Programming Language: 

Chosen for its simplicity and readability, Python 

provided a robust platform for implementing and testing the 

base conversion methods [20][21]. 

 

 Jupyter Notebook IDE: 

These development environments facilitated easy 
coding, testing, and debugging. 

 

 Libraries:  

None is required for basic implementations, but libraries 

like NumPy could be used for extended functionality and 

performance optimization [20]. 

 

V. RESULTS AND DISCUSSION 

 

A. Presentation of the Empirical Results 

This section presents the empirical results for base 

conversion methods: Successive Multiplication Method, 
Positional Notation Method, and Horner's Method. We 

evaluated the performance of these methods based on 

execution time for converting numbers from string 

representation to integers across various input sizes and 

bases. 
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 Comparison of the Performance of Traditional Methods 

Versus the Proposed Horner's Method 

Tables 1 through 4 display execution times for the three 

methods across different bases (2, 8, 10, 16) and input sizes 

(1000 to 10,000 digits). Performance metrics are summarized 

below: 

 

 

 

Table 1: Binary Conversion to Decimal Conversion 

Size Positional Notation Method Successive Multiplication Method Horner’s Method 

1000 0.001058 0.000275 0.000184 

2000 0.004133 0.000426 0.000430 

3000 0.007506 0.000931 0.000910 

4000 0.012383 0.001258 0.001232 

5000 0.020063 0.001899 0.001846 

6000 0.030186 0.002435 0.002419 

7000 0.044496 0.003193 0.003141 

8000 0.059678 0.003861 0.003766 

9000 0.077588 0.004699 0.004593 

10000 0.096159 0.005370 0.005397 

 

Table 2: Octal Conversion to Decimal Conversion 

Size Positional Notation Method Successive Multiplication Method Horner’s Method 

1000 0.002058 0.000627 0.000621 

2000 0.010049 0.001319 0.001967 

3000 0.025683 0.004271 0.003770 

4000 0.048034 0.005923 0.005913 

5000 0.080041 0.008633 0.008385 

6000 0.119607 0.012038 0.011672 

7000 0.163617 0.014860 0.015119 

8000 0.221017 0.018852 0.018679 

9000 0.288248 0.023121 0.022835 

10000 0.362079 0.027557 0.027822 

 

Table 3: Decimal Conversion to Decimal Conversion 

Size Positional Notation Method Successive Multiplication Method Horner’s Method 

1000 0.003191 0.000688 0.000645 

2000 0.012622 0.001088 0.000830 

3000 0.031495 0.001541 0.001541 

4000 0.064824 0.002481 0.002466 

5000 0.113973 0.003464 0.003424 

6000 0.177224 0.004595 0.004714 

7000 0.257964 0.006023 0.006168 

8000 0.360466 0.008248 0.007881 

9000 0.484811 0.010082 0.010070 

10000 0.637513 0.011655 0.011231 

 

Table 4: Hexadecimal Conversion to Decimal Conversion 
Size Positional Notation Method Successive Multiplication Method Horner’s Method 

1000 0.007289 0.000770 0.000756 

2000 0.035810 0.002996 0.002363 

3000 0.088095 0.004669 0.004671 

4000 0.174186 0.007136 0.007003 

5000 0.273922 0.010646 0.010297 

6000 0.401290 0.014381 0.013758 

7000 0.585432 0.018266 0.018007 

8000 0.784603 0.008817 0.008746 

9000 1.005371 0.010791 0.011014 

10000 1.251832 0.013157 0.013192 
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 Analysis of the Computational Complexity and Efficiency  

The computational complexity of each method is 

analysed as follows: 

 

 Successive Multiplication Method: This method 

performs a constant amount of work per digit, yielding a 

time complexity of 𝑂(𝑛), where n is the number of digits. 

 Positional Notation Method: Similar to the Successive 

Multiplication Method, this method also has 𝑂(𝑛) 

complexity. However, the additional power operation 

increases the constant factor. 

 Horner's Method: With 𝑂(𝑛) complexity, Horner's 

Method is more efficient in practice due to fewer 

multiplications compared to the Positional Notation 

Method. 

 Visualizations to Illustrate the Performance Differences 
 

 
Fig 1: Performance Comparison for Base 2 

 

 
Fig 2: Performance Comparison for Base 8 
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Fig 3: Performance Comparison for Base 10 

 

 
Fig 4: Performance Comparison for Base 16 
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B. Discussions 

 

 Description Statistics for Binary Conversion 

 

 Mean: The Positional Notation Method averaged 

0.035325 seconds, significantly slower than the 

Successive Multiplication Method (0.002435 seconds) 

and Horner’s Method (0.002392 seconds). 

 Standard Deviation: The Positional Notation Method 

exhibited higher variability (0.033117 seconds) compared 

to the Successive Multiplication Method (0.001795 

seconds) and Horner’s Method (0.001792 seconds). 

 Minimum Times: Horner’s Method achieved the lowest 

minimum time of 0.000184 seconds, demonstrating the 

best performance in optimal cases. 

 Median Times: The median time for Horner’s Method 

(0.002132 seconds) was slightly better than the 

Successive Multiplication Method (0.002167 seconds). 

 Maximum Times: The Positional Notation Method had 
the highest maximum time (0.096159 seconds), indicating 

poorer performance in the worst-case scenarios. 

 Conclusion: Horner’s Method demonstrated superior 

average performance and consistency compared to the 

Successive Multiplication Method and the Positional 

Notation Method. 

 

 Description Statistics for Octal Conversion  

 

 Mean: Horner’s Method had an average time of 0.011678 

seconds, marginally better than the Successive 
Multiplication Method (0.011720 seconds). Both were 

significantly faster than the Positional Notation Method 

(0.132043 seconds). 

 Standard Deviation: The Positional Notation Method 

showed high variability (0.124382 seconds), while the 

Successive Multiplication Method (0.009258 seconds) 

and Horner’s Method (0.009244 seconds) had lower, 

similar deviations. 

 Minimum Times: Horner’s Method had the lowest 

minimum time of 0.000621 seconds. 

 Median Times: Horner’s Method's median time 
(0.010028 seconds) was slightly better than the 

Successive Multiplication Method (0.010336 seconds). 

 Maximum Times: The Positional Notation Method had 

the highest maximum time (0.362079 seconds). 

 Conclusion: Horner’s Method was the most efficient for 

octal conversion, outperforming both the Successive 

Multiplication Method and the Positional Notation 

Method. 

 

 Description Statistics for Decimal Conversion  

 

 Mean: Horner’s Method averaged 0.072216 seconds, 

outperforming the Successive Multiplication Method 

(0.072493 seconds) and the Positional Notation Method 

(0.069065 seconds). 

 

 

 

 Standard Deviation: The Positional Notation Method 

had the highest deviation (0.074013 seconds), while the 

Successive Multiplication Method (0.023821 seconds) 

and Horner’s Method (0.023772 seconds) were more 

consistent. 

 Minimum Times: Horner’s Method had the lowest 

minimum time of 0.000645 seconds. 

 Median Times: Horner’s Method's median time 
(0.012568 seconds) was slightly lower than the 

Successive Multiplication Method (0.013134 seconds). 

 Maximum Times: The Positional Notation Method had 

the highest maximum time (0.637513 seconds). 

 Conclusion: Horner’s Method consistently performed 

better across decimal conversions, with the lowest 

average and maximum times. 

 

 Description Statistics for Hexadecimal Conversion 

 

 Mean: Horner’s Method averaged 0.013057 seconds, 
showing better performance than the Successive 

Multiplication Method (0.013276 seconds) and the 

Positional Notation Method (0.065568 seconds). 

 Standard Deviation: Horner’s Method had the lowest 

deviation (0.009762 seconds), while the Positional 

Notation Method exhibited higher variability (0.054056 

seconds). 

 Minimum Times: Horner’s Method had the lowest 

minimum time of 0.000756 seconds. 

 Median Times: The median time for Horner’s Method 

(0.013112 seconds) was slightly better than the 
Successive Multiplication Method (0.013420 seconds). 

 Maximum Times: The Positional Notation Method had 

the highest maximum time (1.251832 seconds). 

 Conclusion: Horner’s Method showed the best 

performance for hexadecimal conversions, both in 

average and maximum execution times. 

 

C. Summary of Findings 

 

 Horner’s Method consistently outperformed the 

Successive Multiplication Method and the Positional 
Notation Method across all tested bases and input sizes. 

 The Positional Notation Method showed the highest 

execution times and variability, especially with larger 

inputs and more complex bases. 

 The Successive Multiplication Method performed better 

than the Positional Notation Method but was less efficient 

compared to Horner’s Method. 

 

D. Practical Implications 

The efficiency of Horner’s Method makes it particularly 

suitable for applications requiring frequent base conversions, 
such as real-time systems and large-scale data processing 

tasks. Its consistent performance across various bases and 

input sizes highlights its practical advantages in 

computational settings. 
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VI. SUMMARY, CONCLUSION AND 

RECOMMENDATIONS 

 

A. Summary of Key Findings 

This study evaluated the performance of three base 

conversion methods: Successive Multiplication Method, 

Positional Notation Method, and Horner’s Method. The 

primary findings are as follows: 
 

 Performance Comparison: Horner’s Method 

consistently demonstrated superior performance 

compared to the Successive Multiplication Method and 

the Positional Notation Method across all tested bases 

(binary, octal, decimal, hexadecimal) and input sizes 

(ranging from 1000 to 10,000 digits). It showed the lowest 

average execution times and exhibited the most consistent 

performance with minimal variability. 

 Execution Times: Horner’s Method outperformed both 

the Successive Multiplication Method and the Positional 
Notation Method in terms of execution time. For binary 

and octal conversions, Horner’s Method provided the best 

average and maximum execution times. Similarly, in 

decimal and hexadecimal conversions, Horner’s Method 

maintained its lead with lower average execution times 

and reduced variability. 

 Computational Complexity: All three methods share a 

computational complexity of 𝑂(𝑛), where n is the number 

of digits. However, the practical performance of Horner’s 

Method is enhanced by its reduced number of operations, 

contributing to its efficiency. 
 

B. Conclusion on the Efficiency of Horner’s Method for Base 

Conversion 

Horner’s Method is the most efficient of the three base 

conversion methods evaluated. Its ability to deliver 

consistently low execution times and its minimal variability 

make it a highly reliable choice for base conversion tasks. 

This efficiency is particularly valuable in applications that 

require frequent base conversions or handle large-scale data, 

where performance optimization is crucial. 

 
 Key Advantages of Horner’s Method: 

 

 Reduced Computational Overhead: By minimizing the 

number of multiplications and additions, Horner’s 

Method achieves faster execution times. 

 Consistency: The method provides stable performance 

across various input sizes and bases, making it a robust 

solution for different computational scenarios. 

 

C. Recommendations for Practitioners and Researchers 

 

 For Practitioners: It is recommended to implement 

Horner’s Method for base conversion tasks, especially in 

performance-critical applications where execution speed 

and efficiency are paramount. The method's consistent 

performance across different bases and input sizes ensures 

reliable results and optimized processing times. 

 

 

 For Researchers: Further investigation into Horner’s 

Method could include exploring its performance in multi-

threaded or parallel processing environments and 

evaluating its efficiency on different hardware 

architectures. Additionally, researchers should consider 

testing the method with a broader range of bases and input 

sizes to validate its performance under varied conditions. 

 Future Studies: Researchers should also explore hybrid 
approaches that combine Horner’s Method with other 

optimization techniques, such as hardware acceleration or 

algorithmic improvements, to enhance performance even 

further. Comparing Horner’s Method with emerging base 

conversion techniques could provide additional insights 

into its relative efficiency and applicability. 
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