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Abstract:- Assembly of discrete parts guided by 

hardware design specification constitutes the final phase 

in product manufacturing. In the course of mass 

production of components, mating parts with geometric 

or dimensional deviation from their intended design can 

be made acceptable by the identification of suitable pairs 

after analysing design fit and tolerance limits. By 

transforming this application-specific problem into a 

unified mathematical model, an optimal solution can be 

achieved that minimizes the rejection of non-conforming 

fabricated parts. Regardless of the type and range of a 

design fit, the problem can be mapped into a matrix 

using a ranking function defined by the user. The 

ranking function is modifiable as per the user 

requirements and may vary based on the selection 

criteria for an assembly. Based on the type of ranking 

function used, the tabulated matrix is solved using the 

Hungarian minimization/maximization algorithm, which 

is a powerful combinatorial optimization algorithm that 

solves the classical assignment problem in mathematics.  

This approach ensures maximum number of suiting 

pairs as well as nominal suiting of parts with each other 

resulting in high-quality products and maximum 

utilization of fabricated resources. 
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I. INTRODUCTION 

 

A mechanical design comes to life after the assembly 

of its constituent parts according to the engineering design 

drawings. Assembly of parts are convenient, provided all the 

part geometry and dimensions conform to the original 

design dimensions. In the case of a non-conforming 
geometry or dimension, an acceptance study has to be 

carried out to determine the effect of deviation in the 

product design. If the part is not acceptable, salvage actions 

have to be performed which includes rework, if possible. 

But if the non-conformance is reported for a mating 

geometry or dimension, suiting or finding a matching 

counterpart to achieve the required tolerance fit as per the 

assembly design is a viable option. This matchmaking is 

termed as suiting of parts. Figure 1 shows the various fits in 

a mechanical assembly. 

 

For deviation from the design dimensions, rework or 
rejection are the practical solutions manufacturers adopt. 

However, rework is not always a feasible option in scenarios 

involving mass production of components.  Instead, after 

completion of dimensional inspections, the deviated parts 

(referred to as parts of type A) can be scrutinized for 

compatibility with the corresponding deviated mating parts, 

denoted as parts of type B. The dimensions of each deviated 

part A are systematically assessed against the dimensions of 

part B to ascertain a proper fit. For n number of part A 

fabricated, an appropriate pair can be identified from the set 

of part B to have a Selective Assembly (SA). 
 

 
Fig 1 Various Types of Fits in a Hole-Shaft Assembly 

 

The conventional approach of creating such a suiting 

list involves inspecting mating pairs to determine whether 

the fit falls within an acceptable range. However, this 
method, especially in mass production scenario, is time 

consuming and a complex exercise. The resultant solution 

may not necessarily be the optimal match where the most 

number of fabricated parts are made use of. Achieving an 

optimal solution demands iterative checking of the parts 

through various combinations. Additionally, when dealing 
with a significant number of deviated parts, the task 

becomes even more cumbersome. 
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In this study, the problem of identifying suitable pairs 

is transformed into a minimization assignment problem by 

assigning ranks to fit values. Subsequently, the Hungarian 
algorithm, also known as the Munkres algorithm, is 

employed to solve this assignment problem. 

 

The fit value, denoting the compatibility of a suiting 

pair, is calculated based on measured dimensions of mating 

surfaces. The acceptability of a fit value is contingent upon 

both the type of fit (Refer Figure 1) and the predetermined 

range of acceptable levels specified for the given assembly. 

 

II. LITERATURE REVIEW 

 

Over the last 40 years, a lot of fundamental research 
effort has been dedicated to explore the mathematical basis 

of tolerance analysis. Due to the ever increasing 

requirements on high precision manufacturing technology, 

SA has got attraction over the past years. The idea to deal 

and reduce the dimensional and geometric deviations in 

product manufacturing buds from 1960s. Since this paper is 

aimed to apply optimization to a SA problem of 2 parts, the 

related works are only presented here. Mansoor (1961)[1] in 

his work, has explored the relation of manufacturing 

machine tolerance to achievable part tolerances. He used an 

example of the nozzle unit of a fuel injection pump and 
categorized the components based on bore diameter. 

Segregation of mating parts of an assembly into selective 

groups based on their deviations in dimensions were 

previously discussed by Mansoor 1961[1]; Fang and Zhang, 

1995[2]; Kannan et al., 2003[3]. Fang and Zang (1995)[2] 

firstly elaborated establishing dimensional parameter 

relations and the possibility of SA to minimize rejections 

and avoid loss. The concept of Process Capability Indices 

(PCIs) is studied and proposed as an intermediary to ensure 

quality and statistical process control (SPC) parameters by 

Zhang and Fang, 1999[4]. Kannan et al. (2003)[5] has 

attempted the problem of SA using an optimization 
technique of genetic algorithm. This is one among 

evolutionary algorithms in operational research which starts 

with a set of random matches and subsequently crossover 

and mutates to find derived matches to reach near acceptable 

criteria. Kannan et al. (2008)[6] applied the concept of 

Taguchi’s quality loss function in hole shaft assembly and 

developed the mathematical models for clearance range in 

terms of the quality loss function. They used a genetic 

algorithm to obtain the best combination in the SA. In the 

work by Tan and Wu, 2012[7], SA for multiple parts making 

a single assembly is discussed. The problem of direct SA is 
studied to be of two variants: Direct SA (DSA) and Fixed 

Bin SA (FBSA). The former is SA using information from 

measurements on component characteristics directly, 

whereas the latter is SA of components sorted into bins. The 

component matching problem for DSA is found as an axial 

multi-index assignment problem, whereas for FBSA, is an 

axial multi-index transportation problem. Dantan et al., 2012 
[8] in his review work, gives an overview of available 

mathematical models to solve SA problems. He also 

elaborates the limitations to extend the problem to a solvable 

form. Babu and Asha (2015)[9]  in their work has employed 
an artificial immune system algorithm which is a class of 

computationally intelligent, rule-based machine learning 

system to solve the SA by taking Taguchi’s Loss function as 

criteria of acceptance along with the achieved tolerance. 
 

As seen above, for component manufacturing with 

bigger batch size, preparation of suiting pairs for a set of 

deviated parts is time consuming and the suiting list so 

arrived does not guarantee an optimal solution. All the 

present mathematical models and work existing guarantee 

acceptance but not in its optimum. Here in this work, an 

optimal solution of part level suiting with product quality 

adherence is ensured. 

 

III. ASSSIGNEMENT PROBLEM 

 
The assignment problem represents a fundamental 

combinatorial optimization challenge, commonly depicted 

through a graphical model known as a complete bipartite 

graph, as illustrated in Figure 2.  

 

In graph theory, a bipartite graph, also known as a 

bigraph, is defined as a graph in which the set of vertices 

can be partitioned into two distinct and independent sets, 

denoted as U and V[3][10].In this partition, every edge of the 

graph connects a vertex in set U to a vertex in set V. In a 

weighted bipartite graph, the edges between the two disjoint 
sets of vertices (U and V) have associated weights. Each 

edge is assigned a numerical value, indicating a certain 

measure or cost associated with the connection between the 

corresponding vertices in sets U and V. Optimal assignment 

entails matchmaking of a given size, where the sum of edge 

weights is either minimized or maximized in a weighted 

bipartite graph. 

 

 
Fig 2 Complete Bipartite Graph 

 
If the number of vertices in set U equals the number of 

vertices in set V, the problem is termed a balanced 

assignment problem. However, if the counts differ, resulting 

in an unbalanced scenario, a conversion to a balanced form 

becomes necessary before solving.  

 

IV. FORMULATION OF SUITING PROBLEM 

 

The suiting problem is formulated into a matrix form to 

facilitate the application of optimization methods, allowing 

users the flexibility to choose their preferred optimization 

approach. Consider a scenario with n instances each of part 

A and part B. The fitness values for all conceivable pairings 

can be systematically organized into a matrix, as 

exemplified in Table 1, demonstrating the concept using 
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three instances of both part types. Subsequently, using the 

available inspection reports for an array of parts, these 

fitness values are populated within the matrix, constituting a 
valuable dataset for optimization. 

 

To elevate this matrix into a mathematically optimized 

problem, a ranking system is introduced based on 

predetermined selection criteria. This ranking process, an 

integral precursor to optimization, allows for the 

categorization of data such that optimal values assume low 

ranks in the case of minimization objectives, while 

unacceptable fits are assigned elevated ranks. The converse 

holds for maximization algorithms, where superior fits 

garner higher ranks, and undesirable fits are relegated to 

lower ranks. 
 

In scenarios where the quantity of parts available for 

pairing is uneven, dummy parts are introduced to convert the 

problem into a square matrix. Notably, the rank values 

assigned to dummy parts mimic those of unacceptable fits. 

Following the establishment of a balanced ranked matrix, 

optimization procedures can be instituted.  

 

During a dimensional inspection, various locations of 

the same dimension in a given part undergo measurement, 

and the resulting minimum and maximum values are 
documented in the inspection reports. Consequently, a single 

dimension for a particular part is represented by two distinct 

values, denoting its minimum and maximum extents. In the 

assessment of fits, particularly for interferences, both of 

these values demand consideration. 

 

For instance, in the case of evaluating interference 

between two parts, denoted as A (the shaft) and B (the hole), 

the minimum possible interference is calculated as 𝑩𝒎𝒂𝒙 −
𝑨𝒎𝒊𝒏, while the maximum possible interference is 

determined as 𝑩𝒎𝒊𝒏 −𝑨𝒎𝒂𝒙. 

 

As each fit encompasses two distinct values arising 

from the minimum and maximum measurements of a given 

dimension, two rank matrices are constituted to address the 

minimum & maximum acceptability range. The effective 

ranking matrix which is used for optimization is determined 

by the summation of both rank matrices. To ensure the 

positivity of the cumulative value and prevent nullification 

due to cancellation, the magnitude of each value is 

considered for the summation process. 
 

Table 1 Matrix Formulation Based on Fit Values for a Two-Part Suiting 

Parts B1 B2 B3 

A1 Fit for A1 with B1 Fit for A1 with B2 Fit for A1 with B3 

A2 Fit for A2 with B1 Fit for A2 with B2 Fit for A2 with B3 

A3 Fit for A3 with B1 Fit for A3 with B2 Fit for A3 with B3 

 

V. RANKING FUNCTION 

 

Any selection problem can be reformulated into an 

optimization assignment problem through a systematic 

conversion to its optimizable matrix form. This 

transformation holds significant import, as the criteria for 

selection or assignment may vary from one problem to 

another. The nuanced variations in these criteria must be 

effectively captured through a mapping function. 
 

In the context of the current part suiting problem, a 

specific range of acceptable fits must be allotted a lower 

rank, while unacceptable fit ranges are assigned a higher 

rank. Given the adoption of a minimization algorithm, the 

chosen ranking function should map the most optimal fit to 

the minimum rank. Within the acceptable fit band, the 

optimal fit is defined as the mid-value, and the rank 

incrementally increases towards both sides within the band 

limits. Conversely, the unacceptable fit ranges are assigned 

an exceptionally high rank. The adopted mapping for this 

particular problem is illustrated in Figure 3 and is 
mathematically expressed by the following equation: 

 

𝑅 =

{
 
 

 
 |𝑭 − 𝑹𝒂𝒗𝒈|,

 𝑓𝑜𝑟 𝐹 Є [𝑀𝑖𝑛𝑙𝑖𝑚𝑖𝑡 ,𝑀𝑎𝑥𝑙𝑖𝑚𝑖𝑡]
𝟏𝟎𝟎𝟎 ∗𝑴𝒂𝒙𝒍𝒊𝒎𝒊𝒕,

𝑓𝑜𝑟 𝐹 Є (−∞,𝑀𝑖𝑛𝑙𝑖𝑚𝑖𝑡) ∪ (𝑀𝑎𝑥𝑙𝑖𝑚𝑖𝑡 , +∞)}
 
 

 
 

…..(1) 

 

 

𝑅 -  Rank 

 

𝐹 - Fit obtained for given pair 

 

𝑅𝑎𝑣𝑔- Theaverage of accepted fit band limits 

 

𝑀𝑖𝑛𝑙𝑖𝑚𝑖𝑡  is the minimum limit in the accepted fit band 

 

𝑀𝑎𝑥𝑙𝑖𝑚𝑖𝑡  is the maximum limit in the accepted fit band 

 

The above function is similar to the famous Taguchi’s 

Loss function, 𝐿 = 𝑘(𝑦 −𝑚)2, where m is the theoretical 

'target value' and y is the actual size of the product, k is a 

constant and L is the loss[6]. So in equation (1) loss is similar 

to Rank (R), theoretical target value is similar to average of 

accepted fit band limits (𝑅𝑎𝑣𝑔), and the actual size of the 

product is similar to the fit obtained for the given pair (F). 
Hence on minimization of rank, we are essentially 

maximizing the quality of the fit. Once the minimum and 

maximum fit values are processed through the mapping 

function, the resulting rank matrices for both the minimum 

and maximum fits are combined using summation to 

determine the cumulative effect of the fit combination's 

acceptability. In the consolidated matrix, all elements 

exceeding or equal to 1000 times the maximum limit are 

preserved to uphold uniformity in rejection criteria. The 

conclusive rank matrix is subsequently subjected to the 

Hungarian optimization technique. 
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Fig 3 Minimization Mapping (Piece-Wise Linear Graph) 

 
Typical minimization mapping using a piece-wise 

linear graph is illustrated in Figure 3. The mapping process 

assigns optimal and acceptable values to a lower rank, 
resembling a dip, while unfavourable or unacceptable values 

are allocated to a higher rank. The best fit (Ravg) receives the 

lowest rank in this ranking scheme. 

 

In cases for 2 parts having multiple mating interfaces 

(Eg: pitch circle diameter holes) ranking can be extended by 

adding ranks of individual mating dimensions. 

 

VI. HUNGARIAN OPTIMIZATION ALGORITHM 

 

The Hungarian method is a polynomial-time 

optimization algorithm designed to solve assignment 
problems efficiently. Widely applicable to various primal-

dual optimization problems, the algorithm revolves around a 

series of matrix operations aimed at simplifying the matrix 

to its most reduced form, ultimately leading to the 

determination of the optimal solution[11]. Subsequently, the 

assignment operation is performed. 
 

Hungarian optimization algorithm ensures the gradual 

refinement of the assignment until an optimal solution is 

achieved, covering the nuances of the assignment problem 

systematically. 

 

VII. A SAMPLE SUITING PROBLEM: 

FORMULATION AND RESULTS 

 

Consider a sample suiting having five numbers of each 

component within a mating pair, as illustrated in Figure 4.  

The acceptable interference fit range for the parts is 10-35μ. 
Φ10.8 is the mating dimension for the parts.  

 

The available dataset comprises the inspected values of 

mating dimensions, as outlined in Table 2.  

 

 
Fig 4 Typical Example of Mating Pairs with an Interference 

Fit 

 
Table 2 Inspected Dimensional Values of Mating Surface for Parts A & B (5 nos. each) 

Part P Part Q 

Idn. No. 

ø10.8 +0.035/+0.025 
Idn. 

No. 

ø10.8 +0.015 

Min 

Pmin 

Max 

P max 

Min 

Q min 

Max 

Q max 

P1 10.822 10.825 Q1 10.793 10.801 

P2 10.823 10.826 Q2 10.798 10.811 

P3 10.825 10.827 Q3 10.791 10.807 

P4 10.824 10.828 Q4 10.792 10.805 

P5 10.826 10.829 Q5 10.790 10.804 

 

For this particular problem, all the possible pairing combinations of the part P and part Q are listed as in Table 3. Finally 5 

optimal pairs have to be identified in such a way that each part P is matched with a unique part Q. In the below combination 

matrix, the optimization is to be done with respect to their fit value.  

 

Table 3 Possible Suiting Combinations  

 Q1 Q2 Q3 Q4 Q5 

P1 P1-Q1 P1-Q2 P1-Q3 P1-Q4 P1-Q5 

P2 P2-Q1 P2-Q2 P2-Q3 P2-Q4 P2-Q5 

P3 P3-Q1 P3-Q2 P3-Q3 P3-Q4 P3-Q5 

P4 P4-Q1 P4-Q2 P4-Q3 P4-Q4 P4-Q5 

P5 P5-Q1 P5-Q2 P5-Q3 P5-Q4 P5-Q5 

https://doi.org/10.38124/ijisrt/IJISRT24AUG1039
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For an interference fit problem, the minimum interference is given by 𝑷𝒎𝒊𝒏 −𝑸𝒎𝒂𝒙and maximum interference is given by 

𝑷𝒎𝒂𝒙 −𝑸𝒎𝒊𝒏. For all the combinations as in Table 3, a minimum interference matrix is tabulated and ranked using equation (1) to 
generate M1 matrix (Table 4). Similarly, maximum interference matrix is tabulated and ranked to generate M2 matrix (Table 5). 

 

 
Fig 5 Minimization Mapping using Ranking Function 

 
Table 4 Matrix M1 

 Q1 Q2 Q3 Q4 Q5 

P1 2 12 8 6 5 

P2 1 11 7 5 4 

P3 2 9 5 3 2 

P4 1 10 6 4 3 

P5 3 8 4 2 1 

 

Table 5 Matrix M2 

 Q1 Q2 Q3 Q4 Q5 

P1 10 5 12 11 13 

P2 11 6 13 12 35000 

P3 12 7 35000 13 35000 

P4 13 8 35000 35000 35000 

P5 35000 9 35000 35000 35000 

 

These matrices are added to give the net ranks. The elements greater than 1000 ∗ Maxlimit are changed to 1000 ∗ Maxlimit 
itself to avoid unnecessary iterations in computation as they all represent unacceptable pairs and are hence similar. The final M 

matrix in Table 6 gives the rank of fits against all the combinations. 

 

Table 6 M1+M2=M 

 Q1 Q2 Q3 Q4 Q5 

P1 12 17 20 17 18 

P2 12 17 20 17 35000 

P3 14 16 35000 16 35000 

P4 14 18 35000 35000 35000 

P5 35000 17 35000 35000 35000 

 

Further employing Hungarian algorithm as explicated in Section 5, the M matrix is solved and is depicted in Table 7. 
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Table 7 Optimised Solution 

 Q1 Q2 Q3 Q4 Q5 

P1 0 5 0 3 0 

P2 0 5 0 3 34982 

P3 0 2 34978 0 34980 

P4 0 4 34978 34984 34980 

P5 34983 0 34975 34981 34977 

 

Hence, the SA identified is tabulated in Table 8 with minimum and maximum interference value. 

 
Table 8 Selective Assembly of the Sample Problem 

Sl. No. Part 1 Part 2 Min. Int. Max. Int. 

1 P1 Q5 18 35 

2 P2 Q3 16 35 

3 P3 Q4 20 35 

4 P4 Q1 23 35 

5 P5 Q2 15 31 

 

VIII. CONCLUSIONS 

 

In this study, the two-part suiting problem within an 

assembly is transformed into a minimization assignment 

problem by assigning a rank to the design fit value. 

Subsequently, the problem is resolved utilizing the 

Hungarian algorithm. The key observations derived from the 

implemented method of suiting are outlined below: 

 

 The developed method demonstrates a capacity to yield 
optimal solutions, encompassing a maximal number of 

viable suit pairs and achieving optimal matches. 

 The computational formulation of the entire suiting 

problem, transitioning from manual processes to 

computational algorithms, notably diminishes the 

requisite time compared to traditional manual suiting 

methodologies. 

 The method allows in experimenting with the fit values 

giving an ability to be selectively stringent or lenient 

with the tolerance values as demanded by the 

application. 

 Designs with micron level tolerance fit, say 2µ to 3µ as 

in fuel pump component parts of automobiles is achieved 

by suitably machining with the achieved dimensions of 

its mating part. Introduction of this suiting software 

liberates such production processes from the tedious in-

situ suiting methods to cost-effective batch production 

processes. 

 The mapping function used for the acceptable tolerance 

range is similar to Taguchi’s Loss function, 𝐿 =
𝑘(𝑦 −𝑚)2. Thus the presented method ensures SA is of 

tolerance fit with minimum quality loss, ie. maximum 

quality and maximum suiting pairs compared to existing 
mathematical algorithms implemented. 

 The devised formulation delivers solutions through the 

utilization of the Hungarian algorithm. Given the 

polynomial time complexity of the algorithm it is 

imperative to acknowledge that the computational time 

escalates proportionally with the number of parts slated 

for pairing [12]. 

 

 

FUTURE SCOPE 

 

The suiting problem addressed in this study, on mating 

pairs, holds the potential for extension to encompass an 

entire assembly, beginning with a minimum of three parts. 

As the 2-part suiting problem unfolds into a 2-dimensional 

matrix assignment problem, scaling up to an n-part selection 

problem introduces an assignment problem encapsulated 

within an n-dimensional matrix. The formulation of 

solutions and the algorithms implicated in this expanded 
context become subjects of heightened interest. 

 

The prospect of devising a computational method 

tailored to handle assembly challenges involving multiple 

parts holds significant promise. With comprehensive 

inspection data available for all groups of parts, the 

envisioned methodology allows for the optimal solution and 

assembly of any given pairs in a singular execution. Such a 

computational approach not only ensures optimization but 

also facilitates the refinement and perfection of assembly 

procedures. As elaborated by Tan and Wu, 2012[7] Fixed Bin 
Selective Assembly of n parts, is an axial multi-index 

transportation problem requiring further research. 
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