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Abstract:- The extraction of causal relationships from 

biomedical literature, focusing on overcoming the unique 

challenges presented by the complexity of biomedical 

language, implicit causalities, and the scarcity of large 

annotated datasets. The research offers an extensive 

review of various methods, ranging from rule-based 

systems to classical machine learning models such as 

SVMs, to the cutting-edge deep learning techniques 

including LSTM, CNN, and BioBERT, which have 

significantly improved the identification of both explicit 

and implicit causal relationships. A major contribution of 

this work lies in addressing the limitations posed by small 

datasets through the incorporation of semi-supervised 

learning and data augmentation techniques. The paper 

also emphasize the importance of capturing temporal 

dependencies to enhance the understanding of event 

sequences, crucial for recognizing causality in biomedical 

studies. Furthermore, the research underscores the 

significance of domain adaptation, fine-tuning general-

purpose datasets like SemEval for the specific needs of 

biomedical literature, which often contains domain-

specific terms and complex structures. By tackling these 

challenges and proposing innovative solutions, this paper 

advances the field of biomedical text mining, offering 

valuable insights for future research and practical 

applications in clinical decision support, drug safety 

monitoring, and biomedical knowledge discovery. 
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I. INTRODUCTION 

 

The extraction of causal relationships from biomedical 
texts has gained prominence due to its relevance in various 

biomedical applications, including drug discovery, disease 

treatment, and medical diagnostics. Biomedical literature 

contains intricate relationships between proteins, drugs, and 

diseases, which are essential for advancements in personalized 

medicine and clinical decision-making. 

 

However, these texts are often complex, with ambiguous 

terminology and implicit relationships that make extracting 

causal links challenging [1], [2]. Traditional rule-based systems 

that rely on predefined patterns have limitations, particularly in 

their inability to adapt to new datasets and handle implicit 

relationships, which necessitates the development of more 

advanced methods [1], [3]. 
 

Machine learning and deep learning approaches have 

become pivotal in overcoming these limitations. Techniques 

such as Convolutional Neural Networks (CNNs) [4] and 

Recurrent Neural Networks (RNNs) [5], especially Long Short-

Term Memory (LSTM) [6] networks, have been employed to 

extract causal relations from biomedical texts more efficiently 

than traditional systems. These models capture the context of 

relationships within sentences and have demonstrated improved 

scalability and flexibility. BERT and its domain-specific 

variant, BioBERT, are particularly notable for their ability to 
capture local and global dependencies, enhancing performance 

in tasks related to causality extraction [7], [8], [9]. 

 

Despite these advancements, several challenges remain. 

Biomedical texts often involve implicit relationships, where 

causal connections are inferred rather than explicitly stated. 

Additionally, the lack of large annotated biomedical datasets 

hinders the training of robust machine learning models. This 

scarcity necessitates the use of data augmentation techniques, 

semi-supervised learning, and domain-specific model 

adaptations to overcome the challenges posed by limited 

datasets. The adaptation of general-purpose models like 
SemEval [10] for biomedical tasks further highlights the need 

for more tailored approaches in this domain [11], [12], [13]. 

 

Table 1 Examples of Implicit Causality in Biomedical Texts 

Connectives Sentences Labels 

“due to” The patient’s fever subsided due to the antipyretic medication [1]. Causal 

“resulting from” There was a significant reduction in symptoms resulting from the therapy [1]. Causal 

“even though” Even though the treatment was administered, the patient’s condition worsened [14]. Non-causal 

“thereby” The drug reduced inflammation, thereby improving patient recovery [15]. Causal 

“despite” Despite the positive initial response, complications arose later [16]. Non-causal 

“following” Following the surgery, the patient experienced mild swelling [17]. Causal 
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This table-1 provides examples of connectives in 

biomedical contexts, showcasing how they can imply causal or 

non-causal relationships. The relevance of this table is 

illustrating the complexity of biomedical text, where 

connectives like “due to,” “despite,” and “thereby” play crucial 

roles in expressing causality. Understanding these patterns is 

key to improving the accuracy of causality extraction models 

in biomedical literature. 
 

The methods of the investigations and challenges 

associated with extracting causality from biomedical texts. 

The research work focuses on improving the accuracy of causal 

relationship extraction through advanced deep learning models 

and propose innovative solutions to handle language 

complexity, dataset limitations, and implicit relationship 

extraction. 

 

By addressing these challenges, the contributions aim to 

enhance the field of biomedical text mining, enabling more 

effective analysis of biomedical literature for applications in 
research and clinical settings [18], [19]. 

 

Furthermore, this research lays the groundwork for future 

developments in causality extraction, emphasizing the 

importance of enhancing domain-specific models and 

expanding high-quality biomedical datasets to support ongoing 

advancements in this area [20], [21], [22]. 

 

II. TYPES OF CAUSAL RELATIONSHIPS 

IN BIOMEDICAL TEXT 

 
Causal relationships in biomedical literature are central to 

understanding how various factors such as treatments, diseases, 

symptoms, and patient outcomes interact. The ability to detect 

and extract these relationships is fundamental for applications 

like clinical decision-making, drug discovery, and knowledge 

graph creation. Causal relationships in biomedical texts can be 

classified into three main types: explicit, implicit, and inter-

sentential relationships. Each type presents distinct challenges 

in extraction due to the complexity and nuances of natural 

language. 

 

 Explicit Causal Relationships 
Explicit causal relationships occur when the cause and 

effect are directly expressed within the text, typically signaled 

by clear causal markers such as “cause,” “lead to,” or “result 

in.” These types of relationships are relatively simple to 

identify through rule-based methods or keyword spotting, as 

they present well-defined linguistic cues. For instance, in 

sentences like “Aspirin causes gastrointestinal bleeding” or 

“Taking Drug X leads to a significant decrease in blood 

pressure,” the causal connections are explicitly stated, making 

them easier to detect. Models designed for rule-based methods 

and graph-based approaches have shown success in handling 
such explicit causal relationships [23], [24]. 

 

Despite their simplicity in extraction, explicit causal 

relationships tend to be less frequent in biomedical texts 

compared to implicit ones. While they offer a clear 

understanding of the causal links, the biomedical domain often 

presents more complex, nuanced interactions where the cause-

effect relationship is implied rather than directly stated. 

Therefore, while rule-based extraction models perform well on 

explicit relationships, the need for advanced techniques is 

crucial to uncover implicit relationships, which are more 

common and critical in biomedical research [1], [3]. 

 

 Implicit Causal Relationships 

Implicit causal relationships are those that are not directly 
stated within the text but require inference from the 

surrounding context. These relationships are more difficult to 

extract because the causal link between entities is implied rather 

than explicitly mentioned. 

 

In biomedical literature, implicit relationships are 

particularly common, as drugs or treatments are often described 

alongside their effects without the use of explicit causal 

connectors. For instance, in sentences like ”The patient took 

Drug X and subsequently experienced gastrointestinal 

bleeding” or ”After undergoing chemotherapy, the patient’s 

immune system weakened,” the cause-effect connection is 
implied but not clearly stated, making extraction more 

challenging. 

 

Extracting implicit relationships requires a deeper 

understanding of the context. Advanced techniques, such as 

deep learning models like BERT and SciBERT [25], [26], are 

increasingly being employed to capture these subtle contextual 

dependencies and infer the underlying causal connections. 

Additionally, neural models, such as CNNs and attention-based 

mechanisms [27], have shown effectiveness in extracting 

implicit relationships by focusing on the relationships between 
words and phrases within the broader text [7], [28]. These 

methods allow for the identification of nuanced causal links that 

are not easily detectable using traditional rule-based 

approaches. 

 

 Inter-Sentential Causal Relationships 

Inter-sentential causal relationships are more complex as 

they span across multiple sentences or even paragraphs, where 

the cause and effect may not be present within the same 

sentence. Instead, these relationships are distributed throughout 

the text, making it challenging to track and extract the causal 

link. In biomedical literature, these relationships often describe 
how treatments or drugs influence patient outcomes over time. 

For instance, “The patient was prescribed Drug X. Two days 

later, they began experiencing severe nausea” or “The patient 

received a new treatment for hypertension. Over the next few 

days, their blood pressure dropped significantly” illustrates 

how the cause (the treatment) and the effect (the outcome) are 

separated by several sentences, adding complexity to the 

extraction process [29]. 

 

To extract inter-sentential causal relationships effectively, 

advanced models that can handle long-range dependencies, 
such as LSTM networks or Transformer models, are required 

[30], [31]. These models are capable of retaining the context 

across multiple sentences, enabling them to detect causality that 

extends beyond sentence boundaries. Recent advancements, 

including the use of graph attention networks, have also shown 

significant promise in capturing these complex causal 

relationships [32]. 
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By effectively modeling the relationships between 

different parts of the text, these models offer a more robust 

solution for extracting intersentential causal relationships in 

biomedical literature. 

 

The comparison table-2 provided in this section outlines 

the key characteristics of the various types of causal 

relationships found in biomedical texts. It highlights examples 
for each type, such as explicit causal relationships that directly 

state cause and effect, versus implicit ones where the 

connection must be inferred. Inter-sentential relationships span 

across multiple sentences or paragraphs, requiring more 

advanced methods for detection. 

 

Each type of relationship presents unique challenges for 

extraction, and the table summarizes these, along with the 

suitable techniques for identifying them, such as rule-based like 
LSTM or BERT for more complex cases. 

 

Table 2 Comparison of Causal Relationship Types in Biomedical Text

Type Characteristics Example Challenges in 

Extraction 

Possible Extraction 

Methods 

Explicit Causal 

Relationships 

Cause and effect are 

directly stated with clear 

causal markers 

”Aspirin  causes  

gastrointestinal bleeding” 

Easy to extract, but less 

frequent 

Rule-based methods, 

graph kernels [24], [23] 

Implicit Causal 

Relationships 

Cause and effect are implied 

and must be inferred from 

context 

”The patient took Drug 

X and experienced 

nausea” 

Requires inference, 

ambiguous connections 

Deep learning models 

(BERT, SciBERT), 

contextual embedding [25], 

[26] 

Inter-Sentential 

Causal 

Relationships 

Cause and effect are 

separated across sentences 

or paragraphs 

“Drug X was 

prescribed. Two days 

later, nausea occurred” 

Requires tracking con- 

text over multiple 

sentences 

LSTM, Transformer 

models, graph-based 

models [30], [31], [32] 

Temporal Causal 

Relationships 

Events are ordered 

based on time, with 
causality inferred from 

temporal sequence 

”After administering Drug 

X, symptoms improved” 

Requires understanding 

temporal progression 

Timeline modeling, 

temporal extraction [33] 

Conditional 

Causal 

Relationships 

Cause and effect occur 

only under specific 

conditions 

”If Drug X is taken with 

alcohol, it may cause 

liver damage” 

Subtle conditions, 

harder to detect 

Conditional clause 

detection, advanced NLP 

parsing [23] 

This table-2 serves as a quick reference to understand how 

these relationships differ in their presentation, complexity, and 

the models required for their accurate extraction. 

 

In addition, Understanding and extracting causal 

relationships from biomedical literature is crucial for advancing 

fields such as drug discovery, clinical decision-making, and 
medical research. The identification of these relationships 

allows researchers to make better-informed conclusions 

regarding the effectiveness of treatments, the risks associated 

with certain drugs, and the underlying mechanisms of diseases. 

 

This section lays out a comprehensive understanding of 

explicit, implicit, and inter-sentential causal relationships, their 

complexities, and the methodologies for extracting them. By 

breaking down these relationships and their extraction 

challenges, therefore, it provides a foundation for improving 

the efficiency and accuracy of Natural Language Processing 
(NLP) [34] tools in biomedical research, which is essential for 

the overall goal of this paper—enhancing automated systems 

in understanding biomedical literature. 

 

III. DATASETS FOR CAUSALITY EXTRACTION 

IN MIOMEDICAL TEXT 

 

Biomedical text is rich with causal relationships, whether 

they describe drug interactions, gene expressions, or adverse 

medical events. These relationships are critical for advancing 

medical research and clinical applications, making the accurate 

extraction of causality essential. Several datasets have been 

developed to support the extraction of these causal 

relationships, each with its own focus on different aspects of 

biomedical interactions. 

 

Below, there are discussion about prominent datasets that 

used for causality extraction, their characteristics, and their 

relevance to biomedical research. 
 

 BioInfer 

BioInfer is a dataset that contains annotated relations 

between genes, proteins, and RNA, making it an excellent 

resource for studying interactions in molecular biology. 

BioInfer includes comprehensive information on how these 

entities influence each other, which is essential for 

understanding gene-disease path-ways. 

 

The dataset also includes annotations of biological 

processes, which are pivotal in developing systems that can 
recognize and extract complex causal relationships in 

biological contexts [35]. The richness of BioInfer has made it a 

benchmark for various biomedical text mining tasks, including 

gene-disease interaction studies and pathway discovery. 

 

 ADE (Aderse Drug Events) 

The ADE dataset focuses on drug-disease interactions, 

specifically adverse events caused by pharmaceutical 

interventions [36]. ADE is one of the most crucial resources for 

pharmacovigilance, allowing researchers to identify causal 

links between drugs and side effects. 
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With over 6,000 sentences annotated with drug-disease 

relationships, this dataset helps in building models that detect 
adverse reactions, contributing to drug safety monitoring [37]. 

It is commonly used in the development of automated systems 

for identifying harmful drug effects from clinical reports and 

literature. 

 

 SemEval-2010 Task 8 

SemEval-2010 Task 8 is a widely used dataset for 

semantic relation classification. Although it is not exclusively 

biomedical, its flexibility allows it to be adapted for biomedical 

applications. The dataset contains a diverse set of relation types, 

including cause-effect, which can be applied to biomedical 
texts for causality extraction. 

 

This general-purpose dataset helps in building models that 

are not only tuned for biomedical causality but can also be 

generalized to other domains [38]. Researchers frequently use 

SemEval-2010 Task 8 to train causality extraction models for 

broader NLP applications, which are later fine-tuned for 

specific biomedical tasks. 

 

Table 3 Comprehensive Comparison of Biomedical Causality Extraction Datasets (SBC=Suitability for Biomedical Causality) 

Dataset Domain Size Relation Types Data Structure Applications SBC 

BioInfer Biomedical 1,461 sentences Gene, protein, 

RNA interactions 

Sentences annotated with 

biological interactions 

Gene-disease interaction 

studies, molecular pathways 
[35] 

High 

ADE Biomedical 6,821 sentences Drug-adverse 

event relations 

Case reports, clinical text Pharmacovigilance, drug 

safety monitoring [37] 

High 

SemEval- 

2010 Task 8 

General 

(adaptable) 

10,717 

examples 

Cause-effect, 

other 

semantic 

relations 

Sentence pairs annotated 

with semantic relations 

General NLP applications, 

adaptable to biomedicine [38] 

Moderate 

PDTB 2.0 General 

(WSJ) 

9,190 discourse 

relations 

Discourse-level 

causal relations 

Annotated with explicit 

and implicit causal 

markers across texts 

Discourse-level analysis, 

biomedical literature with 

discourse structures [40] 

High 

BioNLP 

Shared Task 

2011 

Biomedical 1,808 abstracts Event and 

entity 

relationships 

Structured abstracts and 

full-text annotations 

Event  extraction,  gene 

regulation studies [41] 

High 

Causal Time-

Bank 

Mixed- 

domain 

183 documents Temporal and 

Causal relations 

between events 

Annotated  with  cause- 

effect and time relations 

in text 

Event-based causality 

extraction, adaptable to 

medical texts [42] 

Medium 

CHEMPROT Biomedical 25,000 abstracts Protein-chemical 
compound 

interactions 

Abstracts from 
biomedical literature 

Chemical-protein interaction 
studies, drug discovery [43] 

High 

GENIA Biomedical 2,000 abstracts Biological 

interactions 

Abstracts with biological 

event annotations 

Biological process modeling, 

gene regulation [44] 

High 

The table-3 provides a comprehensive comparison of 

several datasets that are commonly used for causality extraction 

in biomedical text. Each dataset is presented with details on its 

domain, size, and the types of relationships it captures, data 

structure, and its applications in various fields of biomedical 

research.  BioInfer, ADE, and GENIA are specifically tailored 

for biomedical purposes, focusing on biological interactions, 

drug-adverse event relations, and protein-chemical 
interactions, respectively. Datasets like SemEval-2010 Task 8 

and PDTB 2.0, although not initially designed for biomedical 

purposes, are adaptable and useful in training causality 

extraction models with additional fine-tuning. Each dataset is 

assessed for its suitability for biomedical causality research, 

where most of them demonstrate high potential for application 

in this domain, despite some needing domain-specific 

customization. 

 

 PDTB 2.0 (Penn Discourse TreeBank) 

The Penn Discourse TreeBank (PDTB) 2.0 [39] is a 

comprehensive dataset that provides annotations for discourse-
level relationships, including causality. PDTB 2.0 is primarily 

based on the Wall Street Journal corpus but has found 

applications in biomedical discourse analysis due to its detailed 

causal relation annotations. It includes both explicit and implicit 

causal markers, making it suitable for analyzing complex 

biomedical texts where causality is spread across multiple 

sentences or paragraphs [40]. 

 

The table-4 highlights the advantages and limitations of 
the datasets discussed. For example, BioInfer provides rich 

annotations of gene-protein interactions but is limited to 

molecular biology, making it less generalizable. ADE is crucial 

for pharmacovigilance, focusing on drug safety, but lacks 

coverage of broader biomedical relations. SemEval-2010 Task 

8, while versatile, requires adaptation for biomedical use. Each 

dataset offers unique strengths—some are ideal for discourse-

level analysis, others for event extraction or chemical-protein 

interactions. However, many datasets face the challenge of 

being domain-specific or limited in scope, which may require 

additional annotation or extension to be fully useful for 

extracting biomedical causality relations. 
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Table 4 Advantages and Limitations of Biomedical Causality Extraction Datasets 

Dataset Advantages Limitations 

BioInfer - Rich biological interaction annotations. 

- High relevance for genedisease pathway studies. 

Focused on molecular biology 

interactions; not generalizable [35]. 

ADE (Adverse Drug 

Events) 

- Rich  annotations  on 

Drug-adverse event relationships. 

- Essential for pharma-covigilance and drug safety. 

Limited to adverse drug reactions, lacking 

broader biological relations [37]. 

SemEval- 

2010 Task 8 

- Versatile dataset adaptable to multiple domains. 

- Strong for semantic relation classification. 

Requires adaptation for biomedical 

causality extraction [38]. 

PDTB 2.0 - Ideal for discourse-level analysis of causal relations. 

- Annotates explicit an implicit causal markers. 

General discourse dataset, not biomedical-

specific [40]. 

BioNLP 

Shared Task 2011 

- Broad  entity-relation 

annotations, suitable for many biomedical fields. 

- Includes event extraction 
for complex biomedical processes. 

Focuses on event extraction, less on direct 

causal relation extraction [41]. 

Causal- 

Time-Bank 

- Addresses both temporal 

and causal event relationships. 

- Adaptable to biomedical texts. 

Small dataset, mixed domain focus, 

limited to biomedical text [42]. 

CHEMPROT - Large  dataset  with 

chemical-protein interaction annotations. 

- Key for drug discovery and chemical interaction studies. 

Focused  solely  on 

Chemical-protein interactions, not broader 

causal extraction [43]. 

GENIA - Detailed biological event annotations. 

- Useful for biological process modeling and gene regulation 

studies. 

Limited to biological texts, not broadly 

applicable across all biomedical fields 

[44]. 

 

The key datasets relevant to causality extraction in 

biomedical texts, which form the backbone for developing 

effective computational models in this area. For further 

research, these datasets provide essential resources to train, 
evaluate, and fine-tune models aimed at identifying causal 

relationships in biomedical literature. Using these datasets 

allows for greater accuracy in tasks such as drug safety 

monitoring, gene-disease interaction studies, and discourse-

level causal analysis. By selecting the most appropriate dataset 

based on the research focus that can ensure the models capture 

the nuanced relationships present in complex biomedical texts. 

This is crucial for improving the efficiency and precision of 

causality extraction methods, which form the foundation of the 

research objective. 

 

IV. TECHNIQUES FOR CAUSALITY 

EXTRACTION IN BIOMEDICAL TEXT 

 

In biomedical text mining, extracting causal relationships 

is crucial for understanding complex biological processes and 

interactions, which can lead to significant advancements in 

research and clinical applications. Various methods have been 

developed to extract causal relationships from text, including 

rule-based systems, machine learning, deep learning, and 

hybrid approaches. Each of these techniques has its own 

strengths and limitations, and in this section, a review of these 

approaches along with examples and tools used in the 
biomedical domain. 

 

 Rule-Based Systems 

Rule-Based Systems In this research, rule-based systems 

play a foundational role in extracting causal relationships from 

biomedical texts. These systems utilize predefined lexico-

syntactic patterns to detect clear causal relationships, such as 

“Drug X causes Symptom Y,” making them highly effective for 

handling explicit causal connections. They provide precision 

and interpretability, which are beneficial in scenarios where 

accuracy in detecting direct causal links is essential. However, 

the limitations of rule-based systems become evident when 

dealing with more complex biomedical literature, where 
implicit relationships or multi-sentence dependencies are 

common. Despite their effectiveness in structured data, the 

inflexibility and lack of adaptability to new patterns without 

manual reconfiguration remain major challenges [45]. 

 

 Machine Learning Approaches 

The research highlights the benefits of classical machine 

learning models such as Support Vector Machines (SVMs) [46] 

and decision trees [47], which are widely used for causality 

extraction in biomedical texts. These models rely on carefully 

engineered features like syntactic structures [48], part-of-

speech tags [49], and word embedding [50]. Machine learning 
approaches are more adaptable compared to rule-based 

methods [51], allowing for greater flexibility when dealing 

with various types of biomedical texts. However, these models 

still face limitations in handling implicit causal relationships 

that require deeper contextual understanding. Moreover, the 

success of these approaches depends on the quality of feature 

engineering, which often requires domain-specific knowledge 

[25]. Machine learning methods also struggle with causal links 

spread over multiple sentences, highlighting the need for more 

advanced models [26]. 

 
 Deep Learning Approaches 

Deep learning models have revolutionized causality 

extraction in recent years, and the research underscores the 

importance of models such as LSTM networks, CNN, and 

transformers like BERT and BioBERT. These models can learn 

complex patterns in data, allowing them to extract both explicit 

and implicit causal relationships without manual feature 

engineering. BERT, for example, has been pre-trained on large 

biomedical corpora and fine-tuned to handle nuanced 
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relationships within biomedical texts [52]. Therefore, the 

research demonstrates that deep learning models are 

particularly effective in capturing intersentential causal 

relationships and understanding the broader context in 

biomedical literature. However, these models require large 

annotated datasets for training and significant computational 

resources, which can limit their application in resource-

constrained environments [26]. 
 

 Hybrid Approaches 

In this research, hybrid approaches are proposed as a 

solution to overcome the limitations of both rule-based and 

machine learning methods by combining their strengths. 

Hybrid systems leverage the precision of rule-based 

approaches for detecting explicit causal links, while utilizing 

machine learning and deep learning models for handling more 

complex or implicit relationships. This combination allows for 

higher accuracy and adaptability, making hybrid models 

particularly useful in extracting causal relationships from 

biomedical texts where data variability is high. 

 

Hybrid models also perform well when dealing with 
limited annotated datasets, where rule-based methods can 

provide reliable baselines while deep learning models handle 

more intricate patterns [53]. Despite these advantages, hybrid 

approaches come with increased system complexity, requiring 

careful integration and balancing between different models to 

optimize performance [54]. 

 

 
Fig 1 Workflow of Causality Extraction Techniques in Biomedical Literature 

 

The flowchart (Fig-1) visualizes the workflows of 

different causality extraction techniques, starting from rule-

based systems to machine learning, deep learning, and hybrid 
approaches. It illustrates how each approach processes 

biomedical text inputs, focusing on pattern identification and 

predefined rules in rule-based methods, feature extraction and 

training in machine learning models, and text embedding and 

automatic learning in deep learning systems. The hybrid 

approach is highlighted as a combination of rule-based and 
machine/deep learning methods, offering a comprehensive 

extraction of both explicit and implicit causal relationships. 

 

Table 5 A Comparison table of Causality Extraction Methods, Detailing Strengths, Weaknesses, and  

Examples of Models or Tools used. 

Technique Strengths Weaknesses 

Rule-Based 

Systems 

High precision 

For explicit relationships, easily interpretable 

Struggles with 

implicit relationships, limited scalability 

Machine 

Learning 

Flexible, capable of handling different relationship 

types 

Requires manual 

feature engineering, less effective for complex links 

Deep Learning Automatically 

learns features, handles implicit relationships 

High computational cost, requires large datasets 

Hybrid Approaches Combines the 

precision of rules and flexibility of ML techniques 

Higher system complexity, challenging integration 

with machine learning models 
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The table-5 provides a comparison of four key methods 

for causality extraction: Rule-Based Systems, Machine 

Learning, Deep Learning, and Hybrid Approaches. Rule-Based 

Systems are effective in extracting explicit relationships with 

high precision but face challenges with implicit relationships 

and scalability. Machine Learning offers flexibility and handles 

a variety of relationship types but relies heavily on manual 

feature engineering, with models such as SVMs and Decision 
Trees. 

 

Deep Learning, which includes models like LSTM, CNN, 

and BioBERT, excels in automatically learning features and 

handling complex, implicit relationships but comes with high 

computational demands and the need for large datasets. Hybrid 

Approaches combine the precision of rule-based systems with 

the flexibility of machine learning, offering improved 

performance, though they increase system complexity. This 

comparison is crucial for identifying the most suitable approach 

on optimizing causality extraction from biomedical literature. 

 
The various techniques used for causality extraction in 

biomedical text. Rule-based syecision for explicit relationships 

but are less effective with implicit or complex ones. Machine 

learning approaches offer flexibility but require substantial 

feature engineering, while deep learning models automatically 

learn features from data and handle implicit relationships more 

effectively. 

 

Hybrid approaches, which combine the strengths of both 

rule-based and machine learning techniques, offer a balanced 

solution for more comprehensive causality extraction. These 
techniques are critical to explore innovative ways to enhance 

the performance of biomedical causality extraction systems, 

which will support more robust and accurate analysis of 

biomedical literature. 

 

V. EVALUATION METRICS 

 

In the context of causality extraction from biomedical 

text, several key standards are commonly used to assess the 

effectiveness of individual approaches. These metrics help 

evaluate the ability of the models to identify true causal 

relationships while minimizing errors. 
 

A. Common Metrics 

The standard evaluation metrics used in causality 

extraction include Precision, Recall, F1-Score, and Accuracy. 

These measurements enable a thorough assessment of the 

frameworks’ capability of accurately detect causal 

relationships while minimizing misclassifications. 

 

 Precision:  

It measures how many of the identified causal 

relationships are correctly predicted, ensuring the 
minimization of false positives. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(1) 

 

Precision quantifies the ratio of correctly predicted causal 

relationships to all predicted ones. A high precision score 

reflects the model's accuracy in identifying causal links while 

minimizing errors. In biomedical applications, where the stakes 

of misinformation are high, precision is crucial to ensure that the 

extracted causal relationships are trustworthy. For instance, 

precision is essential when identifying causal relationships 

between drugs and side effects [3], [55]. 

 

 Recall :  
It evaluates the model's capability to detect all true causal 

relationships, minimizing the risk of false negatives. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(2) 

 

Recall quantifies the percentage of actual causal 
relationships accurately identified by the model, ensuring no 

true causal relationships are overlooked, which is important in 

the biomedical field to ensure comprehensive coverage of 

causal links, such as those related to disease progression and 

treatment outcomes [56]. 

 

 F1-Score:  

It used for balancing Precision and Recall by taking their 

harmonic mean, offering a unified measure of a framework’s 

overall robustness in capturing true causal relationships 

without overemphasizing either precision or recall. 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(3) 

 

The F1-score represents the harmonic mean of precision 

and recall, offering a balanced evaluation when both metrics 

are equally significant. In biomedical causality extraction, it is 

particularly effective for achieving a balance between detecting 

true causal relationships and minimizing the occurrence of 

misclassifications or errors [57]. 

 
 Accuracy:  

It simply provides a broader measure of how many 

predictions the model got correct overall, both causal and non-

causal. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
(4) 

 

Accuracy calculates the overall percentage of correct 
predictions, encompassing both true positives and true 

negatives. However, in imbalanced datasets, common in 

biomedical research where certain causal relationships are rare, 

accuracy may fail to fully capture the model's performance, 

potentially masking deficiencies in identifying minority 

classes. Thus, it is used in conjunction with other metrics like 

precision and recall [58]. These metrics are integral to this 

research, as they offer a quantitative means to evaluate the 

efficacy of various causality extraction models, providing 

insights into which approaches work best for biomedical data. 

 

B. Domain-Specific Metrics 
In addition to the common metrics, the biomedical 

domain often requires specific considerations when evaluating 

causality extraction models: 
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 Entity Normalization:  

In biomedical field, entities such as genes, proteins, and 

diseases must be consistently normalized to ensure accurate 

representation. This process involves mapping extracted 

entities to standardized databases like MeSH or UniProt [59], 

which is ensuring that different mentions of the same entity are 

correctly unified [35]. 

 
 Ambiguity Resolution:  

Biomedical terms are often ambiguous and context-

dependent. For example, the same term may refer to different 

entities or concepts depending on the context in which it 

appears. Effective causality extraction models must be able to 

resolve these ambiguities to improve the precision of the 

extracted relationships, reducing errors caused by 

misinterpretation of terms [37]. 

 

These metrics are vital for ensuring the reliability and 

robustness of causality extraction models in biomedical texts. 

Accurate extraction of causal relationships in biomedical 
literature can have a significant impact on medical research, 

drug discovery, and patient safety by providing researchers and 

healthcare professionals with actionable insights. Here is a table 

summarizing the evaluation metrics used for causality extraction 

models in biomedical text. 

 

VI. CHALLENGES IN CAUSALITY 

EXTRACTION FROM BIOMEDICAL TEXT 

 

Causality extraction from biomedical text presents 

numerous challenges due to the intricacies of the domain and 
the complexity of the language used. Below are the main 

challenges that arise in this field. 

 

 Complexity of Biomedical Language 

Biomedical literature is known for its highly technical and 

complex language, which can pose significant challenges for 

NLP models. Biomedical texts often contain long, convoluted 

sentences filled with domain-specific jargon and ambiguous 

terms. For example, a single term may carry multiple meanings 

depending on the context (e.g., "cancer" could refer to a 

disease, a tumor, or even a specific cell line). Moreover, the 

relationships between biomedical entities, such as genes, 
proteins, and drugs, are often intricate, multifaceted, and 

interdependent, further increasing the complexity of accurately 

extracting and interpreting clear cause-effect relationships. 

Handling such complexity requires sophisticated models 

capable of understanding domain-specific nuances, syntactic 

variations, and implicit causal signals [58], [3]. 

 

 Lack of Large Annotated Datasets 

Another key challenge in extracting causality from 

biomedical texts is the lack of large-scale, annotated datasets. 

Although there are several biomedical text corpora available, the 
majority are not annotated for causal relationships, and those 

that are tend to be small in size. The process of annotating 

biomedical texts is labor-intensive and requires deep domain 

expertise, making it difficult to build comprehensive datasets at 

the scale needed to train effective machine learning and deep 

learning models. 

 

This scarcity of annotated data limits the development and 

evaluation of causality extraction models, hindering progress in 

this area [37], [60]. For instance, datasets such as the BioInfer 

corpus focus primarily on protein-protein interactions rather 

than complex causality relations in biomedical studies [35]. 
 

 Challenges of Domain Adaptation 

Using general-purpose datasets such as SemEval for 

biomedical applications presents further complications. While 

these datasets have been widely used for causality extraction 

tasks, they are not specifically tailored to the unique features 

and demands of biomedical text. Domain-specific datasets are 

crucial because biomedical texts contain distinct structures and 

relationships not found in other domains. 

 

Therefore, models trained on general purpose datasets 
often struggle when applied to the biomedical field due to 

mismatches in linguistic structures, terminologies, and entity 

relationships. Effective domain adaptation techniques, which 

adjust models and datasets to biomedical settings, are necessary 

to overcome this challenge [56], [24]. 

 

Therefore, the challenges of causality extraction in the 

biomedical domain arise from the complexity of the language, 

the limited availability of annotated datasets, and the need for 

domain-specific models. Addressing these issues is essential for 

improving the performance of causality extraction systems in 

biomedical research, which has the potential to greatly enhance 
insights in fields like drug discovery, disease treatment, and 

biological processes. 

 

Table 6 Key Challenges and Solutions in Biomedical Causality Extraction 

Key 

Challenge 

Description Impact on Causality 

Extraction 

Proposed Solution 

Language 

Complexity 

Biomedical texts often feature long, complex 

sentences and ambiguous terminology, making 

it difficult to identify clear cause-effect 

relationships. 

Extracting causal 

relationships is complicated 

by convoluted syntax, 

medical jargon, and 

ambiguous terms, leading 

to missed or incorrect 
extractions. 

It proposed using advanced NLP 

models (e.g., BioBERT) to better 

understand context and disambiguate 

terms, enabling more accurate 

extraction of complex causal 

relationships. 

Dataset 

Limitations 

The limited availability of large, annotated 

biomedical datasets for causality extraction 

presents a significant obstacle to training 

effective models. 

Without sufficient 

annotated data, machine 

learning models may not 

generalize well, leading to 

The paper suggests using semi-

supervised learning and data 

augmentation to compensate for the 

lack of large annotated datasets, 
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poor performance in new 

contexts. 

allowing models to learn more 

effectively from limited data. 

Domain 

Adaptation 

Biomedical texts have unique characteristics 

that general- purpose datasets (e.g., SemEval) 

may not fully capture, requiring adaptation for 

effective use. 

Models trained on general-

purpose datasets may fail to 

understand the specific 

structure and relationships 
in biomedical literature, 

reducing their effectiveness. 

It introduces domain-specific fine-

tuning techniques, where models like 

BERT are adapted for the biomedical 

domain using pre-trained biomedical 
models (e.g., BioBERT), and 

improving performance on domain-

specific tasks. 

Implicit 

Causality 

Many causal relationships in biomedical texts 

are implied rather than explicitly stated, 

making it difficult for basic ex-traction models 

to detect them. 

Standard models often miss 

these implicit relationships, 

leading to an incomplete 

under- standing of the text’s 

causality. 

It explore deep learning models like 

LSTM and transformers, which are 

more capable of detecting implicit 

relationships by understanding 

broader context and long-range 

dependencies. 

Temporal 

Dependencies 

In biomedical research, the temporal order of 

events is crucial for understanding causality, but 

many models overlook this dimension. 

Failing to account for 

temporal relationships can 

lead to inaccurate causality 

extraction, particularly in 
time-sensitive biomedical 

processes. 

It incorporate temporal reasoning into 

the models, allowing them to 

recognize the importance of event 

ordering in extracting meaningful 
causal links. 

Data 

Imbalance 

Biomedical datasets often have an imbalanced 

distribution of causal and non-causal 

relationships, skewing model training. 

Models may become biased 

toward overrepresented 

categories, leading to 

reduced performance in 

recognizing 

underrepresented causal 

links. 

By apply data balancing techniques, 

such as over-sampling or synthetic 

data gener-ation, to ensure that 

models are trained on a more 

balanced dataset, improving their 

ability to identify diverse causal 

patterns. 

 

The key challenges (table-6) in extracting causality from 

biomedical text include the complexity of language, where long 

sentences and ambiguous terminology obscure causal links, as 
well as the limitation of annotated datasets, which hampers 

model training. Additionally, domain adaptation is crucial, as 

general-purpose datasets may not fully capture the nuances 

of biomedical literature, necessitating fine-tuning models like 

BioBERT for specialized tasks. Implicit causality, where causal 

relationships are implied rather than explicitly stated, adds 

another layer of difficulty that deep learning techniques can 

address. 

 

Temporal dependencies, often overlooked in causality 

models, are vital in biomedical contexts where the sequence of 

events affects the interpretation of relationships. Lastly, data 
imbalance, where non-causal relationships dominate, can bias 

models, and data balancing techniques are needed to improve 

model performance. 

 

The paper addresses these challenges by proposing 

advanced machine learning models, data augmentation, and 

domain-specific adaptations to enhance causality extraction in 

biomedical texts. 

 

VII. FUTURE DIRECTIONS 

 
The field of causality extraction from biomedical text 

continues to evolve, and several promising future directions 

can significantly enhance the effectiveness of current models 

and methods. 

 Enhancing Domain-Specific Pre-Trained Models 

While models like BioBERT have made strides in 

understanding biomedical language, there is still room for 
improvement. Future efforts should focus on refining these 

models to better handle the unique complexities of biomedical 

texts, such as specialized terminology, nuanced sentence 

structures, and domain-specific knowledge. Incorporating 

more domain-specific information into the pre-training phase 

of these models could lead to even greater accuracy in causality 

extraction [61]. 

 

 Improved Techniques for Implicit Relation Extraction 

One of the biggest challenges in causality extraction is the 

detection of implicit relationships, where cause and effect are 

not explicitly stated. Advancing deep learning models, such as 
those based on transformers [9] and graph neural networks 

[62], will be key to improving the inference of these implicit 

relationships. Future research should explore more 

sophisticated architectures capable of understanding the 

broader context and underlying semantics of biomedical text, 

thus enabling the identification of subtle causal links. 

 

 Expansion of Labeled Datasets 

The limited availability of large, labeled datasets for 

causality extraction in biomedical texts has been a significant 

barrier to progress [62]. Expanding these datasets to cover a 
wider range of biomedical applications, including different 

subfields of medicine, pharmacology, and genetics, will 

provide a stronger foundation for training more robust and 

generalizable models. Furthermore, efforts to create more 
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comprehensive and diverse annotated datasets will help models 

learn better representations and improve their performance 

across various biomedical tasks [37]. These future directions 

aim to advance the state-of-the-art in causality extraction from 

biomedical texts, addressing current limitations and driving 

innovations that will benefit both the research community and 

practical applications in healthcare and life sciences. 

 

VIII. CONCLUSION 

 

The extracting causal relationships from biomedical 

literature is a crucial task that plays a significant role in 

advancing medical research, drug development, and clinical 

decision-making. The inherent complexity of biomedical 

language, characterized by specialized terminology and 

intricate sentence structures, along with the scarcity of large, 

annotated datasets, presents formidable challenges to this task. 

Nevertheless, recent advancements in computational 

techniques, particularly the use of deep learning models such 

as LSTMs, CNNs, and transformers like BioBERT, have 
revolutionized the field by enabling the extraction of both 

explicit and implicit causal relationships with greater accuracy. 

Hybrid approaches, which integrate rule-based systems with 

machine learning and deep learning techniques, have further 

enhanced performance by leveraging the strengths of each 

method. This paper makes key contributions by addressing 

these challenges, providing a detailed comparison of the 

current methods, and proposing future directions that focus on 

improving the adaptability and robustness of models 

specifically tailored for biomedical text. Additionally, the 

paper emphasizes the importance of expanding labeled datasets 
to facilitate more effective model training. The research 

presented here contributes to the ongoing efforts to develop 

more sophisticated causality extraction systems that can better 

interpret biomedical literature, ultimately supporting more 

accurate knowledge discovery in healthcare and life sciences. 

By overcoming the limitations of existing models and methods, 

this work lays the foundation for future innovations in 

biomedical text mining and causal relationship extraction. 
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