
Volume 9, Issue 12, December – 2024                              International Journal of Innovative Science and Research Technology                                       

ISSN No:-2456-2165                                                                                                              https://doi.org/10.5281/zenodo.14598593 

 

IJISRT24DEC1801                                                             www.ijisrt.com                   2202 

A Detailed Overview of Brain-Computer and  

Brain-Machine Interfaces 
 

 
1Uday S. Yeshi 

Electronics and Telecommunications SPIT,  

Andheri Mumbai, India 

2Atharva A. Khode  

Electronics and Telecommunications SPIT,  

Andheri Mumbai, India  

 

 
3Shashvat Sangle 

Electronics and Telecommunications SPIT, 

Andheri Mumbai, India 

4Surabhi Vishwasrao 
Electronics and Telecommunications SPIT, 

Andheri Mumbai, India 

 

 
5Gautami Salve 

Electronics and Telecommunications SPIT,  

Andheri Mumbai, India 

 

 

Abstract:- Brain-Computer Interfaces (BCIs) and Brain- 

Machine Interfaces (BMIs) represent trans-formative 

technologies capable of enabling communication and 

control for individuals with severe disabilities. These 

systems employ a series of intricate processes, including 

signal acquisition, feature extraction, feature translation, 

and device output, to translate neural activity into 

actionable commands. While BCIs predominantly focus 

on noninvasive applications, BMIs often involve invasive 

methods, with preclinical studies on animal models 

advancing the un- derstanding of neural decoding. 

Despite their promise, several technical challenges 

remain, including signal reliability, adaptive user 

interfaces, feedback mechanisms, and economic 

scalability. Addressing these gaps through 

interdisciplinary research is critical to unlocking the full 

potential of BCIs and BMIs for real-world applications. 

This paper reviews current methodologies, highlights 

technical limitations, and proposes future directions to 

enhance the reliability, usability, and accessibility of these 

groundbreaking technologies. 
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I. INTRODUCTION 

 

Brain-Computer Interfaces (BCIs) and Brain-Machine 

Inter- faces (BMIs) are at the forefront of technological 

innovation, offering unprecedented possibilities for restoring 

communica- tion and motor functions in individuals with 

severe disabilities. By leveraging neural activity to control 

external devices, these systems have shown immense 

potential in applications ranging from prosthetic control to 

rehabilitation. BCIs predominantly utilize noninvasive 

techniques such as electroencephalography (EEG), while 

BMIs often involve invasive methods, including 

electrocorticography (ECoG) and microelectrode arrays, to 
achieve high-resolution neural decoding. 

 

The development of BCIs and BMIs is rooted in a multi- 

step methodology encompassing signal acquisition, feature 

extraction, feature translation, and device output. These pro- 

cesses transform raw neural signals into commands that 

control external devices, creating a closed-loop system where 

feedback enhances user interaction. Preclinical studies, 

particularly those involving primates, have played a pivotal 

role in demonstrating the feasibility of these systems. For 

instance, implanted electrodes in the motor cortex of monkeys 
have enabled precise control over robotic arms, offering 

insights into the real-world potential of BMIs. 

 

Despite these advancements, significant technical and 

prac- tical challenges hinder the widespread adoption of BCIs 

and BMIs. Signal noise, system reliability, adaptive control, 

and limited feedback mechanisms are key obstacles that must 

be addressed. Furthermore, the high costs and invasive 

nature of certain systems, coupled with the lack of robust 

business models, limit accessibility for many potential users. 

 

This paper explores the methodologies underpinning 
BCIs and BMIs, delves into the technical gaps that 

constrain their utility, and discusses emerging strategies to 

overcome these barriers. By fostering interdisciplinary 

collaboration and innovation, BCIs and BMIs can evolve 

from laboratory prototypes to practical solutions, 

transforming the lives of individuals with disabilities. 

 

II. FUNDAMENTALS OF BRAIN-COMPUTER 

 

A. Interfaces (BCIs) and Brain-Machine Interfaces (BMIs) 

 
 Neural Signal Acquisition: 

The foundation of both BCIs and BMIs lies in the ability 

to acquire neural signals from the brain. These signals 
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represent the electrical activity produced by neurons and can 

be measured using different techniques: 

 

Electroencephalography (EEG): Non-invasive method 

using electrodes placed on the scalp to measure brain activity. 

While it offers relatively low spatial resolution, it is widely 

used due to its affordability and non-invasive nature. 

 
Electrocorticography (ECoG): Invasive technique 

where electrodes are placed directly on the surface of the 

brain, providing higher spatial resolution and better signal 

fidelity. 

 

Intracortical Micro-electrode Arrays (MEA): These are 

implanted within the brain tissue to record individual neuron 

activity or small groups of neurons, allowing for precise 

control in BMIs. 

 

Magneto-encephalography (MEG) and Functional 

Magnetic Resonance Imaging (fMRI): These are more 
advanced tech- niques that offer high-resolution insights into 

brain activity, although they are not yet commonly used in 

real-time control applications. 

 

 Signal Processing and Feature Extraction: 

The electrical signals acquired from the brain are raw 

and noisy, requiring extensive signal processing before they 

can be used effectively. This processing includes: 

 

Preprocessing: Raw neural signals are filtered to remove 

artifacts from external sources like eye blinks or muscle 
movements. 

 

Feature Extraction: The next step is to identify relevant 

patterns in the brain activity that correspond to specific 

thoughts or intentions. Common features include amplitude, 

frequency, and latency of neural oscillations. In BMIs, the 

focus is on identifying motor-related patterns (e.g., 

movement intention). Time Frequency Analysis: Many brains 

signal change over time and frequency. Techniques like 

wavelet transforms or Fourier transforms are used to analyze 

these dynamic signals. 

 
Pattern Recognition: Using algorithms like Support 

Vector Machines (SVM) or Neural Networks, these features 

are classified into specific categories, representing distinct 

user intentions (e.g., move a cursor, open a prosthetic hand). 

 

 Decoding and Feature Translation 

The key challenge in both BCIs and BMIs is decoding 

brain signals into meaningful commands that can control 

external devices. This step involves translating extracted 

features into actionable instructions: 

 
 Neural Decoding: 

The brain’s signals, once processed, are mapped to 

motor actions or control commands. In BCIs, these might 

translate to cursor movements on a screen, whereas in BMIs, 

they could control robotic arms or prosthetics. 

 

 

 Real-Time Processing: 

The system must process the signals rapidly (often in 

real- time) to ensure smooth control of devices. This is where 

machine learning and adaptive algorithms come into play, 

continually adjusting to changes in the brain’s patterns over 

time. 

 

 Closed-Loop Control: 
Most BCIs and BMIs function in a closed-loop system, 

meaning the system provides feedback to the user about 

the action being performed (e.g., visual feedback for cursor 

movement), which allows the user to refine their control. 

 

 Neuroplasticity and Learning: 

One of the most important concepts in the operation of 

BMIs, in particular, is neuroplasticity, the brain’s ability to 

reorganize itself and form new neural connections. BMIs 

often leverage this plasticity: 

 

Adaptation: As a user interacts with a BMI, their brain 
gradually adapts to the new way of controlling devices. This 

adaptation can improve the precision and speed of control 

over time, just as the brain adapts to new physical skills. 

 

 Motor Learning: 

The brain learns new motor skills through repetitive 

practice. In the context of BMIs, this learning process 

involves the brain adjusting to the feedback from the BMI 

system, which in turn improves control. 

 

 Feedback Mechanisms: 
Feedback is essential to the success of BCIs and BMIs, 

as it helps users adjust their brain activity to control devices 

more effectively. Feedback can be: 

 

Visual Feedback: Most common in BCIs, where users 

see the results of their brain activity (e.g., moving a cursor 

on a screen). However, this type of feedback can be slow and 

sometimes counterintuitive. 

 

 Proprioceptive or Tactile Feedback: 

Especially important in BMIs, where users need to 

control a prosthetic or robotic limb. Sensory feedback, such as 
vibrations or forces, informs the user about the state of the 

device (e.g., whether the prosthetic hand is gripping an 

object). 

 

 Multimodal Feedback: 

Combining different types of feedback (e.g., visual, 

auditory, and tactile) can offer a more intuitive and effective 

control experience, especially for complex tasks requiring 

fine motor precision. 

 

 System Adaptability and Personalization: 
Both BCIs and BMIs must be adaptable to individual 

users because: 

 

Individual Variability: Brain signals vary greatly 

between individuals, meaning a one-size-fits-all approach is 

not feasible. Customizing the system to each user’s neural 

patterns is essential. 
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Learning Algorithms: Advanced machine learning tech- 

niques, such as neural networks and deep learning, are 

increasingly used to create systems that personalize 

themselves based on the user’s brain activity. These 

algorithms adapt to the user’s evolving brain patterns and 

improve control over time. 

 

 Challenges and Limitations 
Several theoretical and technical barriers hinder the 

widespread use of BCIs and BMIs: 

 

Signal Noise and Interference: Neural signals are often 

weak and mixed with noise (from muscle contractions or 

other sources), making decoding challenging. 

 

Long-Term Reliability of Implants: For invasive BMIs, 

ensuring that implanted devices continue to work effectively 

over long periods is a major challenge, as the body’s immune 

system may cause inflammation or scar tissue buildup. 
 

 

III. PROPOSED SYSTEM DESIGN 

 

A. Let us Understand the Function of each Block in our System, 

 

 
Fig 1 Proposed Block Diagram of Brain Computer Inter-Face BCI 

 

 Brain Signal Source. 
When we think action we want to perform our brain 

generates the electrical signals, such as electroencephalogram 

(EEG) signals. Such signals are produced due to neural 

activity and are captured from the scalp by using dedicated 

sensors or electrodes. The brain’s electrical activity varies 

based on cognitive or motor tasks, which forms the basis of 

BCI functionality. 

 

 Signal Acquisition System. 

In signal acquisition part we placed the electrodes on the 

scalp to collect raw brain signals. These electrodes can be 
(wet or dry EEG sensors) which picks up very weak signals 

in the range of microvolts (µV). These signals are highly 

prone to interference and noise which requires amplification. 

The signal acquisition block also digitizes the analog signals 

for further processing. 

 

 Pre-processing Unit 

This block removes unwanted noise and artifacts from 

the raw brain (EEG signals) signals to improve their quality. 

Usually it contains Bandpass filters, artifacts removal and 

amplification of these signals. 

 
 Featured Extraction Unit. 

This block identifies and extracts the meaningful 

patterns from the preprocessed signals. This implements 

various meth- ods like FFT, PCA and Wavelet Transform. 

 

 Signal Classification Unit 

This unit is implemented to classify the clear intend of 

the signals by using various complex algorithms like K-

Nearest Neighbors(KNN) , Recurrent Neural Networks 

(RNN). Which declares the clear user intent to target the 

controlling device. 
 

 Command Translational unit. 
It converts the classified output to executable 

commands. Basically this commands are transmitted to 

external device via various communication protocols like 

Bluetooth , wi-fi or USB. 

 

 External Device or Actuator 

This is nothing but the device we have targeted to 

control by using overall system. These devices can be 

anything for ex: Robotic arms , moving cursors etc. 

 

 Feedback Loop 
The feedback loop provides real-time feedback to the 

user, which helps user to implement their mental strategies 

for improved system performance. This feedback provided by 

the system can be vary it can be visual , audio as well as 

haptic. 

 

IV. ALGORITHM 

 

A. For Brain Computer Task Interface Algorithm can be 

Proposed as : 
 

 Data Acquisition 

Input given to this part are the signals from the brain 

which can be EEG, MEG, ECoG. There are certain specific 

steps by which we can acquire this signals.We need to 

connect the sensors or electrodes at appropriate locations. 

Signals acquired will be weak and in the analog form we Will 

use Analog to digital converter which will convert this 

acquired signals into digital for further used for processing. 

Sampling rate used will be varying as per the signals if signals 

acquired are EEG we need sampling rate of 256 Hz or more. 
 

 

 

https://doi.org/10.5281/zenodo.14598593
http://www.ijisrt.com/


Volume 9, Issue 12, December – 2024                              International Journal of Innovative Science and Research Technology                                       

ISSN No:-2456-2165                                                                                                              https://doi.org/10.5281/zenodo.14598593 

 

IJISRT24DEC1801                                                             www.ijisrt.com                   2205 

 Preprocessing 

Usually the signal we acquired is weak with 

introduction of noise we need this stage to remove the noise. 

We use filters specially Bandpass filters in this stage to pass 

the specific bands of frequency a desired . Now this range of 

frequency will be also varying as per the signals . For ex: 0.5 

– 4.0 Hz for EEG. In this stage we also remove the unwanted 

noise such as powerline noise using a notch filter created due 
to eye blinks, muscle movement or other environmental 

factors like the Independent Component Analysis(ICA). This 

stage ensures that extracted data is reliable and accurate. 

 

 Feature Extraction 

This stage identifies the important patterns and 

characteristics of the preprocessed brain signals. This feature 

can be derived in different domains like Time-domain 

features which include information of amplitude signals 

behavior with respect to time. Frequency domain features in 

which features extracted by using method like Fast Fourier 

Transform(FFT) Which tells about energy distribution and 
frequency bands. Then there is Time frequency analysis 

which combines the strengths of both domains by methods 

like Short-Time Fourier Transform (STFT). 

 

 Classification 

This stage maps the selected features to specific brain 

states or required task using advanced machine learning 

algorithms. Various machine learning algorithms which 

includes Ramdom forestes , Support vector machines (SVM), 

K-Nearest Neigh- bors (KNN) are mostly used for 

interpretability and robustness. Also for other tedious tasks 
models like Convolutional Neural Networks (CNNs) are 

implemented. 

 

 Feature Extraction 

This stage identifies the important patterns and 

characteristics of the preprocessed brain signals. This feature 

can be derived in different domains like Time-domain 

features which include information of amplitude signals 

behavior with respect to time. Frequency domain features in 

which features extracted by using method like Fast Fourier 

Transform(FFT) Which tells about energy distribution and 
frequency bands. Then there is Time frequency analysis 

which combines the strengths of both domains by methods 

like Short-Time Fourier Transform (STFT). 

 

 Classification 

This stage maps the selected features to specific brain 

states or required task using advanced machine learning 

algorithms. Various machine learning algorithms which 

includes Ramdom forestes , Support vector machines (SVM), 

K-Nearest Neigh- bors (KNN) are mostly used for 

interpretability and robustness. Also for other tedious tasks 

models like Convolutional Neural Networks (CNNs) are 
implemented. 

 

V. EXPERIMENTATION AND 

RESULT ANALYSIS 

 

In this experiment, we explored the concept of Brain- 

Computer Interface (BCI) by utilizing MATLAB to simulate 

signal processing and cursor movement. The primary 

objective was to create a signal, process it, and control the 

movement of a cursor based on the signal’s values. 

 
 

 

 
Fig 2 Brain Signals 
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Fig 3 Output of Our Proposed System 

 

The experiment began by generating a random signal 

using MATLAB’s rand function. This function created a 

set of random values which were then fed into the BCI 

processing code. The core functionality of the system 

involved applying predefined thresholds to the generated 

signal. Based on the signal’s value exceeding or falling 
below these thresholds, the cursor was moved either to the left 

or to the right on the screen. 

 

The thresholds were designed to detect significant 

variations in the signal, and once these were identified, the 

system translated the signal into cursor movements. The 

behavior of the cursor was directly linked to the values of the 

signal, and the thresholds played a critical role in determining 

the direction of movement. This setup effectively mimics a 

basic BCI system where the signal (which can be thought of 

as neural input) controls an external device (the cursor in this 

case). 
 

A. Results and Analysis 

The results from the experiment demonstrated that the 

cursor successfully moved in the left and right directions 

based on the variations in the generated signal. As the signal 
fluctuated, it consistently triggered the movement of the 

cursor when crossing the specified thresholds. This confirms 

the feasibility of using signal processing techniques for simple 

BCI applications. 

 

Further analysis showed that the threshold values 

played a significant role in the accuracy and responsiveness 

of the cursor movement. By fine-tuning these thresholds, the 

system’s performance could be enhanced, providing a more 

reliable and responsive interface. The experiment also 

highlighted the potential of using such signal-processing 

techniques as a foundation for more advanced BCI systems 

in real-world applications, such as communication for 

individuals with severe disabilities. 

 
This experiment serves as an initial step in exploring the 

capabilities of BCIs and highlights the importance of signal 

processing in enabling real-time control of external devices 

through neural or artificial signals. 

 

The results can be viewed at the following link: 

https://drive.google.com/file/d/16IluwJ8BqsXJ4FEb1dvG29Aj

Y pQHomvZ/view?usp=sharing 

 

VI. CONCLUSION 

 

This project highlights the feasibility of integrating 

simu- lated EEG signals with computer activity control, 

effectively showcasing a basic brain-computer interface 

(BCI) prototype. By combining sine wave-based EEG signal 

simulation with random noise to mimic realistic neural 

activity, the system demonstrated the ability to translate 
signal amplitude into actionable commands, such as moving 

a computer mouse cursor. 

 

The implementation of a threshold-based trigger for 

cursor movement exemplifies how EEG signal features can be 

utilized for interactive applications. This proof of concept 

underscores the potential of BCIs in enabling real-time 

system interactions, paving the way for further exploration 

into more sophisticated and practical use cases. 
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Future work could focus on enhancing signal processing 

techniques, incorporating adaptive algorithms for more 

accurate control, and expanding the scope of computer 

activities that can be regulated through EEG signals. This 

project serves as a foundation for exploring advanced BCI 

designs and their applications in assistive technology and 

human-computer interaction. 

 
The development of Brain-Computer Interfaces (BCIs) 

and Brain-Machine Interfaces (BMIs) has unlocked new 

possibili- ties in bridging neural activity with external 

systems, offering life-changing applications for individuals 

with disabilities. Despite the advancements in neural signal 

acquisition, feature processing, and device control, there 

remain hurdles such as signal noise, system adaptability, 

long-term usability, and cost barriers. 

 

Overcoming these challenges will require a concerted 

interdisciplinary effort, integrating innovations in 

neuroscience, machine learning, and real-time system design. 
Enhancing adaptability through personalized algorithms and 

leveraging neuroplasticity can significantly improve user 

experience and performance. Furthermore, ethical 

considerations, including pri- vacy protection and equitable 

access, must remain a cornerstone of future developments. 

 

By fostering collaboration across diverse fields, BCIs 

and BMIs can progress from experimental prototypes to 

accessible, reliable technologies. Achieving this goal will 

not only transform assistive technology but also expand the 

potential applications of neural interfacing, paving the way 
for widespread societal benefit. 
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