Applications of Nano Graphene Oxides in Prosthodontics and Implant Dentistry- Current Trends and Future Outlook

Blessy Susan Bangera¹ MDS, Reader, Department of Prosthodontics, A J Institute of Dental Sciences, Mangalore, India.

Dr. Prajna K S² Post Graduate at the Department of Prosthodontics, A J Institute of Dental Sciences, Mangalore, India.

Abstract:- The world of Material Science has constantly evolved with newer materials being introduced constantly. One such material is Graphene which possessed excellent electrical, mechanical, thermal, optical, and biological properties due to which it has been used extensively in the fields of Optoelectronics, Energy harvesting, Films and Coatings, Water Filtration, Structural Engineering applications, Thermal management Devices and Sensors. Graphene-based Nanoparticles have also shown promising results in biomedicine, Tissue engineering scaffolds, Biomarker detectors, Biosensors, and Drug Delivery systems. Furthermore, extensive investigation is being performed on graphene-based Nanomaterials for their use in Dentistry, as it is shown to have promising results when incorporated into various Dental Restorative and Prosthetic Materials. This narrative review aims to give an overview of the application of graphene derivatives in dentistry. particularly on their application in Prosthodontics and Dental Implantology based on available research data and clinical studies.

Further research is imperative to fully explore the potential of graphene to ensure its safe usage in dental practice.

Keywords:- Nano Particles, Graphene Oxide, Prosthodontics, Implant Dentistry.

I. INTRODUCTION

The oral cavity has always been an area that demands high settings for its smooth functioning and esthetics which directly impact the quality of life. [1] To meet these demands, a plethora of dental materials have been advocated and a current trend has been set for constant advancement and research involving these materials. With the discovery of fullerene in 1985 and carbon nanotubes in 1991, carbonbased nanomaterials have been sought after and highly merited on the scientific stage. Graphene is one such derivative. Upon its discovery, Graphene in its various forms has been widely tested and its use in the field of dentistry is Dr. Vidya Shenoy³ Professor and Head of the Department of Prosthodontics, A J Institute of Dental Sciences, Mangalore, India.

being looked upon. Graphene was discovered by Andre Geim and Konstantin Novoselov in 2004 where they used mechanical exfoliation technique to isolate a single layer of Graphene, that is considered one of the thinnest and strongest materials. [2] Due to its outstanding physical properties, electrical conductivity, and excellent biocompatibility, graphene and its derivatives have gained attention in the field of medicine and dentistry particularly with the advent of graphene base scaffolds in tissue engineering, as dental implant coatings, bone cements, resin additives, and in tooth whitening.[1,2] The content for this narrative review has been collected from various databases with emphasis on papers published in the last 5 years. Articles focussed on Graphene in Dentistry particularly in Prosthodontics and Implant Dentistry have been selected for review. Hence, based on the present data available, this article aims to provide an overview of the applications and future prospects of Nano graphene oxides in the field of prosthodontics and implant dentistry.

II. PROPERTIES OF GRAPHENE OXIDES

Graphene is a product obtained by chemical vapour deposition of Graphite. It is hydrophobic because of missing oxygen groups. [3] Graphene is available in various forms like graphene nanoplatelets, powder, Nano flakes, sheets, and foam. It is also categorized as reduced graphene oxide, singlelayered graphene, multilayered graphene, and graphene oxide.[2] Few of its outstanding properties include: light weight in nature, Ultra-thin in cross section, strongest material known with strength up to 42 N/m in monolayer form., exceptional impermeability, high stiffness, high transparency (absorbs only 2.3% of light), good electrical conductivity, large surface area (-2600m2g"i), most stretchable crystal (20% elasticity), chemical stability (S000W/m.k), high intrinsic mobility (100 times more than in Si), biocompatible, antibacterial. high intrinsic mobility (100 times more than in Si) and mechanical strength (1.0 TPayoung's modulus). [4,5,6,7,8]

Due to its outstanding properties, Graphene has a plethora of applications in various fields such as [7,9,10]:

https://doi.org/10.38124/ijisrt/IJISRT24AUG916

Table 1: Applications of Graphene

General applications of Graphene	Biomedical applications of Graphene
Nano-scale transistors.	Gene transportation.
Energy storage and Water filtration devices.	Anticancer drug release.
Ultra-thin batteries and High sensitivity touch screens.	Photo thermal and photodynamic therapies.
Thermo conductive lubricants.	Biosensors.
Nano-scale transistors.	Tissue engineering.

III. APPLICATIONS OF GRAPHENE OXIDES IN PROSTHODONTICS

Since its properties are manifold, graphene has been incorporated as a Nano filler into a plethora of dental

materials. Polymethylmethacrylate (PMMA) is a commonly used denture base material and the incorporation of graphene into the material has resulted in enhanced mechanical, thermal, electrical and antimicrobial properties as listed below.

	Table 2: Graphene in PMMA							
Sl	Author	Structure and	tructure and Inclusion method Parameters			Outcome		
no		form	into PMMA	tested				
1	Ramanathan et al. (2008) [11]	Functionalized graphene sheets (FGS) and Expanded graphite (EG).	Nano filler was initially scattered in Tetrahydrofuran (10 ml) by bath sonication at room temperature. The solutions were then mixed with enough of a solution of PMMA in THF (10–30 ml) to yield a total composite mass.	Tensile strength and elastic modulus.	Atomic Force Microscopy, Scanning Electron microscopy, Transmission Electron Microscope, and X-ray diffraction.	The incorporation of 1% graphene into PMMA showed a hike in Elastic modulus by 80% and tensile strength by 20%		
2	Yang et al. (2012) [12]	Graphene Oxide(GO) and graphene sheets using the modified Hummers method	Different concentrations of GO were incorporated into PMMA emulsions and mixed at room temperature for 2 h. GO sheets were reduced with hydrazine. Later the samples were centrifuged, washed with distilled water, and dried at 70° C.	The glass transition temperature of PMMA.	SEM, XRD, TEM, Differential Scanning Calorimetry.	Improvement in glass transition temperature (Tg).		
3	Heo et al (2012) [13]	The graphite powders were oxidized and exfoliated to GO using a modified Hummers method.	GO content varied from 1 to 3 wt%.	Thermal reinforcing effects.	Thermogravimetric analysis, Differential Scanning Calorimeter(DSC), and Thermal Conductivity meter.	With the addition of 3 wt% of GO, the PMMA/GO nanocomposite showed an increase in the glass transition temperature by more than 7 ⁰ C, and the thermal conductivity also increased 1.8 times.		
4	An et al and Song et al. (2013) [14]	GO obtained by Hummer's method.	Ultrasonic dispersion of GO was done in the liquid phase after which mechanical milling was done.	Surface resistivity, Volume resistivity, Frictional coefficient, Surface	High-resolution SEM, Vickers micro-hardness meter.	Increase in surface resistivity and volume resistivity with an increase in GO content. Decrease in frictional coefficient thereby		

				smoothness, and Wear resistance.		improving the wear resistance of PMMA.
5	Alamgir et al. (2018) [15]	GO is produced by modified Hummer's method.	PMMA Nanocomposites (PNCs) were prepared by melt processing using a twin-screw extruder machine at a processing temperature of 2700 C and screw rotation of 10rpm.	Young's modulus and deformation.	X-ray diffraction, differential scanning calorimetry, Thermogravimetric analysis, Micro Indentation test, and scratch analysis.	More resistant to deformation. The value for Young's modulus was more than PMMA.
6	Khan et al. (2018) [16]	GO Nanosheets.	GO was incorporated into the MMA monomer and sonicated using a probe-type sonicator for 15 min. Then powder of PMMA was mixed with monomer with a 1.3:1.0 P/M ratio.	Bending strength and wear resistance.	Scanning Electron Microscope, Transmission Electron Microscopy, XRD, TGA, Bending test, Fourier Transform Infrared Spectroscopy (FTIR),.	Significant increase in wear resistance and bending strength in comparison to original PMMA.
7	Lee et al. (2018) [17]	nGO (graphene oxide Nano sheets).	nGO was added in 0.25%, 0.5%, 1.0%, and 2.0% by weight relative to PMMA powder. nGO was homogeneously dispersed in MMA under sonication for 1 h.	Flexural strength, Elastic modulus, Hardness, Anti- adhesive effect.	3-point flexural test and hardness machine. The anti- adhesive property was investigated by nonthermal oxygen plasma treatment.	0.5 wt% of nGO into PMMA increased the FS significantly; more than 0.5 wt% nGO increased the surface hardness significantly. Specimens with nGO had more anti- adhesion properties and sustained anti-adhesive effects against microbial species for up to 28 days after incorporating GO into PMMA.
8	Gamal et al. (2019) [18]	nGO.	Nano graphene oxide in five different concentrations 0 %, 0.05 %, 0.1 %, 0.15 %, and 1 % by weight was added to PMMA.	Antibacterial effect, Thermal expansion.	Minimal Inhibitory Concentration (MIC), agar well diffusion test, linear coefficient of thermal expansion.	The growth of Streptococcus mutans can be inhibited by the addition of 0.5% of GO into PMMA. There is an inverse relation between the concentrations of GO and the Coefficient of Thermal Expansion.
9	Carlo Di et al. (2020) [19]	Graphene.	G-PMMA was obtained by milling "G-CAM" polymeric disc.	Flexural strength (FS), Elastic Modulus (EM).	3-point bending test.	Improved flexural strength and elastic modulus. Resulted in greater homogeneity of the mechanical behavior during the bending test.

Volume 9, Issue 8, August - 2024

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

https://doi.org/10.38124/ijisrt/IJISRT24AUG916

10	Bacali et al	The graphene	Graphene silver	antibacterial	Agar Disk	PMMA resin mixed with
	(2020) [20]	silver	nanoparticles (1	activity,	Diffusion Test,	G-AgNp exhibited
		nanoparticles	wt% and 2 wt%)	cytotoxicity,	3-point bending	promising antibacterial
		(G-AgNp)	was added to resin	and monomer	test.	activity associated with
		composite was	powder using a lab	release.	MMA monomer	minimal toxicity to
		synthesized	vibrator.		release analysis	human cells, in vitro, as
		through the			was evaluated	well as improved flexural
		Radio-			using a high-	properties.
		Frequency			performance liquid	
		Catalytic			chromatograph.	
		Chemical				
		Vapor				
		Deposition				
		(RF-CCVD)				
		method.				

Table 3: Graphene in Resilient Denture Liners and Tissue Conditioners

Sl	Author	Structure and	Inclusion method	Parameters	Outcome
no		form		tested	
1	Dr.	Nano graphene	nGO powder was	Antifungal	The antifungal activity against Candida albicans
	Swapnil	oxide	incorporated in 1%,	susceptibility.	was increased. The acrylic-based tissue
	Shankar		3%, and 5% by		conditioner with 5% Nano graphene oxide
	gouda, et		weight relative to		exhibited the highest diameter of inhibition zone
	al		the acrylic-based		followed by the addition of 3% nanographene
	(2020)		tissue conditioner		oxide and the least with 1% nanographene oxide
	[21]		(GC Soft liner)		concentration both after 1 day and 7 days.
			powder and mixed		
			properly.		
2	Khan	GO Nanosheets	nGO powder	Surface	Reduced hardness without change in surface
	AA et al		incorporated by	roughness,	roughness of GO incorporated RDL was noted.
	in (2022)		$0.1\%(G_1), 0.3\%$	water contact	Statistically decreased water solubility and
	[22]		(G_2) and $0.6\%(G_3)$	angle, Shore	sorption values were seen in G ₁ group as
			by wt into acrylic-	A hardness,	compared to G_2 and G_3 groups.
			based Resilient	water	
			Denture liner (RDL	sorption, and	
				solubility	
				parameters	

Table 4: Applications of Graphene oxides in Implantology:

C 1		a				A
SI	Author	Structure and form	Inclusion method	Parameters	Analysis	Outcome
n				tested		
0						
1	Kulshrest	Graphene/Zinc oxide	Graphene oxide was	Antimicrobial,	Microscopic studies	The results
	ha et al	Nanocomposite(GZN	prepared Hummers and	anti-biofilm	and Anti-Biofilm	showed the
	(2014)	C).	Offman method.	and anti-	assays	potential of
	[23]			adherence		GZNC as an
				activity.		effective
						coating agent
						for dental
						implants by
						efficiently
						inhibiting S.
						mutans
						biofilms.

2	Jung et al (2015) [24]	Reduced graphene oxide (RGO).	4 mg/mL of graphene oxide (GO) solution with a size of 0.3-2 μm was spin-coated on the Multi- pass caliber-rolling Ti13Nb13Zr (MPCR- TNZ) surface at 100 rpm for 5 sec following 2,000 rpm for 30 sec to obtain GOcoated MPCR-TNZ with a uniform thickness. RGO-MPCR-TNZ was obtained by reducing in hydrazine vapor for 24 h	The Dynamic Fatigue Experiment.	Alizarin red staining, Alkaline phosphatase activity test, Immunocytochemist ry, and Real-Time Polymerase Chain Reaction (RT-PCR).	Superior fatigue resistance of the implant prototype, enhanced mechanical stability, high mechanical strength, and prolonged product lifetime. The drug-loaded implant materials can stimulate and facilitate cellular response around the implant surface to reduce the osseointegratio n time.
3	Jin et al (2017) [25]	Graphene oxide.	Ti substrate surface was modified by graphene oxide (GO) thin film and silver (Ag) nanoparticles via electroplating and ultraviolet reduction methods.	antimicrobial activity and cytotoxicity.	Field emission scanning electron microscopy observation, RT- PCR assay, Fluorescence staining, and Flow cytometry testing.	GO-Ag-Ti multiphase nanocomposite exhibited excellent antimicrobial ability and anti-adherence performance.
4	Li et al (2019) [26]	Graphene oxide	GO dispersed solution was spun down at 12000 rpm for 20 min, washed three times with water, and redispersed into the Tannic Acid (TA) solution (1 mg/ mL). After another three cycles of spin down and washing, the TAGO was obtained. GO was redispersed into the water by sonicating for 10 min with a concentration of 1 mg/mL.	Antibacterial and osteogenesis property.	LIVE/DEAD BacLight kit, RT-PCR analysis.	The coatings showed a synergic effect on the killing bacteria, both Gram-negative bacteria and Gram-positive bacteria represented by E. coli and S. aureus, respectively, and enhanced osteogenesis of Dental pulp stem cells (hDPSCs).
5	Zhang et al. (2020) [27]	Graphene oxide sheets.	3Y-ZrO2/GO composite ceramics with different graphene oxide contents (0–0.2 wt%) were hot pressed.	The relative density, the mechanical properties including Vickers hardness, Flexural	Multi-function Vickers Digital Micro Hardness Tester, Universal Testing Machine, Vickers Indenter.	Compared to raw 3Y–ZrO2, the incorporation of GO sharply enhanced bending strength and

				strength, and		fracture
				Fracture		toughness,
				toughness		representing a
				e		hike of 200%
						and 41%.
						respectively.
						The
						incorporation
						of GO
						decreased the
						coefficient of
						friction and
						weer rete and
						the surface
						neurophaga of
						$2V_{\pi}O^{2}$
						Obvious signs
						of autotovicity
						Was not soon
						and CO
						and UU
						proliferation
						growth and
						adhesion of
						cells Overall
						$3Y_7rO2/GO$
						composite
						composite
						0.15 wt% GO
						is promising
						biomaterial for
						dental implant
						applications
6	Iang et al	Graphene oxide	Zirconia specimens were	Bacterial	Field-Emission	GO-coated
Ŭ	(2021)	Gruphene oxide.	coated with graphene	adhesion and	Scanning Electron	zirconia
	[28]		oxide using an	Osteoblast	Microscope and	showed
	[20]		Atmospheric pressure	activation	Raman	increased
			nlasma generator Argon	uetr vation.	Spectroscopy	proliferation
			gas (4 I /min) and		speedoseopy.	and
			methane gas (3.5			differentiation
			mL/min) were mixed in a			of osteoblasts
			quartz tube and coated			and inhibition
			on the surface at 240 V			of attachment
			at the rate of 10 L/min			of S mutans
						This can
						prevent peri-
						implantitis by
						nreventing
						bacterial
						adhesion
						Moreover its
						Osteogenic
						ability can
						improve hone
						adhesion and
						the success
						rate of
						implants.

Volume 9, Issue 8, August – 2024

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

https://doi.org/10.38124/ijisrt/IJISRT24AUG916

7	Shin et al	reduced graphene	rGO solution was	Surface	Spectroscopic,	rGO-coated Ti
	(2022)	oxide (rGO).	deposited on each	property, in	diffractometric, and	can accelerate
	[29]		surface via peptide bonds	vitro cellular	Microscopic	the healing
			between the carboxyl	behaviors, and	analyses.	rate with the
			groups of rGO and	in vivo		high potential
			terminal amino groups of	osseointegrati		of
			3-	on property.		osseointegratio
			aminopropyl)triethoxysil			n.
			ane (APTES)			

Table 5: Application of Graphene Particles in Maxillofacial Silicone Materials

Sl	Author	Structure	Inclusion method	Parameters	Analysis	Outcome
no		and form		tested		
1	Shah et al.	Graphene	By stirring	Antifungal	Well diffusion	Fungal growth was
	(2021) [30]	oxide.	thoroughly on a	efficacy.	method.	reduced by adding
			glass slab, silicone			Graphene oxide into
			was mixed with 5%			the maxillofacial
			of nano-graphene			silicone material
			oxide into a			
			homogeneous paste.			

Table 6: Applications of Graphene Oxide Particles in Dental Ceramics

Sl	Author	Structure	Inclusion method	Parameters	Analysis	Outcome
no		and form		tested		
1	Li et al. (2014)	Graphene	Using a plasma	Microstructure	Field-emission	Microscopic
	[31]	Nanosheets	spraying technique,	and wear	scanning electron	observations exhibited
			Zirconia/graphene	behavior	microscope,	that the GNs additives
			nanosheets		Energy Dispersive	(1 wt.%) were
			(ZrO2/GNs)		Spectroscopy,	homogeneously
			composite coatings		Transmission	dispersed in the ZrO2
			were made. (1		Electron	matrix and most of
			wt.%) were		Microscope, and	them were anchored at
			anchored at the		Micro-Raman	the splat interface.
			splat interface		spectroscopy.	It also showed
						increased wear
						resistance and low
						friction coefficient
						with the incorporation
						of GNs.
2	Su et al. (2016)	Graphene	Using Spark	scratch tests,	Archimedes'	Compared to
	[32]	nanosheet	Plasma Sintering	mechanical	method,	monolithic TZP, the
		(GNS)	(SPS), GNS-	properties	X-ray diffraction,	elastic modulus and
			reinforced yttria		crack propagation	Vickers hardness of a
			stabilized tetragonal		induced by	0.5 wt% GNS/TZP
			zirconia		Vickers indenter,	composite exhibit
			polycrystals (TZP)		Micro scratch	enhanced elastic
			were produced.		tester (MCT).	modulus (*18%),
			Various			hardness $(*13\%)$, and
			compositions			toughness (*36%),
			chosen here were			respectively.
			pure 1 ZP , 0.5 wt%			The GNS/TZP
			UINS/IZP, 0.75 ut0/CNS/TZD and			composite with
			10 wt $0 NS/ 1ZP$, and $10 wt$			and service register as
			1.0 Wt% GNS/TZP			and scratch resistance
			composite powders			might be a potential
						bismedical
						biomedical
						engineering an biomedical applications

Volume 9, Issue 8, August – 2024

ISSN No:-2456-2165

3	Zeng et al.	Reduced	Zirconia powders	microstructure,	X-ray diffraction,	The fracture toughness
	(2018) [33]	graphene	and GO were mixed	mechanical	field emission	of in situ reduced
		oxide	using a colloidal	properties,	scanning electron	graphene oxide-
			coating route.	toughening	microscopy,	toughened zirconia
			Using spark plasma	mechanisms.	Vickers hardness	improved by up to
			sintering, in situ		tester	175% (from ~6.07 to
			reduced graphene			~10.64 MPa·m1/2) at
			oxide-toughened			0.09 wt.% graphene
			zirconia ceramics			oxide compared to the
			were made.			toughness of 3 mol.%
						yttria-stabilized
						zirconia, with a small
						improvement in
						hardness

IV. FUTURE OUTLOOK

Promising materials must not exhibit any long-term cytotoxicity both In -vivo or in vitro. Due to a limited knowledge of graphene and its derivatives, a major task in clinical applications is the uncertainty of its cytotoxicity and its potential mechanisms. [34, 35,36,37,38,39] Up to date, there is no agreement on the cytotoxicity and potential hazards of graphene-based materials according to various studies. The introduction of Graphene oxide in the Lungs of mice produced persistent lung injury. It is also known to generate reactive oxygen species hence setting off inflammatory and apoptotic pathways. [40, 41] Since Nanoparticles have a greater potential to interact with individual cells and can traverse through the bloodstream more easily than larger particles, biocompatibility testing for these Nanoparticles may be slightly different from bulk particles. The uncertainty regarding the property of biocompatibility of Nano graphene oxide in the body makes it imperative to carry out further research in this regard. [37,38,39,42]. Biocompatibility testing for in vitro conditions is done using cell viability and proliferation assays, hemocompatibility, genotoxicity, and sensitization tests. [43,44, 45] Cytotoxicity of dental materials is assessed using Colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium mide) broassays, Lactate dehydrogenase (LDH) assays and Cell counting kit-8 (CCK-8) assays. [46,47] However, while performing these studies it is advisable to consider the conditions of the oral cavity where the dental materials will be of service, unlike the rest of the body which may have a different pH level compared to the saliva. The pH level in the mouth has an average value of 6.7 which is highly variable due to the consumption of various types of food and beverages. The bite force in the mouth while chewing food also needs to be taken into consideration. Taking this factor into consideration, the various biocompatibility tests need to be carried out. [48,49] It has also been noted that the size, structural configuration and concentration of graphene molecules have a direct impact on cytotoxicity. Narrower and smaller particles could easily infiltrate and destroy the cells compared to larger particles. Prolonged exposure to graphene particles has shown evidence of genetic mutations. [50,51,52,53,54,55] Further research needs to be carried out to render the material safe for use in dentistry.

Graphene as a Nano sensor has been studied for intraoral bacterial detection, and it was found that the sensors had high sensitivity. good biorecognition, and good conformability to the tooth enamel surface due to the graphene and incorporated peptides. [56] Graphene biosensors have been able to detect bacteria and viruses in tooth enamel, saliva, and biological tissues. [57,58,59,60,61] They are being extensively studied for applications in dental adhesives, fillings, and tissue engineering. Graphene-based materials have been shown good antibacterial properties, anti-biofilm properties for dental implants, increased proliferation and differentiation of stem cells in tissue engineering, favorable results when incorporated into dental composites. [34] Though there are studies on invitro biocompatibility testing of Graphene-based materials for dental applications, further long-term effects of these materials and their cytotoxic effects need to be studied.

V. CONCLUSION

The entry of graphene into biomedical field has opened a myriad of possibilities due to its superior physico-chemical properties. Introduction of graphene into dentistry has also received great consideration. Applications of graphene based dental materials require further research and clinical trials for their successful introduction to commercial usage.

• Conflict of Interest: None.

REFERENCES

- [1]. Lamster IB. The 2021 WHO Resolution on Oral Health. international dental journal. 2021 Aug;71(4):279.
- [2]. Bei HP, Yang Y, Zhang Q, Tian Y, Luo X, Yang M, Zhao X. Graphene-based nanocomposites for neural tissue engineering. Molecules. 2019 Feb 13;24(4):658.
- [3]. Dasari Shareena TP, McShan D, Dasmahapatra AK, *et al.* A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett 2018;10(3):1-34.

https://doi.org/10.38124/ijisrt/IJISRT24AUG916

- ISSN No:-2456-2165
- [4]. Yanwu Z, Shanthi M, Weiwei C, Xuesong L, Ji W, Jeffrey R. Graphene and Graphene Oxide: Synthesis, Properties and Applications.J Bio Med Sci.2010;22(35):3906-3924
- [5]. Nileshkumar D, Ricardo B,Intekhab .Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering. Crit. Rev. Solid State Mater. Sci. 2010;35:52-71.
- [6]. Dongn HS, S.J.Qi.Realising the potential of graphenebased materials for biosurfaces - A future perspective. Nat. Nanotechnol. 2011:6:543-546.
- [7]. Lakshmi KA, Ilsha Rao G, Arthiseethalakshmi S, Mohamed MS. The revolutionary era of Graphene in Dentistiy-a review. RGUHS J Med Sci. 2016;6(4):139-45.
- [8]. Madhav VNV, Joshi S, Kulkarni M. Graphene: a game changer in prosthodontics and implant dentistry. Int J Res Med Sci 2022;10:1565-7.
- [9]. Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, Guerrero-Pérez MO. Nanomaterials in dentistry: state of the art and future challenges. Nanomaterials. 2020 Sep 7;10(9):1770.
- [10]. Terrones, M.; Botello-Méndez, A.R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantu, Y.I.;
 Rodriguez-Macias, F.; Elías, A.L.; Muñoz-Sandoval, E.; Cano-Márquez, A.G.; Charlier, J.C. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 2010, 5, 351–372.
- [11]. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008; 3(6):327-31.
- [12]. Yang J, Yan X, Wu M, et al. Self-assembly between graphene sheets and cationic poly (methyl methacrylate) (PMMA) particles: preparation and characterization of PMMA/graphene composites. J Nanopart Res 2012;14(1):1-9.
- [13]. Heo S, Se Youn Cho, Do Hyeong Kim, Yun Sung Choi, Hyun Ho Park, Jin H. Improved Thermal Properties of Graphene Oxide-Incorporated Poly(methyl methacrylate) Microspheres. Journal of Nanoscience and Nanotechnology. 2012 Jul 1;12(7):5990–4.
- [14]. Song J, Zhang J, Lin C. Influence of Graphene Oxide on the Tribological and Electrical Properties of PMMA Composites. Journal of Nanomaterials. 2013 Jan 1;2013:1–5.
- [15]. Alamgir M, Nayak GC, Mallick A, et al. Processing of PMMA nanocomposites containing biocompatible GO and TiO2 nanoparticles. Mater. Manuf. Process 2018;33(12):1291-8.
- [16]. Khan AA, Mirza EH, Mohamed BA, et al. Physical, mechanical, chemical and thermal properties of nanoscale graphene oxide-poly methylmethacrylate composites J Compos Mater 2018 ;52(20):2803-13.
- [17]. Lee JH, Jo JK, Kim DA, et al. Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dent Mater 2018;34(4):e63-72.

- [18]. Reem Gamal, Gomaa YA, Ashraf Matrawy. Incorporating nano graphene oxide to poly-methyl methacrylate; antibacterial effect and thermal expansion. Journal of Modern Research (Online). 2019 Jul 1;1(1):19–2
- [19]. Di Carlo S, De Angelis F, Brauner E, et al. Flexural strength and elastic modulus evaluation of structures made by conventional PMMA and PMMA reinforced with graphene. Eur Rev Med Pharmacol Sci. 2020; 24(10):5201-8
- [20]. Bacali C, Baldea I, Moldovan M, Carpa R, Olteanu DE, Filip GA, et al. Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clinical Oral Investigations. 2019 Nov 16;24(8):2713–25.
- [21]. Rayannavar S, Shaha BS, Shankargouda S, Nelogi S. Antifungal efficacy of tissue conditioner incorporated with nanographene oxide: An in-vitro study. IJDSIR. 2020;3:601-7.
- [22]. Khan AA, De Vera MA, Mohamed BA, Javed R, Al-Kheraif AA. Enhancing the physical properties of acrylic resilient denture liner using graphene oxide nanosheets. Journal of Vinyl and Additive Technology. 2022 Aug;28(3):487-93.
- [23]. Kulshrestha S, Khan S, Meena R, Singh BR, Khan AU. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenicStreptococcus mutans. Biofouling. 2014 Nov 26;30(10):1281–94.
- [24]. Jung, H. S., Lee, T., Kwon, I. K., Kim, H. S., Hahn, S. K., and Lee, C. S. (2015). Surface Modification of Multipass Caliber-Rolled Ti alloy with Dexamethasone-Loaded Graphene for Dental applicationsResearch Support, Non-U.S. Gov't]. ACS Appl. Mater. Interfacesacs Appl. Mater. Inter. 7 (18), 9598–9607
- [25]. Jin J, Zhang L, Shi M, Zhang Y, Wang Q. Ti-GO-Ag nanocomposite: the effect of content level on the antimicrobial activity and cytotoxicity. International Journal of Nanomedicine. 2017 Jun; Volume 12:4209– 24.
- [26]. Li H, Gao C, Tang L, Wang C, Chen Q, Zheng Q, et al. Lysozyme (Lys), Tannic Acid (TA), and Graphene Oxide (GO) Thin Coating for Antibacterial and Enhanced Osteogenesis. ACS applied bio materials. 2019 Dec 27;3(1):673–84.
- [27]. Zhang C, Wang F, Jiang Z, Lan J, Zhao L, Si P. Effect of graphene oxide on the mechanical, tribological, and biological properties of sintered 3Y–ZrO2/GO composite ceramics for dental implants. Ceramics International. 2021 Mar 1;47(5):6940–6.
- [28]. Jang W, Kim HS, Alam K, Ji MK, Cho HS, Lim HP. Direct-Deposited Graphene Oxide on Dental Implants for Antimicrobial Activities and Osteogenesis. International Journal of Nanomedicine [Internet]. 2021 Aug 24 [cited 2023 Jul 3]; 16:5745–54.

- [29]. Yong Cheol Shin, Jong Hyang Bae, Jong Ho Lee, Iruthayapandi Selestin Raja, Moon Sung Kang, Kim B, et al. Enhanced osseointegration of dental implants with reduced graphene oxide coating. Biomaterials Research. 2022 Mar 21;26(1).
- [30]. Saloni P, Meshramkar R, Nadiger RK, Lekha K. A study to evaluate the antifungal efficacy of nanographene oxide incorporated in maxillofacial prosthesis material–An in vitro study. International Journal of Current Advanced Research, 10(06), pp. 24593-24596. DOI: http://dx.doi.org/10.24327/ijcar.2021.4898.24596
- [31]. Li H, Xie Y, Li K, Huang L, Huang S, Zhao B, et al. Microstructure and wear behavior of graphene nanosheets-reinforced zirconia coating. Ceramics International. 2014 Sep;40(8):12821–9.
- [32]. Su J, Chen Y, Huang Q. Graphene nanosheet-induced toughening of yttria-stabilized zirconia. Applied Physics A. 2016 Dec 17;123(1).
- [33]. Zeng Z, Liu Y, Chen W, Li X, Zheng Q, Li K, et al. Fabrication and properties of in situ reduced graphene oxide-toughened zirconia composite ceramics. Journal of the American Ceramic Society. 2018 Feb 20;101(8):3498–507.
- [34]. Williams AG, Moore E, Thomas A, Johnson JA. Graphene-based materials in dental applications: antibacterial, biocompatible, and bone regenerative properties. International Journal of Biomaterials. 2023 Feb 7;2023.
- [35]. C. Guo, R. Lu, X. Wang, and S. Chen, "Antibacterial activity, bio-compatibility and osteogenic diferentiation of graphene oxide coating on 3Dnetwork poly-ether-ether-ketone for orthopaedic implants," Journal of Materials Science: Mate- rials in Medicine, vol. 32, no. 11, 2021.
- [36]. S. Z. Wu, Y. J. Liu, H. Zhang, and L. Lei, "Nanographene oxide improved the antibacterial property of antisense yycG RNA on Staphylococcus aureus," Journal of Orthopaedic Surgery and Research, vol. 14, no. 1, 2019.
- [37]. M. Pinto, I. C. Goncalves, and F. D. Magalhaes, "Graphene-based materials biocompatibility: a review," Colloids and Surfaces B: Biointerfaces, vol. 111, pp. 188–202, 2013.
- [38]. M. S. Kang, H. J. Jang, S. H. Lee et al., "Potential of carbon- based nanocomposites for dental tissue engineering and regeneration," Materials, vol. 14, pp. 5104–5117, 2021.
- [39]. C. Z. Liao, Y. C. Li, and S. C. Tjong, "Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity," International Journal of Molecular Sciences, vol. 19, no. 11, 2018.
- [40]. Duch MC, Budinger GS, Liang YT, Soberanes S, Urich D, Chiarella SE, Campochiaro LA, Gonzalez A, Chandel NS, Hersam MC, Mutlu GM. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano letters. 2011 Dec 14;11(12):5201-7.
- [41]. Akhavan O, Ghaderi E, Akhavan A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials. 2012 Nov 1;33(32):8017-25.

[42]. Daulbayev C, Sultanov F, Korobeinyk AV, Yeleuov M, Taurbekov A, Bakbolat B, Umirzakov A, Baimenov A, Daulbayev O. Effect of graphene oxide/hydroxyapatite nanocomposite on osteogenic differentiation and antimicrobial activity. Surfaces and Interfaces. 2022 Feb 1;28:101683.

https://doi.org/10.38124/ijisrt/IJISRT24AUG916

- [43]. Ge Z, Yang L, Xiao F, Wu Y, Yu T, Chen J, Lin J, Zhang Y. Graphene family nanomaterials: properties and potential applications in dentistry. International journal of biomaterials. 2018 Dec 9;2018.
- [44]. Dreanca A, Sarosi C, Parvu AE, Blidaru M, Enacrachi G, Purdoiu R, Nagy A, Sevastre B, Oros NA, Marcus I, Moldovan M. Systemic and local biocompatibility assessment of graphene composite dental materials in experimental mandibular bone defect. Materials. 2020 May 31;13(11):2511.
- [45]. Moharamzadeh K, Brook IM, Van Noort R. Biocompatibility of resin-based dental materials. Materials. 2009 Apr 28;2(2):514-48.
- [46]. BabsOn AL, Phillips GE. A rapid colorimetric assay for serum lactic dehyurogenase. Clinica Chimica Acta. 1965 Aug 1;12(2):210-5.
- [47]. Wu S, Xu J, Zou L, Luo S, Yao R, Zheng B, Liang G, Wu D, Li Y. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nature Communications. 2021 Jun 3;12(1):3303.
- [48]. Guazzo R, Gardin C, Bellin G, Sbricoli L, Ferroni L, Ludovichetti FS, Piattelli A, Antoniac I, Bressan E, Zavan B. Graphene-based nanomaterials for tissue engineering in the dental field. Nanomaterials. 2018 May 20;8(5):349.
- [49]. Koc D, Dogan A, Bek B. Bite force and influential factors on bite force measurements: a literature review. European journal of dentistry. 2010 Apr;4(02):223-32.
- [50]. Qin W, Wang C, Jiang C, Sun J, Yu C, Jiao T. Graphene oxide enables the reosteogenesis of previously contaminated titanium in vitro. Journal of Dental Research. 2020 Jul;99(8):922-9.
- [51]. Syama S, Mohanan PV. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. International journal of biological macromolecules. 2016 May 1;86:546-55.
- [52]. Vera-Sánchez M, Aznar-Cervantes S, Jover E, Garcia-Bernal D, Onate-Sanchez RE, Hernández-Romero D, Moraleda JM, Collado-González M, Rodríguez-Lozano FJ, Cenis JL. Silk-fibroin and graphene oxide composites promote human periodontal ligament stem cell spontaneous differentiation into osteo/cementoblast-like cells. Stem cells and development. 2016 Nov 15;25(22):1742-54.
- [53]. Liao KH, Lin YS, Macosko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS applied materials & interfaces. 2011 Jul 27;3(7):2607-15.
- [54]. Akhavan O, Ghaderi E, Akhavan A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials. 2012 Nov 1;33(32):8017-25.

- [55]. Assali M, Almasri M, Kittana N, Alsouqi D. Covalent functionalization of graphene sheets with different moieties and their effects on biological activities. ACS Biomaterials Science & Engineering. 2019 Dec 10;6(1):112-21.
- [56]. Mannoor MS, Tao H, Clayton JD, Sengupta A, Kaplan DL, Naik RR, Verma N, Omenetto FG, McAlpine MC. Graphene-based wireless bacteria detection on tooth enamel. Nature communications. 2012 Jan;3(1):763.
- [57]. Zhao W, Xing Y, Lin Y, Gao Y, Wu M, Xu J. Monolayer graphene chemiresistive biosensor for rapid bacteria detection in a microchannel. Sensors and Actuators Reports. 2020 Nov 1;2(1):100004.
- [58]. Pandit S, Li M, Chen Y, Rahimi S, Mokkapati V, Merlo A, Yurgens A, Mijakovic I. Graphene-based sensor for detection of bacterial pathogens. Sensors. 2021 Dec 3;21(23):8085.
- [59]. Li B, Tan H, Anastasova S, Power M, Seichepine F, Yang GZ. A bio-inspired 3D micro-structure for graphene-based bacteria sensing. Biosensors and Bioelectronics. 2019 Jan 1; 123:77-84.
- [60]. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry. 2018 Jun; 8:123-37.
- [61]. Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. Journal of nanobiotechnology. 2018 Sep 22;16(1):75.