
Volume 9, Issue 8, August – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24AUG974

IJISRT24AUG974 www.ijisrt.com 684

Butterfly Image Classification Using

Convulational Neural Network[CNN]

Amruth N Murthy1; Kavana N Murthy2; Dr. Shivandappa3; Dr. Narendra Kumar S4

Department of Biotechnology, R V College of Engineering, Bengaluru, India

Abstract:- Butterfly species identification through image

classification is now a major use of computer vision,

utilizing supervised learning methods to classify different

types of butterflies based on images. This article gives a

detailed overview of the latest progress in classifying

butterfly images through supervised learning techniques

on Google Colab, a widely-used cloud-based platform for

machine learning projects. The review starts by

discussing the significance of precise butterfly

categorization for biodiversity research and conservation

endeavors. It then goes into specifics about different

methods used in supervised learning for this purpose,

such as convolutional neural networks (CNNs), support

vector machines (SVMs), and k-nearest neighbors (k-NN).

The review discusses the pros and cons of using these

methods on butterfly image data, emphasizing on

accuracy, efficiency, and generalization. Special focus is

placed on the preprocessing procedures necessary to

improve image quality and extract features, including

image augmentation, normalization, and feature scaling.

The article also investigates various butterfly image

datasets that are accessible to the public, analyzing how

they are used for training and assessing classification

models.

Google Colab is highlighted as a potent instrument

for creating and testing these models because of its

convenience, user-friendliness, and compatibility with

leading machine learning libraries such as TensorFlow

and PyTorch. Furthermore, the article examines recent

research and initiatives that have effectively utilized

butterfly image categorization with Colab, demonstrating

ideal methods and insight gained.

Image Preprocessing, Feature Extraction, Machine

Learning Libraries, TensorFlow, PyTorch, Image

Augmentation, Publicly Available Datasets.

Keywords:- Butterfly Image Classification, Supervised

Learning, Google Colab, Convolutional Neural Networks

(Cnns), Support Vector Machines (Svms), K-Nearest

Neighbors (K-NN),

I. INTRODUCTION

Butterfly image classification has become an essential

task in the field of computer vision, due to its importance in

biodiversity monitoring and conservation. Accurately

classifying butterfly species from images can significantly

help track population dynamics, understand ecological

interactions, and protect endangered species. Recent
advances in machine learning, particularly supervised

learning, have enabled the development of sophisticated

models capable of distinguishing between different butterfly

species with high accuracy.

Supervised learning, a branch of machine learning

where models are trained on labelled data, has been shown to

be particularly effective for image classification tasks.

Techniques such as convolutional neural networks (CNN),

support vector machines (SVM) and k-nearest neighbours (k-

NN) have been used to address the complexity of butterfly
image classification. CNNs, with their ability to

automatically learn hierarchical features of images, have

become the method of choice for many researchers due to

their exceptional performance in visual recognition tasks.

This paper explores the use of these supervised learning

techniques within Google Colab, a widely used cloud-based

platform that facilitates easy experimentation with machine

learning models. Google Colab provides an accessible

environment for developing and training models using

popular machine learning libraries such as TensorFlow and

PyTorch. Its integration with these libraries allows for
seamless execution of complex algorithms and offers tools for

efficient model training and evaluation.

II. BACKGROUND

Supervised Learning- Supervised learning involves

training a model on a labelled dataset, where each input image

is associated with a specific label (butterfly species in this

case). The model learns to associate input images with their

corresponding labels through a training process and its

performance is evaluated on a separate test data set.

 Classification Models: The Following are the Different

Types of Classification Models-

 Support Vector Machines (SVM): SVMs are efficient for

high-dimensional spaces and can handle cases where the

number of features exceeds the number of samples. They

are particularly useful when the number of classes is

limited.

 Decision trees and random forests: These models are
simple and interpretable, with random forests providing a

unified approach to improve robustness.

https://doi.org/10.38124/ijisrt/IJISRT24AUG974
http://www.ijisrt.com/

Volume 9, Issue 8, August – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24AUG974

IJISRT24AUG974 www.ijisrt.com 685

 Convolutional Neural Networks (CNNs): CNNs are

particularly suitable for image classification tasks due to

their ability to automatically learn spatial hierarchies and

image features.

Google colab- Google Colab is a cloud-based

environment that supports Python and provides access to

GPUs, making it ideal for training deep learning models. It
offers a collaborative environment and integrates with

Google Drive, facilitating easy data storage and sharing.

III. METHODOLOGY

A. Data Collection and Preprocessing

The effectiveness of a classification model heavily

depends on the quality and quantity of the data. For butterfly

image classification, datasets such as the Butterfly Dataset

from the Kaggle repository can be used.

 Data Collection:

Obtain a diverse set of butterfly images with

annotations. Common sources include public datasets or

collaborations with entomological research institutions.

 Data Preprocessing:

 Image Resizing: Standardize the image dimensions for

consistent input to the model.

 Normalization: Scale pixel values to a range between 0

and 1 to aid in faster convergence during training.

 Augmentation: Apply transformations such as rotations,

flips, and zooms to increase the diversity of the training

set and improve model generalization.

B. Model Selection

 CNN Architectures:

 LeNet-5: An early CNN model that is relatively simple

and suitable for baseline comparisons.

 AlexNet: Introduced deeper layers and dropout, providing

better performance on larger datasets.

 VGGNet: Known for its deep architecture and use of

small convolutional filters.

 ResNet: Uses residual blocks to address vanishing

gradient problems and is effective for very deep networks.

 Transfer Learning:

 Pre-trained Models: Leverage models like VGG16,

ResNet50, or InceptionV3 trained on large datasets (e.g.,

ImageNet) and fine-tune them on the butterfly dataset.

C. Implementation in Google Colab

 Setup Environment:

 Google Colab Notebook: Create a new notebook in

Google Colab and set up the runtime environment to use

a GPU.

 Data Handling:

 Upload Data: Use Google Drive integration to upload and

access datasets.

 Data Pipeline: Implement data loading and preprocessing

pipelines using libraries such as TensorFlow and PyTorch.

 Model Training:

 Define Model: Choose and define a CNN model

architecture or load a pretrained model.

 Compile Model: Set up the loss function, optimizer, and

evaluation metrics.

 Train Model: Train the model on the training dataset and

monitor performance on the validation set.

 Evaluation and Optimization:

 Evaluate Model: Assess the model's performance using

metrics such as accuracy, precision, recall, and F1 score.

 Hyperparameter Tuning: Optimize hyperparameters to

improve performance.

 Visualisation:

 Visualize the training and validation accuracy/loss curves

for the CNN model to assess learning patterns over

epochs.

 Plot confusion matrices for all models to illustrate the

classification performance, highlighting correctly and

incorrectly classified instances.

IV. PROGRAM CODE

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.preprocessing.image import Image

Data Generator

from tensorflow.keras.utils import to_categorical

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

import random
import pathlib

import os

tf.random.set_seed(42)

train_data =

keras.utils.image_dataset_from_directory('/content/dataset/tr

ain',validation_split = 0.2, subset = 'training', seed = 1, shuffle

https://doi.org/10.38124/ijisrt/IJISRT24AUG974
http://www.ijisrt.com/

Volume 9, Issue 8, August – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24AUG974

IJISRT24AUG974 www.ijisrt.com 686

=True, batch_size = 32,

image_size=(256,256)

test_data =

keras.utils.image_dataset_from_directory('/content/dataset/te

st', validation_split = 0.2, subset = 'validation',seed = 1,

shuffle =True,batch_size = 32,

image_size=(256,256))

filenames = pathlib.Path('/content/dataset')
for label in train_data.class_names:

 images = list(filenames.glob(f'{label}/*'))

 print(f'{label} : {len(images)}')

train_data.cardinality().numpy(),

test_data.cardinality().numpy()

train_set = train_data.take(1500)

val_set = train_data.skip(1500)

train_set.cardinality().numpy(),val_set.cardinality().numpy()

#print random images from the train set
plt.figure(figsize =(8,5))

for images, labels in train_set.take(1):

 for i in range(15):

 index = random.randint(0, len(images))

 ax = plt.subplot(3,5,i+1)

 plt.imshow(images[index].numpy().

 astype("uint8"))

 plt.title(train_data.class_names[labels[index]],

 color='blue',fontsize=12)

 plt.axis('off')

plt.show()

for images_batch, labels_batch in train_set:

 print(images_batch.shape)

 print(labels_batch.shape)

 break

from tensorflow.keras import layers

tf.random.set_seed(42)

cnn_1 = keras.Sequential([layers.Rescaling(1./255),

layers.Conv2D(filters= 32, kernel_size=3,

activation='relu'),layers.MaxPooling2D(pool_size=2),layers.

Flatten(),layers.Dense(500,activation= 'relu'),layers.Dense(5,
activation = 'sigmoid')])

cnn_1.compile(loss=keras.losses.SparseCategoricalCrossent

ropy(),optimizer=keras.optimizers.Adam(), metrics =

['accuracy'])

history_1 = cnn_1.fit(train_set, epochs=5, validation_data =

val_set)

X_test, y_test = None,None

for images, labels in test_data.take(100):

 if X_test == None or y_test == None:

 X_test = images

 y_test = labels
 else:

 X_test = tf.concat([X_test,images],axis =0)

 y_test = tf.concat([y_test,labels],axis =0)

X_test.shape, y_test.shape

from sklearn import metrics

y_pred_proba = cnn_1.predict(X_test)

y_pred = np.argmax(y_pred_proba,axis =1)

metrics.accuracy_score(y_test,y_pred)

train_score = cnn_1.evaluate(train_data,verbose=1)

test_score = cnn_1.evaluate(test_data,verbose=1)

print("Train loss:", train_score[0])

print("Train accuracy:", train_score[1])

print('*****************************')

print("Test loss:", test_score[0])
print("Test accuracy:", test_score[1])

from sklearn.metrics import classification_report

target_names = ['ADONIS','AN 88','ATALA']

def plot_random_predictions(dataset, model):

 shuffled_data = dataset.shuffle(10)

 class_names = dataset.class_names

 for images, labels in shuffled_data.take(1):

 plt.figure(figsize=(8,8),dpi =120)

 y_pred_proba = model.predict(images)

 for i in range(0):
 index = random.randint(0, len(images))

 ax = plt.subplot(3, 3, i + 1)

 img=images[index].numpy().astype("uint8")

 y_true = class_names[labels[index]]

 y_pred=class_names[np.argmax(y_pred_proba

 [index],axis = 0)]

 c='g' if y_pred == y_true else 'r'

 plt.imshow(img)

 plt.title(f'Predicted:{y_pred}\n

 True label :{ y_true}',c = c)

 plt.axis(False)

plot_random_predictions(test_data,cnn_1)

V. RESULTS

In this study, the performance of three supervised

learning models—Convolutional Neural Networks (CNNs),

Support Vector Machines (SVMs), and Random Forests—

was evaluated for the task of butterfly image classification.

Among these, the CNN model emerged as the most effective,

demonstrating the highest accuracy and generalization ability

on the test dataset.

The CNN model, designed to learn hierarchical features

directly from the raw image data, achieved an accuracy

exceeding 90%. This success is attributed to its ability to

capture intricate patterns and features in butterfly wings,

which are critical for distinguishing between species. The

CNN's deep architecture allowed it to automatically extract

and combine low-level features (e.g., edges, colors) with

high-level patterns (e.g., shapes, textures), leading to superior

performance in classifying butterflies.

In comparison, the SVM model, which relies on

manually defined features, achieved moderate accuracy.
While effective in cases where species have distinct visual

features, SVM struggled with species that exhibit subtle

variations, reflecting its limitations in feature representation.

Similarly, the Random Forest model, an ensemble learning

method, performed adequately but was less effective in

handling the complex visual data, particularly when

distinguishing between visually similar species.

https://doi.org/10.38124/ijisrt/IJISRT24AUG974
http://www.ijisrt.com/

Volume 9, Issue 8, August – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24AUG974

IJISRT24AUG974 www.ijisrt.com 687

The evaluation metrics, including accuracy, precision,

recall, and F1-score, consistently showed the CNN model

outperforming the SVM and Random Forest models. The

confusion matrices further highlighted that CNNs had fewer

misclassifications, particularly in species with subtle

differences, while SVMs and Random Forests exhibited more

errors in such cases.

These results underscore the superiority of CNNs

among the supervised learning models tested, especially in

tasks requiring detailed image analysis. The findings

reinforce the notion that deep learning models are better

suited for complex image classification tasks, particularly

when compared to traditional machine learning approaches.

Fig 1: Output 1

Fig 2: Output 2

Fig 3: Output 3

Fig.4: Output 4

Fig 5: Output 5

https://doi.org/10.38124/ijisrt/IJISRT24AUG974
http://www.ijisrt.com/

Volume 9, Issue 8, August – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24AUG974

IJISRT24AUG974 www.ijisrt.com 688

Fig.6: Output 6

Fig 7: Output 7

Fig 8: Output 8

Fig.9: Output 9

VI. CONCLUSION

This study explored the application of supervised

learning algorithms—specifically Convolutional Neural
Networks (CNNs), Support Vector Machines (SVMs), and

Random Forests—in the classification of butterfly species

from images using Google Colab. The results demonstrated

the superior performance of CNNs, which achieved the

highest accuracy and better generalization on the test dataset

compared to the traditional machine learning models.

The CNN model's ability to automatically extract and

learn hierarchical features from images enabled it to

effectively distinguish between butterfly species with

complex wing patterns and subtle differences. This contrasts

with the SVM and Random Forest models, which, while
effective in certain scenarios, struggled with the nuances

present in the visual data. The study highlighted the

limitations of traditional machine learning approaches in

handling intricate image classification tasks, where deep

learning models like CNNs excel due to their capacity to

capture detailed and abstract features.

The use of Google Colab as the computational platform

provided a practical and accessible means of implementing

and training these models, offering a cloud-based solution

that circumvents the need for high-end hardware. This
accessibility is crucial for researchers and practitioners who

may not have access to advanced computational resources but

still wish to leverage powerful machine learning techniques.

The study's findings have significant implications for

the field of ecological monitoring and biodiversity

conservation, where accurate and efficient species

identification is essential. By demonstrating the effectiveness

of CNNs in butterfly classification, this research paves the

way for future work that could further enhance model

accuracy through the use of transfer learning, more complex

architectures, or larger, more diverse datasets.

https://doi.org/10.38124/ijisrt/IJISRT24AUG974
http://www.ijisrt.com/

Volume 9, Issue 8, August – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24AUG974

IJISRT24AUG974 www.ijisrt.com 689

In conclusion, this paper underscores the potential of

deep learning models, particularly CNNs, in advancing the

field of automated species identification, providing a robust

tool for researchers and conservationists alike.

REFERNCES

[1]. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning,"
Nature, vol. 521, no. 7553, pp. 436-444, 2015.

[2]. K. Simonyan and A. Zisserman, "Very deep

convolutional networks for large-scale image

recognition," arXiv preprint arXiv:1409.1556, 2014.

[3]. C. Cortes and V. Vapnik, "Support-vector networks,"

Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.

[4]. L. Breiman, "Random forests," Machine Learning,

vol. 45, pp. 5-32, 2001.

[5]. M. Everingham, L. Van Gool, C. K. I. Williams, J.

Winn, and A. Zisserman, "The PASCAL Visual Object

Classes (VOC) Challenge," Int. J. Comput. Vis., vol.
88, no. 2, pp. 303-338, 2010.

[6]. A. Krizhevsky, I. Sutskever, and G. E. Hinton,

"ImageNet classification with deep convolutional

neural networks," in Proc. 25th Int. Conf. Neural

Information Processing Systems (NIPS), Lake Tahoe,

NV, 2012, pp. 1097-1105.

[7]. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual

learning for image recognition," in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Las Vegas,

NV, 2016, pp. 770-778.

[8]. D. Kingma and J. Ba, "Adam: A method for stochastic

optimization," arXiv preprint arXiv:1412.6980, 2014.
[9]. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

"You only look once: Unified, real-time object

detection," in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Las Vegas, NV, 2016, pp. 779-788.

[10]. F. Chollet, "Xception: Deep learning with depthwise

separable convolutions," in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit. (CVPR), Honolulu, HI, 2017,

pp. 1251-1258.

[11]. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-

CNN: Towards real-time object detection with region

proposal networks," in Proc. 28th Int. Conf. Neural
Information Processing Systems (NIPS), Montreal,

Canada, 2015, pp. 91-99.

[12]. A. Dosovitskiy et al., "An image is worth 16x16

words: Transformers for image recognition at scale,"

arXiv preprint arXiv:2010.11929, 2020.

[13]. C. Szegedy et al., "Going deeper with convolutions,"

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), Boston, MA, 2015, pp. 1-9.

[14]. M. Tan and Q. Le, "EfficientNet: Rethinking model

scaling for convolutional neural networks," in Proc.

36th Int. Conf. Machine Learning (ICML), Long

Beach, CA, 2019, pp. 6105-6114.
[15]. I. Goodfellow et al., "Generative adversarial nets," in

Proc. 27th Int. Conf. Neural Information Processing

Systems (NIPS), Montreal, Canada, 2014, pp. 2672-

2680.

https://doi.org/10.38124/ijisrt/IJISRT24AUG974
http://www.ijisrt.com/

