Newer Approaches for Analytical Method Validation of Anti Diabetic Agents: A Review

Priyadarshini Chaudhari¹; Mayur Prajapati¹; Nidhi Patel¹; Dhruv Patel¹; Anjali Prajapati¹; and Khushbu Patel²

¹Department of Pharmaceutical Quality Assurance, Shri Sarvajanik Pharmacy Collage, Mehsana, Gujarat, India. ²Associate Professor, Department of Pharmaceutical Quality Assurance, Shri Sarvajanik Pharmacy Collage, Mehsana, Gujarat, India.

> Corresponding author Priyadarshini Chaudhari Department of Pharmaceutical Quality Assurance Shri Sarvajanik Pharmacy College, Mehsana-384001, Gujarat, India

Abstract:- Diabetes refers to a metabolic disorder identified by Hyperglycemia. Dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors) are also called as Gliptins are a relatively new class of antidiabetic drugs to treat type-2 diabetes. Analytical method development and validation play an indispensable role in analysis and manufacture of pharmaceuticals. The intent of this article is to study the reported analytical methods in the literature for assessment of Dipeptidyl peptidase- 4 inhibitors. This review covers divergent analytical methods for the estimation of these drugs. Many spectroscopic and chromatographic techniques are available for the determination and evaluation of these drugs in bulk and pharmaceutical preparation. Newly evolved and advanced chromatographic techniques are also available for the estimation of these drugs in biological fluids such as Liquid Chromatography-Tandem Mass Spectroscopy (LC- MS/MS), Gas Chromatography- Mass Spectroscopy (GC- MS), High Performance Liquid Chromatography-Mass Spectroscopy (HPLC-MS) and Ultra- Fast Liquid Chromatography (UFLC). The development and validation of analytical methods is imperative for drug development studies and even for the development of drug formulation including stability and degradation studies and also for the determination of pharmacokinetic data of these drugs. This review work summaries the current position of analytical methods for estimation of these antidiabetic drugs in bulk, dosage form and biological fluids.

I. INTRODUCTION

Diabetes is the most common non-communicable disease globally.^[1] Diabetes is a heterogeneous metabolic disorder characterized by hyperglycemia due to defects in insulin secretion, insulin action, or both.^[2] Types of diabetes includes type 1 diabetes, type 2 diabetes and in addition, gestational diabetes and due to other causes neonatal diabetes. Approximately 85-95% of all cases of diabetes are type 2 diabetes and the worldwide explosion of this disorder

is a major healthcare burden.^[1] In people with type 2 diabetes mellitus either pancreas does not produce enough insulin or pancreas produces insulin but cells don't use it this is also called insulin resistance.^[3] When a cell becomes insulin resistance, it requires more insulin to convert glucose into energy and results into hyperglycemia or increased blood sugar level. The launch of a national program by the Indian Government for prevention and control of diabetes, cardiovascular disease and stroke (NPCDS) is a major step in strengthening the national capacity for coping with the diabetes epidemic. The most pressing need in India currently is the primary prevention of diabetes. Screening for glucose intolerance as a preventive measure, even in those younger than 30 years of age, is a requisite in Asian Indians because they develop hyperglycemia at a younger age.^[1]

For the treatment of type 2 diabetes proper diet and exercise are essential along with antidiabetic drugs. Antidiabetic drugs are categorized into Biguanides, Sulfonylureas, Thiazolidinediones, α-Glucosidase inhibitors, Meglitinides and a newly emerging class Dipeptidyl Peptidase-IV inhibitors (DPP-IV inhibitors). Gliptins, also known as DPP-IV inhibitors are class of oral antidiabetic medication approved by food and drug administration (FDA) to treat type 2 diabetes mellitus in adults. DPP-IV inhibitors are given to those who have not responded well to sulfonylureas and metformin. DPP-IV is a ubiquitous enzyme that acts on incretin hormones, mainly GLP-1(glucagon-like peptide-1) and GIP (gastric inhibitory peptide), which maintain glucose homeostasis by increasing insulin secretion and decreasing glucagon secretion. GLP-1 is a hormone which lowers blood glucose by stimulating insulin secretion, reducing glucagon concentration and delaying gastric emptying. GIP is a hormone secreted in the stomach and proximal small intestine by neuro endocrine Kcell. DPP-IV inhibitors inhibit DPP-IV enzyme which results in increased level of GLP-1 and GIP, which in turn increase beta-cell insulin secretion in the pancreas. DPP-IV inhibitors are Sitagliptin, Linagliptin, Vildagliptin, Saxagliptin, Teneligliptin, Trelagliptin, Gemigliptin, Anagliptin, Alogliptin, Omarigliptin and Evogliptin.^[4]

Analytical techniques are used to determine chemical physical property of analyte, chemical substance, or chemical element or mixture. There are different types of analytical techniques used in pharmaceutical field for qualitative and quantitative estimation of drugs in biological fluids such as human plasma, human serum, human urine and its formulations such as tablet, capsule, bulk drug etc. The analytical techniques which are utilised for the estimation of these drugs involves UV-spectrophotometry, etc. HPLC, HPTLC, LC-MS/MS, HPLC-MS, Spectrophotometry, one of the valuable techniques in pharmaceutical analysis, which find an important place in pharmacopoeias based on natural UV absorption and

chemical reaction. These techniques such as ultra-violet, visible, infrared and atomic absorption spectroscopy are most commonly employed as in the analytical fields. Chromatography is a separation technique that separate mixture in to individual components by using mobile phase and stationary phase. HPLC is an advanced technique for liquid chromatography for the assay of bulk drug materials and biological samples. The specificity of HPLC method is excellent and simultaneously sufficient precision and accuracy are also achievable. HPTLC is an advanced form of instrumental TLC; it emerged as an important instrument in drug analysis. HPTLC is a fast separation technique and flexible enough to analyse a wide variety of samples.^[6]

Table 1: Analytical Methods Study for Estimation of Anti-Diabetic Agents					
Sr. No.	Drug Name	Instrumental Method Used for Analysis	Solvent System	Ref. No.	
1	Sitagliptin	UV- Spectrophotometry Absorption ratio Area under curve	Water	7	
2	Sitagliptin	UV- Spectrophotometry Absorption ratio Area under curve	Methanol & water	7	
3	Sitagliptin	Spectrofluorimetric method	Water	7	
4	Sitagliptin	Spectrofluorimetric method	Deionized water	7	
5	Sitagliptin	Visible method	Water Colouring agent: O- phosphoric acid, NAC & Borate buffer	7	
6	Sitagliptin	Visible method	Water Colouring agent: Acetyl acetone & Formaldehyde	7	
7	Sitagliptin	UV- Spectrophotometry Zero order, First order, Second order	Methanol	8	
8	Sitagliptin	UV- Spectrophotometry First order	Water	7	
9	Sitagliptin	HPLC (Human plasma)	0.5% V/V Triethylamine: Acetonitrile (77: 23 V/V)	7	
10	Sitagliptin	RP- HPLC (Stability indicating)	Methanol: Phosphate potassium buffer (pH- 6.8) (60: 40 V/V)	9	
11	Sitagliptin	RP- HPLC (Stability indicating)	Gradient elution 5m M Ammonium acetate & Acetonitrile	10	
12	Sitagliptin	RP- HPLC (Stress- study sample analysis)	1) 0.1% Ortho phosphoric acid in water 2) 0.1% Ortho phosphoric acid in acetonitrile	10	
13	Sitagliptin	RP- HPLC (Isolation of degradation product)	5m M Ammonium acetate in water & Acetonitrile	10	
14	Sitagliptin	HPLC	Acetonitrile: 0.01 N Potassium dihydrogen phosphate (pH- 5.0) (70: 30% V/V)	11	
15	Sitagliptin	RP- HPLC (Human plasma)	Acetonitrile: 0.5% Triethanolamine (pH- 6.5) (20: 80 V/V)	12	
16	Sitagliptin	RP- HPLC (Human plasma)	Potassium dihydrogen phosphate: Acetonitrile: Methanol (pH- 4.9) (30: 50: 20 V/V/V)	13	
17	Sitagliptin	HPLC	Phosphate buffer: Acetonitrile (pH- 7.2 ± 0.05) (60: 40 V/V)	14	
18	Sitagliptin	RP- HPLC (Rat urine)	Potassium dihydrogen phosphate: Acetonitrile (pH- 3.0) (70: 30 V/V)	15	
19	Sitagliptin	RP- HPLC (Human plasma)	Acetonitrile: Methanol: Buffer (pH- 4.0) (2: 3: 5 V/V/V)	16	
20	Sitagliptin	RP- HPLC	Methanol: 10m M Phosphate buffer (pH- 4.8) (60: 40 V/V)	17	
21	Sitagliptin	HPLC	Methanol	8	

 Table 1: Analytical Methods Study for Estimation of Anti-Diabetic Agents

50	Sitagliptin	UV- Spectrophotometry	Methanol	8
	monophosph ate	· · · · ·	(pH- 4.5) (73: 27 V/V)	
48	Sitagliptin Phosphate Sitagliptin	LC- UV (Stability indicating) HPLC (Human plasma)	0.025 M Phosphate buffer: Acetonitrile (pH- 6.8) (60: 40 V/V) 0.01 M Phosphate buffer: Acetonitrile	39
47	Sitagliptin Phosphate	UPLC- MS/ MS (Rat plasma)	Gradient elution 1) 0.05% Formic acid in Acetonitrile 2) 0.05% Formic acid in water	38
	Phosphate	enantiomers Fluorescence)	V/V)	
46	Phosphate Sitagliptin	RP- HPLC (Rat plasma sitagliptin	65: 0.1 V/V/V) Phosphate buffer: Methanol (45: 55	36
45	Phosphate Sitagliptin	RP- HPLC (Chiral separation)	n-haptane: Ethanol: Diethylamine (35:	35
44	Sitagliptin	RP- HPLC	Methanol: Water (pH- 3.0) (50: 50 V/V)	34
43	Sitagliptin Phosphate	HPLC (Stability indicating)	0.1 M Potassium dihydrogen phosphate: Methanol (pH- 4.5) (1: 1 V/V)	33
42	Sitagliptin Phosphate	RP- HPLC	Methanol: 0.1% Perchloric acid solution (32: 68 V/V)	32
41	Sitagliptin Phosphate	RP- HPLC	0.01 M Potassium dihydrogen phosphate: Methanol (pH- 4.5) (50: 50 V/V)	31
40	Sitagliptin Phosphate	RP- HPLC	Acetonitrile: Water (60: 40 V/V)	30
39	Sitagliptin Phosphate	UV- Spectrophotometry Absorption ratio Area under curve	Methanol	8
38	Sitagliptin Phosphate	UV- Spectrophotometry First order	Methanol & water	16
37	Sitagliptin Phosphate	UV- Spectrophotometry Zero order	0.1 N HCl	16
	Phosphate			
36	Phosphate Sitagliptin	Zero order UV- Spectrophotometry Zero order	Methanol	16
35	Sitagliptin	UV- Spectrophotometer	Distilled water	29
34	Sitagliptin	TLC/ HPTLC	V/V/V) Toluene: Methanol (8: 2 V/V)	28
33	Sitagliptin	HPTLC (Stability indicating)	Acetonitrile (pH- 4.0) (75: 25 V/V) Toluene: Ethyl acetate: Methanol (3: 6: 1	27
32	Sitagliptin	LC assay (Degradation product)	4.7) Solution of 0.3 % Triethylamine:	26
31	Sitagliptin	LC- MS/ MS (Human plasma)	Acetonitrile: Water Containing 10m M Ammonium acetate (80: 20 V/V) (pH-	7
30	Sitagliptin	LC- MS/ MS (Human plasma)	Methanol: Water (85: 15 V/V)	25
29	Sitagliptin	LC- MS/ MS (Human plasma)	0.1 v/v Formic acid: Methanol (45: 55 V/V)	24
28	Sitagliptin	UHPLC- MS/ MS (7-nitroso impirity)	Gradient elution 1) 0.12% Formic acid in water 2) 0.12% Formic acid in Methanol	23
27	Sitagliptin	RP- UHPLC	Phosphate buffer: Acetonitrile (pH- 6.0) (70: 30 V/V)	22
26	Sitagliptin	RP- HPLC (Stability indicating)	10m M phosphate buffer: Acetonitrile (pH- 3.5) (60: 40 V/V)	21
25	Sitagliptin	HPLC (Rat serum)	Phosphate buffer: Methanol (pH- 3.9) (65: 35 V/V)	20
24	Sitagliptin	RP- HPLC	0.05 M Phosphate buffer: Acetonitrile (pH- 2.8) (30: 70 V/V)	19
23	Sitagliptin	RP- HPLC	Acetonitrile: Phosphate buffer (pH- 4.0) (60: 40 V/V)	18
22	Sitagliptin	HPLC	Potassium dihydrogen phosphate: Acetonitrile (pH- 3.0) (35: 65 V/V)	8

	phosphate monohydrate	Zero order		
51	Sitagliptin phosphate monohydrate	RP- LC	Potassium dihydrogen phosphate buffer: Acetonitrile (pH- 7.8) (70: 30 V/V)	40
52	Sitagliptin phosphate monohydrate	LC- MS/ MS (N- nitrosamine impurity)	Gradient elution 1) 0.01 mol/L Ammonium formate in water 2) 0.01 mol/L Ammonium formate in acetonitrile	41
53	Linagliptin	UV- Spectrophotometry Zero order	Methanol	42
54	Linagliptin	UV- Spectrophotometry Zero order	Methanol & water	43
55	Linagliptin	UV- Spectrophotometry Zero order	Acetonitrile	44
56	Linagliptin	UV- Spectrophotometry AUC Zero order, First order, Second order	Methanol	45
57	Linagliptin	UV- Spectrophotometry Visible method	Method A= 3- methyl- 2 benzothiazoline hydrazine in presence of ferric chloride Method 2= Picric chloride.	46
58	Linagliptin	UV- Spectrophotometry Calibration graph method AUC method	0.1 M HCl	47
60	Linagliptin	Spectrofluorometry Human plasma	4- chloro-7 nitrobenzofuran	48
61	Linagliptin	Spectrofluorometry Spectrofluorimetric method	Fluorescamine reagent with aqueous borate buffer (Ph- 8.5)	49
62	Linagliptin	HPLC	Potassium dihydrogen buffer (pH- 4.6): Acetonitrile (20: 80 V/V)	50
63	Linagliptin	RP- HPLC	Acetonitrile: Water: Methanol (25: 50: 25 V/V/V)	51
64	Linagliptin	RP- HPLC	Phosphate buffer: Acetonitrile (pH- 3.0) (35: 65 V/V/V)	52
65	Linagliptin	RP- HPLC	Methanol: Water (pH- 4.1) (83: 17 V/V)	52
66	Linagliptin	RP- HPLC	Phosphate buffer: Methanol (pH- 7.2) (70: 30 V/V)	52
67	Linagliptin	RP- HPLC	Methanol: Water (pH- 4.5) (40: 60 V/V)	52
68	Linagliptin	RP- HPLC	0.02 M Potassium dihydrogen phosphate: Acetonitrile (pH- 5.0) (70: 30 V/V)	52
69	Linagliptin	RP- HPLC	Methanol: Water (70: 30 V/V)	52
70	Linagliptin	RP- HPLC	Phosphate buffer: Methanol (pH- 3.0) (50: 50 V/V)	52
71	Linagliptin	UPLC	Acetonitrile: 0.01 M Potassium phosphate buffer (pH- 4.0) (70: 30 V/V)	52
72	Linagliptin	HPLC	Methanol: Water containing 0.3% triethylamine (pH- 4.5) (40: 60 V/V)	53
73	Linagliptin	RP- HPLC	Phosphate buffer: Acetonitrile (pH- 6.8 ± 0.2) (70: 30 V/V)	54
74	Linagliptin	HPLC (Rat plasma)	Methanol: 0.1% Formic acid (pH- 4.1) (75: 25 V/V)	55
75	Linagliptin	RP- HPLC	Acetonitrile: Phosphate buffer (pH- 8.0) (60: 40 V/V)	47
76	Linagliptin	LC Stability indicating	A= 0.1% v/v Formic acid (pH-3.5) B= Acetonitrile	56
77	Linagliptin	HPLC	40m M Potassium dihydrogen phosphate (pH- 3.0): Acetonitrile (70: 30 V/V)	57
78	Linagliptin	HPLC & UPLC	A= 0.02 M Potassium dihydrogen	58

			B= Acetonitrile: Methanol (90: 10 V/V)	
79	Linagliptin	HPLC & UPLC	Acetonitrile: Methanol (50: 50 V/V)	58
		Stability indicating		
80	Linagliptin	HPLC & UPLC	A= 0.1% Acid (pH- 3.5)	58
		Stability indicating	B= Acetonitrile	
81	Linagliptin	RP- HPLC	Methanol: Water containing 0.1% O-	59
			phosphoric acid (70: 30 V/V)	
82	Linagliptin	RP- HPLC	Acetonitrile: Water containing 25.0m M	60
	0 1	N, N- dimethylamine impurity	Ammonium acetate (75: 25 V/V)	
83	Linagliptin	HILIC- UV	Water: Acetonitrile containing 10m M	61
	8-r	3-aminopyridine impurity	Ammonium acetate (Ph- 6.0) (10: 90	
			V/V)	
84	Linagliptin	HILIC	Water: Acetonitrile containing 10m M	62
01	Linughpun	4- dimethylaminopyridine	Ammonium acetate (pH- 6.2) (15: 85	02
		4- uniterrytaninopyrtanie	V/V)	
85	Linagliptin	RP- HPLC/ UPLC	Ethanol: Methanol: Diethylamine (90:	58
83	Linagiipun	KP- HPLC/ UPLC		28
0.6	T ' 1' .'		10: 0.1 V/V/V)	50
86	Linagliptin	LC- MS/ MS plasma	Acetonitrile: 0.1% Formic acid (90: 10	58
			V/V)	
87	Linagliptin	LC- MS/ MS plasma	10m M Ammonium formate: Methanol	58
			(20: 80 V/V)	
88	Linagliptin	UHPLC- MS/ MS	10m M Ammonium formate: Methanol	63
			(20: 80 V/V)	
89	Linagliptin	UPLC- MS/ MS Rat plasma	A= Acetonitrile	64
			B=0.1% Formic acid in water	
90	Linagliptin	HPTLC	Ethyl acetate: IPA: Ammonia (7: 3: 0.4	65
	0 1	Stability indicating	V/V/V)	
91	Linagliptin	HPTLC	Methanol: Toluene (7: 3 V/V)	66
92	Saxagliptin	UV- Spectrophotometry	Solvent= Methanol: Water (15: 85 V/V)	67
/2	Sugasipun	Zero order (Gastric medium)	Diluent= Methanol: 0.1 N HCl (15: 85	07
		Zero order (Gusure medium)	V/V)	
93	Saxagliptin	UV- Spectrophotometry	Methanol	68
)5	Saxagiiptiii	Calibration curve method	Wethanor	00
94	Correctintin		Acetonitrile	60
94	Saxagliptin	UV- Spectrophotometry	Acetomune	69
07	0 1'	Zero order		70
95	Saxagliptin	Spectrofluorimetry	Method A= 0.5% 1-1- naphthoquinone-	70
			4- sulfonic acid sodium salt (NQS) in	
			distilled water (pH- 10 with borate	
			buffer)	
			Method B= 0.2% 4- chloro- 7-	
			nitrobenzofuran (NBD- Cl) in methanol	
			(pH- 9 with borate buffer)	
96	Saxagliptin	Spectrofluorimetry	Method A= Tetrachloro-1, 4-	71
			benzoquinone (P- chloranil)	
			Method B= Formaldehyde and acetyl	
			acetone	
97	Saxagliptin	AAS Spectrophotometer & AES	Method A= Using [HgI4] ⁻²	72
	0 1	Spectrophotometer (AAS & ICP- AES)	Method B= Using [Cr (NH3)2 (SCN)4] ⁻¹	
98	Saxagliptin	RP- HPLC	Acetonitrile: 0.02 M Potassium	73
			dihydrogen phosphate (pH- 4.5) (30: 70	
			V/V)	
99	Saxagliptin	RP- HPLC	0.05 M Ammonium acetate buffer:	74
,,	Surugiipiii		Methanol (47: 53 V/V)	/ 7
100	Saxagliptin	RP- HPLC	Acetonitrile: Water (90: 10 V/V)	75
		RP- LC		75
101	Saxagliptin		0.1% Phosphoric acid (Ph- 3.0):	/6
102	Q	(Stability indicating)	Methanol (70: 30 V/V)	
102	Saxagliptin	RP- HPLC (Human plasma)	Acetonitrile: Potassium dihydrogen	77
100			phosphate (Ph- 3.5) (28: 72 V/V)	
103	Saxagliptin	RP- HPLC RP- HPLC	Methanol: Water (70: 30 V/V)	78 72
104	Saxagliptin		Acetonitrile: Phosphate (13: 87 V/V)	

106	Saxagliptin	HPLC	Acetonitrile (70: 10: 20 V/V/V)Phosphate buffer (pH- 4.5) : Methanol	28
			(65: 35 V/V)	
107	Saxagliptin	LC	0.02 M Sodium dihydrogen phosphate (pH- 3) with OPA: Methanol: Acetonitrile (45: 20: 35 V/V/V)	70
108	Saxagliptin	HPLC	Acetonitrile: Water (pH- 3.0) (20: 80 V/V)	79
109	Saxagliptin	HPLC	Methanol: Phosphate buffer (pH- 4.8) (70: 30 V/V)	79
110	Saxagliptin	HPLC/ UV (Animal serum)	Phosphate buffer (pH-4): Methanol (70: 30 V/V)	80
111	Saxagliptin	HPLC (Human plasma)	A= 0.1% Formic acid in water B= 0.1% Formic acid in acetonitrile	81
112	Saxagliptin	RP- HPLC (Simple stability study)	Solvent A= 1.20g Sodium dihydrogen phosphate in 100ml water (pH- 5) Solvent B= Acetonitrile	82
113	Saxagliptin	HPLC (Sulphonate ester impurity)	A=0.10% Orthophosphoric acid in Milli- Q water B= 10% Acetonitrile	83
114	Saxagliptin	HPLC (Degradation related impurity)	Solvent A= Water Solvent B= Acetonitrile	84
115	Saxagliptin	LC- MS/ MS	Methanol: Acetonitrile: Formic acid (50: 50: 0.1 V/V/V)	72
116	Saxagliptin	LC- MS	Potassium dihydrogen phosphate (pH- 4.6) : Acetonitrile: Methanol (40: 30: 30 V/V/V)	79
117	Saxagliptin	LC- MS/ MS (Human plasma)	0.1% Acetic acid in 5m M ammonium acetate and Acetonitrile (30: 70 V/V)	85
118	Saxagliptin	LC- ESI- MS/ MS (Degradation product)	10m M Ammonium formate and Methanol in gradient elution	86
119	Saxagliptin	UPLC- MS/ MS (Rat plasma)	Methanol: 0.1% Formic acid (40: 60 V/V)	87
120	Saxagliptin	HPTLC HPTLC	Hexane: Methanol: Ethyl acetate (4: 2: 2 V/V/V)	72
121	Saxagliptin	HPTLC	Methanol: Chloroform (6: 4 V/V)	79
122	Saxagliptin	HPILC	1% Methanolic ammonium acetate: Toluene (5: 5 V/V)	79
123	Saxagliptin	HPTLC	Toluene: Methanol: Ammonia (6: 4: 0.2 V/V/V)	79
124	Saxagliptin HCl	HPLC RP- HPLC	Methanol: Water (80: 20 V/V)	88
125	Saxagliptin HCl	RP- HPLC	Phosphate buffer (pH- 2.70): Acetonitrile (80: 20 V/V)	89
126	Vildagliptin	UV- Spectrophotometry Zero order	Water	90
127	Vildagliptin	UV- Spectrophotometry Zero order	0.1% NAOH	91
128	Vildagliptin	UV- Spectrophotometry Zero order (gastric medium)	0.1 N HCl	92
129	Vildagliptin	UV- Spectrophotometry Second order derivative	Purified water	93
130	Vildagliptin	Visible Spectrophotometry	Method based on formation of Schiff's base with p- dimethylaminobenzaldehyde in acidic ethanol	94
131	Vildagliptin	RP- HPLC	Buffer (pH- 2.6): Acetonitrile (72: 28 v/v)	95
132	Vildagliptin	HPLC	Buffer (Perchloric acid): Acetonitrile:	96

			Methanol (87: 10:3 v/v/v)	
133	Vildagliptin	HPLC	A= 50m M Ammonium bicarbonate pH- 7.8	97
			B= Acetonitrile	
134	Vildagliptin	HPLC	0.02 M Phosphate buffer (pH- 4.6) : Acetonitrile (80: 20 v/v)	97
135	Vildagliptin	HPLC	25% Ammonium hydroxide in 1000 ml water (pH 9.5): Methanol (60: 40 v/v)	97
136	Vildagliptin	HPLC	Buffer: Acetonitrile (50: 50 v/v)	97
137	Vildagliptin	HPLC	Orthophosphoric acid buffer (pH-2.6 ± 0.5): Acetonitrile (72: 28 v/v)	97
138	Vildagliptin	HPLC	Methanol: 10m M Ammonium acetate buffer (30: 70 v/v)	97
139	Vildagliptin	HPLC	0.01 M Phosphate buffer (pH- 5.3): Acetonitrile (30: 70 v/v)	97
140	Vildagliptin	HPLC	Dilute phosphoric acid solution (pH-2.6): Acetonitrile (40: 60 v/v)	97
141	Vildagliptin	RP- HPLC (Stability indicating)	Sodium dihydrogen phosphate buffer (pH-6.5): Acetonitrile (50: 50 v/v)	98
142	Vildagliptin	RP- HPLC	Dilute phosphoric acid solution (pH-2.6 \pm 0.5): Acetonitrile (40: 60 v/v)	99
143	Vildagliptin	RP- HPLC	10m M Phosphate buffer (pH- 4.6): Acetonitrile (85: 15 v/v)	100
144	Vildagliptin	RP- HPLC	Buffer (pH-8.2): Acetonitrile: Methanol (450: 480: 70 v/v/v)	101
145	Vildagliptin	RP- HPLC	Buffer (pH-6.0): Acetonitrile: Methanol (70: 10: 20 v/v/v)	102
146	Vildagliptin	RP- HPLC	0.1 M Phosphate buffer: Acetonitrile (85: 15 v/v)	103
147	Vildagliptin	RP- HPLC	Methanol: Water (pH- 4.5) (60: 40v/v)	104
148	Vildagliptin	RP- UHPLC	Phosphate buffer (pH-6.8): Acetonitrile (67: 33 v/v)	105
149	Vildagliptin	UFLC (Chiral)	20m M Borax buffer (pH-9.0 \pm 0.05): Acetonitrile: 0.1% Triethylamine (50: 50: 0.1 v/v/v)	106
150	Vildagliptin	RP- HPLC (Stability indicating)	Acetonitrile: 0.3% Triethylamine (pH- 7.0) (15: 85 v/v)	107
151	Vildagliptin	LC- MS/ MS (Rat plasma)	Ammonium acetate buffer: Acetonitrile (20:80 v/v)	108
152	Vildagliptin	LC- MS (Degradation products)	Ammonium acetate buffer (pH- 7.5): Methanol	109
153	Vildagliptin	LC- MS/ MS (Diabetic rats)	Methanol: Ammonium acetate 5m M (95: 5 v/v)	110
154	Vildagliptin	LC- MS/ MS	0.1% Ammonium acetate solution: Acetonitrile (90: 10 v/v)	97
155	Vildagliptin	LC- MS/ MS	Acetonitrile: 2m M Ammonium acetate (90: 10 v/v)	97
156	Vildagliptin	HPLC- MS (Stability indicating)	Acetonitrile: Water (40: 60 v/v) (pH- 7.0)	111
157	Vildagliptin	HPLC- MS (Genotoxic impurities)	Mobile phase- A mixture of water– methanol (55: 45 v/v) containing 2.5m M ammonium acetate and 0.1% formic acid.	112
158	Vildagliptin	HPTLC (Stability indicating)	Ethyl acetate: ethanol (8.5: 1.5 v/v)	113
159	Vildagliptin	HPTLC	Isopropyl alcohol: Methanol: Ammonia Solution (6: 4: 0.2 v/v/v)	114
160	Vildagliptin	HPTLC	Chloroform: n-butanol: Methanol (5: 2: 3 v/v/v)	115
161	Alogliptin	Visible method	Method A= 0.4% Picric acid Method B= 0.1% 2, 4 dinitrophenol	116

			(Solvent- chloroform)	
162	Alogliptin	Visible method	Bromate- bromide solution (Solvent-	117
			methanol+ water)	
163	Alogliptin	Spectrofluorometry	Eosin Y	118
164	Alogliptin	Spectrofluorometry	Fluorescamine (alkaline medium) (borate buffer, pH- 8.8)	119
165	Alogliptin	Spectrofluorometry	Acetylacetone and formaldehyde (Hantzsch condensation reaction)	120
166	Alogliptin	RP- HPLC	Methanol: Double distilled water (80: 20 V/V) (pH-6.8)	121
167	Alogliptin	RP- HPLC	Potassium dihydrogen phosphate (pH- 2.9): Acetonitrile (60: 40 V/V)	122
168	Alogliptin	RP- HPLC	0.1% Trifluoroacetic acid in water: Acetonitrile (62: 38 V/V)	123
169	Alogliptin	LC	Potassium dihydrogen phosphate (pH- 4.6): Acetonitrile (20: 80 V/V)	124
170	Alogliptin	LC- CAD & LC- UV	Acetonitrile: 10m M Ammonium acetate buffer (pH- 3.5) (90: 10 V/V)	125
171	Alogliptin	RP- HPLC	Acetonitrile: 1-octasulphonic acid (0.005m H) (pH- 5.0) (60: 40v/v)	126
172	Alogliptin	RP- HPLC	Water: Acetonitrile (70: 30 V/V)	127
173	Alogliptin	RP- HPLC	Potassium dihydrogen phosphate (pH- 3.1): Methanol (60: 40 V/V)	128
174	Alogliptin	HPLC	Methanol: 0.01% Formic acid (70: 30 V/V)	97
175	Alogliptin	HPLC/ UV (Process related impurities)	A= 0.1% Perchloric acid (pH- 3): Acetonitrile (90: 10 V/V) B= 0.1% Perchloric acid (pH- 3): Acetonitrile (40: 60 V/V)	129
176	Alogliptin & Alogliptin D ₃ (IS)	LC- MS/ MS (in rabbit plasma)	0.1% Formic acid: Acetonitrile: Methanol (30: 56: 14 V/V/V)	130
177	Alogliptin & Alogliptin D ₃ (IS)	LC- ESI/ MS/ MS (spiked human plasma)	A binary mixture of 0.3% formic and acetonitrile (20: 80 V/V)	131
178	Alogliptin & Alogliptin D ₃ (IS)	UPLC- MS/ MS (in rat plasma)	A= 0.1% Formic acid B= Acetonitrile	132
179	Alogliptin & Alogliptin D ₃ (IS)	RP- HPLC- MS (genotoxic impurities)	Mobile phase a mixture containing water- methanol (55: 45 V/V) 2.5m M ammonium acetate and 0.1% formic acid	133
180	Alogliptin & Alogliptin D ₃ (IS)	HPTLC	Benzene: Ethyl acetate: Triethylamine (7.5: 2: 0.5 V/V/V)	134
181	Alogliptin benzoate	UV- Spectrophotometry Zero order	Methanol	135
182	Alogliptin benzoate	UV- Spectrophotometry First order derivative	0.1M HCl + double distilled water	136
183	Alogliptin benzoate	Spectrofluorometry (biofluids)	4- chloro- 7-nitrobenzofuran (NBD- Cl) (borate buffer, pH- 8.5)	137
184	Alogliptin benzoate	HPLC (impurities)	A= Water: Acetonitrile: Trifluoroacetic acid (1900: 100: 1 V/V/V) B= Acetonitrile: Water: Trifluoroacetic acid (1900: 100: 1 V/V/V)	138
185	Alogliptin benzoate	HPLC	Acetonitrile: Ammonium carbonate buffer (55: 45 V/V)	139
186	Alogliptin benzoate	RP- HPLC (Process related impurities & force degradation products)	A= 0.1% Perchloric acid (pH- 3.0 with triethyl amine)	140
105			B= Acetonitrile	
187	Alogliptin	HPLC/ UV (Human plasma)	50m M Phosphate buffer (pH- 2.5) :	141

	benzoate		Acetonitrile (70: 30 V/V)	
188	Alogliptin benzoate	Chiral HPLC	Ethanol: Diethylamine (100: 0.5 V/V)	142
189	Alogliptin benzoate	HPLC (Stability indicating)	Water: Acetonitrile (80: 20 V/V) (pH- 4.5)	143
190	Alogliptin benzoate	RP- HPLC	Methanol: 10m M Ammonium acetate buffer (pH- 5.0) (80: 20 V/V)	135
191	Alogliptin benzoate	RP- HPLC	Acetonitrile: Water (40: 60 V/V)	144
192	Alogliptin benzoate	LC- QTOF/ MS (Related substance and major degradation products)	A= 0.2% Formic acid -0.2% Ammonium acetate in water B= Acetonitrile and methanol (60: 40 V/V)	145
193	Alogliptin benzoate	HPTLC	Acetonitrile: 1% Ammonium acetate in methanol (4.5: 5.5 V/V)	146
194	Alogliptin benzoate	HPTLC (Degradation study)	Chloroform: Methanol: Ethyl acetate: Triethylamine (9: 1: 1: 5 V/V)	147
195	Alogliptin benzoate	HPTLC	Chloroform: Methanol (3: 7 V/V)	148
196	Alogliptin benzoate	HPTLC (Stability indicating)	Acetic acid: Water: n-butanol (1: 2: 7 V/V/)	143
197	Alogliptin phosphate monohydrate	RP- HPLC	Water: Methanol (75: 25 V/V)	149
198	Teneligliptin	UV- Spectrophotometry Zero order	Methanol	150
199	Teneligliptin	UV- Spectrophotometry Zero order (Stress degradation study)	Methanol	151
200	Teneligliptin	UV- Spectrophotometry Zero order	DMSO (dimethyl sulfoxide)	152
201	Teneligliptin	UV- Spectrophotometry AUC	Methanol & Water (50: 50 V/V)	153
202	Teneligliptin	Colorimetry	Solvent: Ethanol Method A= Potassium thiocyanate & ferric chloride Method B= Ferric chloride & 2, 2 bipyridyl	154
203	Teneligliptin	RP- UFLC	Methanol: Acetonitrile (60: 40 V/V)	155
204	Teneligliptin	RP- HPLC	Methanol: Potassium dihydrogen phosphate (pH-3) (70: 30 V/V)	156
205	Teneligliptin	RP- HPLC	Mobile phase A= Acetonitrile, water, trifluoroacetic acid B= Acetonitrile and trifluoroacetic acid	157
206	Teneligliptin	RP- HPLC	0.05 M Potassium dihydrogen phosphate (pH-4.0): Acetonitrile (80: 20 V/V)	158
207	Teneligliptin	RP- HPLC (Stability studies)	Phosphate buffer (pH- 6.0): Acetonitrile (60: 40 V/V)	159
208	Teneligliptin	UFLC (RP- HPLC) (Stability indicating)	0.1% Formic acid: Methanol: 0.1% Acetic acid (25: 75: 0.1 V/V/V)	160
209	Teneligliptin	HPLC (Chiral HPLC)	Ethanol: Acetonitrile: Ethanolamine (90: 10: 0.1 V/V/V)	161
210	Teneligliptin	RP- HPLC (assay)	Phosphate buffer (pH- 3.5): Acetonitrile (50: 50 V/V)	162
211	Teneligliptin	RP- HPLC (Rabbit plasma)	Methanol: 5m M Potassium dihydrogen phosphate (60: 40 V/V)	163
212	Teneligliptin	HPLC	Methanol: Potassium dihydrogen phosphate (60: 40 V/V) (pH- 3)	164
213	Teneligliptin	HPLC	A= Acetonitrile: Water: Trifluoroacetic acid (60: 1940: 2 V/V/V)	164

			B= Acetonitrile: Trifluoroacetic acid (2000: 2 V/V)	
214	Teneligliptin	HPLC	Acetonitrile: Methanol: Water (30: 40: 30 V/V/V)	164
215	Teneligliptin	UFLC	Methanol: Acetonitrile: Potassium dihydrogen orthophosphate (pH- 4.6) (40: 20: 40 V/V/V)	164
216	Teneligliptin	LC	Methanol: Formic acid (75: 25 V/V)	165
217	Teneligliptin	LC- MS/ MS	A= 0.1% Formic acid in milli- q water B= 0.1% Formic acid in acetonitrile	164
218	Teneligliptin	LC- MS/ MS (rats)	A= 10m M Ammonium formate B= Acetonitrile	166
219	Teneligliptin	UPLC- MS/ MS (Identification of degradation products)	A= 10% Acetonitrile in water with 0.1% formic acid B= 90% Acetonitrile with 0.1% formic acid	159
220	Teneligliptin	HPTLC	Butanol: Water: Glacial acetic acid (6: 2: 2 V/V/V)	167
221	Teneligliptin	HPTLC	0.25% Ammonium sulphate in water: Ethyl acetate: Methanol (10: 2.5: 2.5 V/V/V)	168
222	Teneligliptin	HPLTC	Methanol: Toluene: Triethylamine (1: 3: 1 V/V/V)	169
223	Teneligliptin	HPTLC	Toluene: Methanol: Glacial acetic acid: Triethylamine (5: 4: 0.5: 0.5 V/V/V/V)	164
224	Teneligliptin	HPTLC	Methanol: Ammonium sulphate: Triethylamine (9: 2.7: 0.5 V/V/V)	164
225	Teneligliptin	HPTLC	Methanol: Toluene: Triethylamine (1: 3: 1 V/V/V)	164
226	Teneligliptin	GC- MS GC- MS (Genotoxic sulphonate ester impurities)	DCM used as diluent Carrier gas-helium	170
227	Teneligliptin hydrobromid e	UV- Spectrophotometry Zero order	Methanol + water	171
228	Teneligliptin hydrobromid e	UV- Spectrophotometry Zero order	Water	172
229	Teneligliptin hydrobromid e	HPLC	Methanol: Buffer (pH- 3.5) (72: 28 V/V)	173
230	Teneligliptin hydrobromid	HPTLC	Toluene: Chloroform: Ethanol: Diethylamine (4: 4: 1: 1 V/V/V/V)	172
231	Teneligliptin hydrobromid e hydrate	UV- Spectrophotometry Zero order, First order derivative Area under curve	Distilled water	174
232	Teneligliptin hydrobromid e hydrate	RP- HPLC	Methanol: Phosphate buffer (pH- 7.2) (70: 30 V/V)	175
233	Teneligliptin hydrobromid e hydrate	RP- HPLC	Phosphate buffer (pH-5.5): Methanol (75: 25 V/V)	176
234	Teneligliptin hydrobromid e hydrate	LC- MS/ MS (impurities)	Methanol: Ammonium formate (80: 20 V/V)	177
235	Teneligliptin	HPTLC	Toluene: Methanol: Triethylamine (8: 2: 0.2 V/V)	178
	hydrobromid e hydrate		$0.2 \sqrt{\sqrt{3}}$	

		Zero order		
237	Trelagliptin	HPLC (Chiral)	Hexane: Ethanol: Diethylamine (70: 30: 0.1 V/V/V)	180
238	Trelagliptin	Chiral LC	n-hexane: 2- propanol (90: 10 V/V)	181
239	Trelagliptin	UPLC- UV	Acetonitrile: 0.05 M Potassium dihydrogen phosphate (pH- 3.5) (50: 50 V/V)	179
240	Trelagliptin	UPLC- MS/ MS	Acetonitrile: 0.1% Formic acid (80: 20 V/V)	179
241	Trelagliptin	UHPLC- MS/ MS (Rat plasma)	A= Acetonitrile B= 0.1% Formic acid	182
242	Trelagliptin	LC- MS/ MS (Beagle dog plasma)	A= Acetonitrile B= 5 Ammonium carbonate	183
243	Trelagliptin succinate	HPLC	A= 0.05% Trifluoroacetic acid in water B= 0.05% Trifluoroacetic acid in acetonitrile	184
244	Trelagliptin succinate	HPLC (impurities)	Acetonitrile & 20m M Potassium dihydrogen phosphate with 0.25% triethylamine (pH- 3.5)	185
245	Trelagliptin succinate	HPLC	A= Buffer B= Mixture of buffer: Acetonitrile (20: 80 V/V)	186
246	Omarigliptin	Spectrofluorometry	0.5% w/v Tween 80 + 0.2 M Phosphate buffer (pH-3.5) Diluent: Water	187
247	Omarigliptin	HPLC (Degradation study)	10μ M Phosphate buffer: Methanol (45: 55 V/V)	188
248	Omarigliptin	HPLC	Phosphate buffer (pH- 3.5): Acetonitrile (80: 20 V/V)	189
249	Omarigliptin	HPLC/ DAD	First condition: 0.1% Phosphoric acid & Acetonitrile Second condition: 10m M Potassium dihydrogen phosphate (pH- 7) & methanol	190
250	Omarigliptin	LC- MS	A= Water, 0.06% Trifluoroacetic acid B= Acetonitrile, 0.05% Trifluoroacetic acid	190
251	Omarigliptin	LC- MS/ MS (Human plasma)	Acetonitrile: 0.3% Formic acid (90: 10 V/V)	191
252	Omarigliptin	UHPLC- MS/ MS (Rat plasma)	A= 0.1% Formic acid B= Acetonitrile	192
253	Omarigliptin	TLC	Methanol: Ethyl acetate: 3% Ammonia (2: 8: 1 V/V/V)	189
254	Anagliptin phosphate	UV- Spectrophotometry Method 1: Zero order spectrometry using AUC Method 2: First-order derivative using amplitude Method 3: First-order derivative using AUC Method 4: Second-order derivative using amplitude Method 5: Second-order derivative using AUC	Water	193
255	Anagliptin phosphate	RP- HPLC (Stability indicating)	A= Acetate buffer (10m M, pH- 5): Methanol: Acetonitrile (90: 5: 5 V/V/V) B= Acetate buffer (10m M, pH- 5): Methanol: Acetonitrile (50: 25: 25 V/V/V)	194
256	Anagliptin phosphate	Chiral HPLC	Hexane: Ethanol: Diethylamine (80: 20: 0.1 V/V/V)	195

257	Anagliptin phosphate	NP- HPTLC	Dichloromethane: Methanol (9.2: 0.8 V/V)	196
258	Evogliptin tartrate	UV- Spectrophotometry Zero order	Deionized water	197
259	Evogliptin tartrate	RP- HPLC	Buffer (pH- 4.5): Methanol (45: 55 V/V)	198
260	Evogliptin tartrate	RP- HPLC (Stability indicating)	Methanol: Water: Trifluoroacetic acid (70: 30: 0.1 V/V/V)	199
261	Evogliptin tartrate	RP- HPLC	Methanol: Water: Acetonitrile (70: 20: 10 V/V/V)	200
262	Evogliptin tartrate	RP-HPLC	Phosphate buffer (pH=4.5) : Methanol (60: 40 % v/v)	201
262	Gemigliptin	Visible method	Ninhydrin (alkaline medium, pH- 10 with borate buffer)	202

II. CONCLUSION

Globally, diabetes is a minacious disorder which is remarkably influencing the human population. Research and development for DPP-4 inhibitors have been one of the largest activities in the pharmaceutical field. This review represents reported spectrophotometric the and chromatographic methods developed and validated for estimation of DPP-4 inhibitors. A vast range of techniques are available for determination of DPP-4 inhibitors in bulk, pharmaceutical dosage form and in biological fluids. It is found that different types of DPP-4 inhibitors are investigated by using variety of methods like UV-Vis spectrophotometry, spectrofluorometric, HPLC, UFLC, LC-MS, LC-MS/MS, HPLC-MS, GC-MS and HPTLC. The evaluation of published literature revealed that amongst the available methods UV-Spectrophotometric and HPLC are the most common techniques employed for investigation of DPP-4 inhibitors in bulk and in dosage form. It also concluded that HPLC is also considerably used for stability and degradation studies. This literature assessment pointed up that hyphenated techniques such as LC-MS, LC-MS/MS, UHPLC-MS/MS and GC-MS are versatile tools for separation and quantitation of metabolites of DPP-4 inhibitors in biological fluids and to obtain essential pharmacokinetic data. Analytical method development allows analyst to gain the data for certain problems such as sensitivity, accuracy and range etc. The methods which are stated in this review can be developed on this basis and can be implemented to pharmaceutical fields like drug testing and daily regular analysis in biological analysis and in quality control of these drugs.

REFERENCES

- [1]. Ambady Ramachandran and ChamukuttanSnehalatha: "Current scenario of diabetes in India," J. Diabetes, 2009, 1(1), 18-28.
- [2]. Nguyen Si Phuong Thao, "Diabetes overview: symptoms & causes," Available at https://www.careplusvn.com/en/diabetes-overviewsymptoms-causes.
- [3]. Kinjal Thakkar, Khushbu Patel, U. B. Patel and Dr. C. N. Patel: "Evogliptin tartrate a new drug of DPP-4 inhibitor: an overview," WJPR, 2021, 10(5), 1921-1929.

- [4]. Amit Sapra and Priyanka Bhandari: "Diabetes mellitus, treasure island (fl), statepearls publishing," 2023, available at https://www.ncbi.nlm.nih.gov/books/NBK551501/
- [5]. Varma D. S. and Dighe P. R.: "analytical methods of anti-diabetic drugs- sitagliptin, saxagliptin, linagliptin, alogliptin, gemifibrozil, troglitazone, pioglitazone, rosiglitazone: a review,"RJPDFT, 2022, 14(4), 324-330.
- [6]. Veena D. Singh, S. J. daharwal and Preeti K. Suresh: "A review of instrumental analytical methods to assay active ingredients in multicomponent pharmaceutical formulations," CJPS, 2014, (1), 27-39.
- [7]. Arul Caroline Grace, "Thangavel Prabha and Murugesan J.: Analytical method for determination of Sitagliptin," an updated review,Int j. pharm. Sci. rev.res, 2017, 43(1),217-225.
- [8]. Balamurugan k., kirtimayamishra and suresh r. "Sitagliptin:a literature review on analytical and bioanalytical methods," Pharma Innov. J,2018, 7(8), 357-361.
- [9]. Mohamed Karam Qassas, "Mohammad AmeralMardlnl and Heba Ghazal: A validated HPLC stability indicating method for the determination of Sitagliptin in bulk drug substance and tablets," Int. Pharm. Sci. Rev. Res., 2015, 32(1), 194-198.
- [10]. Dnyaneshwar P. Sonune and Mahesh Kumar Mone, "Isolation, Characterization of degredation products of Sitagliptin an development of validated stabilityindicating HPLC assay method for Sitagliptin API and tablets," IJPSR, 2013, 4(9), 3494-3503.
- [11]. Muhammad ASHRAF, Muhammad N. SHAHZAD and Muhammad M. HAYAT "development and validation of an HPLC method for the quantification of Sitagliptin in plasma and tablet dosage form," Lat. Am. J. Pharm., 2015, 34(3), 1-6.
- [12]. Sagar Pamu, SazalPatyar and Lakshmi Thakkalapally: "Development and validation of a novel RP-HPLC analytical method for Sitagliptin determination in human plasma," J. Pharm. Res. Int., 2021, 33(42B), 92-101.
- [13]. Qaiser Iqbal, Sajid Bashir and SyedUmerJan: "Development of rapid resolution HPLC method for the quantitative determination of Sitagliptin in human plasma," Pak. J. Pharm. Sci., 2018, 31(3), 795-799.

- [14]. Sammi Akter, Md. TalebHossain and ArghyaProsunSarkar: "Development and validation of HPLC method for estimation of Sitagliptin the tablet dosage form," WJPPS, 2015, 11(3), 1880-1889.
- [15]. Vandana Gawande Shankar Narvekar and Piyush Rathor: "Simple, rapid RP-HPLC method for estimation of Sitagliptin from urine and its application in pharmacokinetics," IJB, 2013, 2(10) 1322-1326.
- [16]. NusratbanuK. Sheikh, DarshilB. Shah and Dilip G. Maheshwari: "Reviw on analytical method for determination of sitagliptin phosphate in bulk and in different dosage forms," AJPTI, 2016,04(20), 40-53.
- [17]. PradnyaLokhande: "Development and validation of an RP-HPLC method for analysis of sitagliptin," IJTSRD, 2019, 3(6), 728-732.
- [18]. Raja Abhilash Punagoti and Rita Mourya: "Development and validation of new RP-HPLC method for the quantitative estimation of sitagliptin phosphate in bulk and tablet dosage form," J. Adv. Sci. Res., 2021, 12(3), 301-305.
- [19]. Gaddala Deepthi, Dr. Sanjeev KumarSubudhi and D. Snigdha: "RP-HPLC method for development and validation for the determination of sitagliptin in bulk and pharmaceutical dosage form," IJARMPS, 2019, 4(10), 19-27.
- [20]. Wael Abu Dayylh and Mohammed Hamad: "Determination of sitagliptin levels in rats serum by HPLC and its pharmacokinetic investigation in existence of sucralose," Indonesian J. Pharm., 2010, 29(3), 117-126.
- [21]. V. Deepthi, Poornima Y. and Dr. G. Devala Rao: "Stability indicating RP-HPLC method for analysis of sitagliptin in the bulk drug and it's pharmaceutical dosage form," Int. J. Pharm. Pharm. Sci.,2013, 5(1), 320-325.
- [22]. Sharifa Sultana, Md. Shahadat Hossain and Md.Samiul Islam: "Quantitation of sitagliptin in drug product by validated reversed phase liquid chromatographic technique," Dhaka Uni. J. Pharma. Sci., 2018, 17(1), 123-129.
- [23]. Hari Naga Prasada Reddy Chittireddy, J. V. Shammukha Kumar and Anuradha Bhimireddy: "Development and validation for quantification of 7-Nitroso impurity in sitagliptin by Ultraperformance liquid chromatography with triple quadrupole Mass Spectroscopy,"Molecules, 2022, 27, 8581.
- [24]. Gabriel Onn Kit Loh, Emily Yii Ling Wong and Yvonne Tze Fung Tan: "Simple and rapid LC-MS/MS method for determination of sitagliptin in human plasma and application to bioequivalence study," J. Chromatography B, 2020, 1159,
- [25]. Qian Zhao, Bo-ya Wang and Ji Jiang: "Quantification of sitagliptin in human plasma and urine by LC-MS/MS method and its application,"NIH, 2015, 50(6), 714-718.

- [26]. Dall Cortivo Lange Alini, Tams GasperinFraciele and Dos Santos Carolina: "Stability-indicating LC assay with determination of system suitability limits by a robustness test for sitagliptin tablets and assessment of cytotoxicity for degradation products," Curr. Pharma. Anal., 2012, 8(4) 360-367(8).
- [27]. K. R. Patil, T A Deshmukh and V R Patil: "A stability indicating HPTLC method development and validation for analysis of sitagliptin as bulk drug and in formulation," Am. J. Pharm. Tech. Res., 2018, 9(06), 123-135.
- [28]. Priyanka D. Patel and Dr. Saurabh S. Pandya: "A review on analytical methods for determination of oral anti-diabetic drugs like biguanides, gliptins and gliflozins in bulk and in pharmaceutical dosage forms," World J. Pharm. Sci., 2018, 6(1), 29-39.
- [29]. P. Ravisankar, G. Mounika and Ch. Devadasu: "A simple validated UV spectrophotometric method for quantitative analysis of Sitagliptin phosphate in pharmaceutical dosage form," J. Chem. Pharm. Sci., 2014, 7(3), 254-258.
- [30]. Sachin Patil, B.Ramesh and AR Hareesh: "Development and validation of RP-HPLC method for the estimation of sitagliptin phosphate in tablet dosage form," Asian j. res. Chem., 2010, 3(3), 653-655.
- [31]. R Lavanya and Md.yunoos: "Development and validation of RP-HPLC method for the estimation of Sitagliptin phosphate in bulk and its tablet dosage form." J. Adv. Pharm. Edu & Res., 2013, 3(4), 475-479.
- [32]. TANG Yao Li and Xiang WEN: "RP-HPLC determination of the content and the related substance of Sitagliptin phosphate," Chinese J. Pharm. Anal., 2009, 29(3), 1370-1372.
- [33]. Abdl Naser Zaid, Yara Abu Zaaror and AimanKaddumi: "Stability of extemporaneously prepared sitagliptin phosphate solution," PLOS ONE, 2022, 17(3), 1-12.
- [34]. Neha Sunil Dangi, S. R. Bavaskar and Dr. S. D. Barbate: "Development and validation of RP-HPLC method for the estimation of sitagliptin phosphate in bulk and tablet dosage form," WJPR, 2016, 5(9), 773-781.
- [35]. Bhimireddy Venkata Rami Reddy, Nanduri Raman and Badam Sai Kumar: "Chiral separation of sitagliptin phosphate enantiomer by HPLC using amylose based chiral stationary phase," J. Pharm. Res., 2013, 7, 546-550.
- [36]. R. Nageswara Rao, B. Sravan and K. Ramakrishna: "Precolumn o-pthalaldehyde-N-acetyl-L-cystenine derivatization followed by RP-HPLC sepration and fluorescence detection of sitagliptin enantiomers in rat plasma," Chirality, 2013, 25(12), 883-889.
- [37]. Rasha M. Ahmed, Ghada M. Hadad and Ahemd E. El. Gendy: "Development of HPLC method for determination of Sitagliptin in human plasma using fluorescence detector by experimental design approach," Analytical chemistry letters, 2018, 8(6), 813-828.

- [38]. Yao Tang, Xiang Li and Nie Wen: "Determination of sitagliptin phosphate in rat plasma by high performance liquid chromatographuy-tandem mass spectrometry," National library of medicine, 2011, 2996), 475-480.
- [39]. Ravanello Aline, Schreiner Deigado Leila and Isa Pedroso Marcolino Ana: "A simple stabilityindicating LC-UV method to assay sitagliptin phosphate in tablets," Curr. Anal. Chem., 2012, 8(4), 569-573(5).
- [40]. Ramzia I.El-Bagary, Ehab F. Elkady and Bassam M. Ayoub: "Liquid chromatographic determination of sitagliptin either alone or in ternary mixture with metformin and sitagliptin degradation product," Talanta, 2011, 85(1), 673-680.
- [41]. Zhen Wang, Shujun Hu and Xiaoying Wu: "A highly sensitive LC-MS/MS method for the N-nitrosamine impurity in the sitagliptin phosphate monohydrate active pharmaceutical ingredient," Anal. Methods, 2023, (3), 256-260.
- [42]. Amruta Dalal, Dr. Varsha Tegeli and Rajashri Waghmode: "Development and validation of a simple and rapid uv spectrophotometric method for linagliptin in bulk and marketed dosage form," Der Pharma Chemica, 2022, 14(2), 23-26.
- [43]. Amar Gangadhar Zalte, Ravindranath BhanudasSaudagarand Pramod NanasahebKatkade: "Validated UV-spectroscopic estimation of linagliptin concentration in bulk and dosage form," RES. J. PHARM. TECH., 2016, 9(5), 490-492.
- [44]. Sri K. Vijaya, Anusha A. and Sudhakar M.: "UVspectrophotometry method for the estimation of linagliptin in bulk and pharmaceutical formulations, ASIAN J. RES. CHEM.," 2016, 9(1), 47-50.
- [45]. Patil Chetan V. and Patil Paresh A.: "Development of validation of zero order, first-order, second-order, UV-Spectrophotometry methods using AUC technique for quantitative estimation of linagliptin in bulk material and tablets," Asian J. Res. Chem., 2020, 13(3), 228-232.
- [46]. Sunitha Gurrala, Panikumar Durga Anumolu and Sahitya Menkana: "Spectrophotometric estimation of linagliptin using ion-pair complexation and oxidative coupling reactions- a green approach," TJPS, 2020, 44(4), 245-250.
- [47]. J. N. Suresh kumar, B. Satya Prasad and M. Keerthana: "Quantitative analysis of linagliptin in its pharmaceutical dosage form by UV spectroscopy and RP-HPLC techniques, WJPR," 11(11), 297-610.
- [48]. Heba A. Aref, Sherin F. Hammad and Mohamed Saleh Elgawish: "Novel spectrofluorimetric quantification of linagliptin in biological fluids expoiting its interaction with 4-chloro-7nitrobenzofurazan," The J. Bio. Chem. Lumine., 2020, 35(5), 626-635.
- [49]. Mahmoud A. Omar, Ahmed M. Haredy, Gamal A. Saleh, A. H. Nagger and Sayed M. Derayea: "Diarylpyrrolone based fluorophore for the selective spectrofluorometric method for determination of linagliptin antidiabetic drug in pharmaceutical tablets," MICRO CHEM. J., 2019, 148, 555-560.

- [50]. Ramzia L. El-Bagary, Ehab F. Elkadyand Bassam M. Ayoub: "Liquid chromatographic determination of linagliptin in bulk, in plasma and in its pharmaceutical preparation," IJBS, 2012, 8(3), 209-214.
- [51]. Lakshmi B. Reddy: "A novel RP-HPLC method for the quantification of linagliptin in formulations," J. OF ATOMS AND MOLECULES, 2012, 2(2), 155-164.
- [52]. Kirtimaya Mishra, Balamurugan K. And Suresh R.: Linagliptin: "a review on bio-analytical and analytical methods," IJPQA, 2018, 9(3), 225-230.
- [53]. Sara S. Mourad, Eman L.El-Kimary, Dalia A. Hamdyand Magda A. Barary: "Stability-indicating HPLC-DAD method for the determination of linagliptin in tablet dosage form: application to degradation kinetics," J. CHROMATOGRAPH. SCI., 2016, 54(9), 1560-1566.
- [54]. Rajbangshi J. C., Alam M. M. and Hossain M. S. "Development and validation of a RP-HPLC method for quantitative analysis of linagliptin in bulk and dosage forms," Dhaka Uni. J. Pharmaceu. Sci., 2018, 17(2), 175-182.
- [55]. Abeer Hanafy and Hoda Mahgoub: "A validated HPLC method for the determination of linagliptin in rat plasma. Application to a pharmacokinetic study," J. Chromatogr. Sci., 2016, 54(9), 1573-1577.
- [56]. Raquel Balestri Heleno Ferreira, Jonathaline Apollo Duarte and Flavio Dias Ferreira: "Biological safety studies and simultaneous determination of linagliptin and synthetic impurities by LC-PDA," J. Anal. Methods Chem., 2019, 2019, 110-119.
- [57]. Venkata Naresh Kumar: "The determination of linagliptin using HPLC method," The TamilnaduDr. M. G. R. Medical University Chennai-600 032, 2014, 80.
- [58]. S. Baokar, K. Mane and A. Bhujbal: "A current review on analytical tools for determination of new oral antidiabetic drugs, empagliflozin, linagliptin and biguanides in bulk materials," pharmaceuticals and biological samples, IJPR, 2020, 32(34), 67-83.
- [59]. Sri K. Vijaya, Anusha M. and Reddy S. Ravinder: "A rapid RP-HPLC method development and validation for the analysis of linagliptinin bulk and pharmaceutical dosage form, Asian J. Pharmaceu." Anal., 2015, 5(1), 16-20.
- [60]. Basar Al-Sabti And Jehad Harbali: "Trace analysis of potential genotoxic impurity N,N- dimethylaniline in linagliptin active pharmaceutical ingredient using HPLC, SSC," 2020, 3(7), 306-312.
- [61]. BasarAl-sabti and Jehad harbali: "Quantitative determination of potential genotoxic impurity 3aminopyridine in linagliptin active pharmaceutical ingredient using HILIC-UV, BMC," 2020, 34(11).
- [62]. Bashar Al- Sabti and Jehad Harbali: "Development and validation of an analytical method for quantification of potential genotoxic impurity 4dimethylaminopyridine in linagliptin active pharmaceutical ingredient using hydrophilic interaction liquid chromatography," Sep. Sci. Plus, 2020, 3(9), 399-406.

- [63]. Nagaraj Kumar Nannapaneni, Sunil S Jalalpure and RajendraprasadMuppavarapu: "An ultra-high performance liquid chromatography- tandem mass spectrometry method for the quantification of linagliptin in human plasma, RSC Advances," 2016, 6(71), 66756-66766.
- [64]. Xiao-Zhen Zheng, Xiao-di Han and Chang-Liang Wang: "Determination of linagliptin in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study," Lat. Am. J. Pharm., 2016, 35(7), 1489-1494.
- [65]. K Venkata Rao, Raja Gorla and B. Sreenivasulu: "A simple and sensitive stability-indicating HPTLC assay method for the determination of linagliptin, Pharmacophore," 2014, 5(5), 693-700.
- [66]. R. P. Bhole, S. B. Wankhede and Y. B. Zambare: "High performance thin layer chromatographic determination of linagliptin in pharmaceutical formulations and in biological samples," Int. J. Pharmaceu. Chem. Anal., 2017, 4(1), 13-19.
- [67]. Deepika J., Bhavana S., Archana R. and Nidhi S.: "Analytical method development and validation of UV-visible spectrophotometric method for the estimation of saxagliptin in gastric medium," Glob. J. Pharmaceu. Sci., 2020, 8(2), 0059-0065.
- [68]. Bhagyashri S. Shinde, M. S. kalshetti and Anjali P. Kokane: "UV-spectrophotometric method development and validation for estimation of saxagliptin in API and pharmaceutical dosage form," Int. J. Curr. Pharmaceu. Res., 2020, 12(5), 63-66.
- [69]. Pathak and Bansal: "Analytical methods of saxagliptin a DPP-4 inhibitor: a review," IJBPAS, 2021, 10(7), 2321-2324.
- [70]. K. Sravana Kumari and B. Sailaja: "Analytical method development and validation for estimation of dipeptidyl peptidase-4 inhibitors: a review," Int. J. Curr. Res. Chem. Pharma. Sci., 2(4), 2015, 83-98.
- [71]. Marwa S. Muneeb: "Spectrophotometric and spectrofluorimetric methods for the determination of saxagliptin and vildagliptin in bulk and pharmaceutical preparations," Bull. Fac. Pharm., Cairo Uni., 2013, 51, 139-150.
- [72]. Sabry Khalil, AfafBushara and Hanan Farag: "New analytical methods for the determination of two gliptin drugs in pharmaceutical formulation and urine samples," Am. J. PharmTech. Res., 2020, 10(01), 31-43.
- [73]. Vaishali V. Karkhanis and Anandkumari D Captain: "Development and validation of a liquid chromatographic method for estimation of saxagliptin in tablet dosage form," Asian J. Res. Chem., 2013, 6(6), 552-554.
- [74]. BoovizhikannanThangabalan, GetuKahsay, Adissu Alemayehu, HailekirosGebretsadik, TesfamichaelGebretsadikan and Ramalingam Kalaichelvi: "RPHPLC method for the estimation of saxagliptin in pure and its tablet dosage form," IJSRED, 2020, 3(3), 1255-1263.

- [75]. Pathak Shilpi and Mishra Pradeep: "Determination of saxagliptin in bulk and pharmaceutical formulation using stability indicating RP-HPLC method with DAD detector," Res. J. Chem. Environ., 2021, 25(4), 140-147.
- [76]. LaísEngroffScheeren, Ana Isa Pedroso Marcolino and Andréa Inês Horn Adams: "Stability indicating RP-LC-PDA method for the quantitative analysis of saxagliptin in pharmaceutical dosage form," BJPS, 2015, 51(2), 461-466.
- [77]. GangaiAmaran, "Bio analytical method development and validation of saxagliptin in human plasma by RP-HPLC method," KMCH Collage of Pharmacy Coimbatore, 2014, 71.
- [78]. Dr.Pradnyalokhande: "Development and validation of an HPLC method for the analysis of saxagliptin in bulk powder," IJTSRD, 2020, 4(2), 37-41.
- [79]. Pathak S. and Bansal K.: "Analytical methods of saxagliptin a DPP-4 inhibitor: a review," IJBPAS, 2021, 10(7), 2321-2334.
- [80]. Wael Abu Dayyih, Lina Tamimi, EyadMallah and Kenza Mansour: "Saxagliptin levels and its pharmacokinetic application in presence of sucralose in animal serum by HPLC method," Int. J. Pharm. Pharm. Sci., 2015,7(9), 243-250.
- [81]. Hany A. batakoushy, Mahmoud A. Omar, Hytham M. Ahmed, Mohamed A. Abdel Hamid and Mohmoud M. Sebaiy: "Pharmacology and analytical chemistry profile of dapagliflozin, empagliflozin and saxaglptin," J. Pharmaceu. Pharmacol. Res., 2022, 5(4), 44-53.
- [82]. Pawanjeet J. Chhabda, M. Balaji, Srinivasarao V., K. Ramakrishna and K. M. Ch. Apparao: "Development and validation of simple stability indicating RP-HPLC method for analysis of saxagliptin and its forced degradation impurities in bulk drug and pharmaceutical dosage form," Int. J. Res. Dev. Pharm. L. Sci., 2014, 3(3), 993-1003.
- [83]. P. Llayaraja, M. Manivannan and P. Parthiban: "A selective and sensitive method for the determination of sulfonate ester impurities in saxagliptin drug substance by HPLC, J. Pharmaceu." Neg. Res., 2022, 13(5), 2028-2032.
- [84]. Dhara Vashi and Suresh Kumar: "Impurity identification and characterization of some antidiabetic drugs using various analytical methods," Asian J. Pharm. Res., 2019, 9(4), 243-248.
- [85]. N. Batta, N. R. Pilli, V. R. Derangula, H. B. Vurimindi, R. Damaramadugu and R. P. Yejella: "A rapid and sensitive LC-MS/MS assay for the determination of saxagliptin and its active metabolite 5-hydroxy saxagliptin in human plasma and its application to a pharmacokinetic study," 2015, 65(3), 133-140.
- [86]. L. Sridhar, P. Goutami, D. Vijay Darshan, K. Ramakrishna, R. Nageswara Rao and S. Prabhakar: "LC-ESI-MS/MS studies on saxagliptin and its forced degradation products, Anal. Methods," 2014, 6, 8212-8221.

- [87]. Jing-Wen Gao, Yue-Mei Yuan and Ya-Song Lu: "Development of rapid UPLC-MS/MS method for quantification of saxagliptin in rat plasma and application to pharmacokinetic study," Biomed. Chromatogr., 2012, 26(12), 1482-1487.
- [88]. Gaikwad D. D., Patel S. G., Wamam S. A., Jadhav S. L., and Dhobale S. M.: "Method development and validation of saxagliptin hydrochloride by RP-HPLC method, Bull. Env. Pharmacol." Life Sci., 2020, 9(9), 22-28.
- [89]. Md. Saifuil Islam, Md. Taleb Hossain, Sukalyan Kumar Kundu, Md. Abdul Halim and Md. Raffiquzzaman: "Development and validation of RP-HPLC method for determination of saxagliptin hydrochloride in bulk and tablet dosage form," WJPPS, 2016, 5(5), 107-119.
- [90]. Dr.Safila Naveed, Hina Rehman and Fatima Qamar: "Method development and validation of vildagliptin using UV spectrophotometer," LIPSR, 2014, 5(10), 714-717.
- [91]. Gayatri A. Gaikwad and Pranav P. Tambe: "Development and validation of UV spectroscopic method for estimation of vildagliptin in tablet dosage form," EJBPS, 2022, 9(8), 427-432.
- [92]. Beena kumari, and Aparna Khansili: "Analytical method development and validation of UV-visible spectrophotometric method for the estimation of vildagliptin in gastric medium," Drug Res(stuttg), 2020, 70(9), 417-423.
- [93]. Amanda T. Barden, Bruna L. Piccoli and Nadia M. Volpato: "Second-order derivative UV spectrophotometric and RP-HPLC methods for the analysis of vildagliptin and application for dissolution study," Drug Anal. Res., 2018, 02, 46-53.
- [94]. Laoujain Anis Dayoub and FidaAmali: "Development of new visible spectrophotometric analytical method for determination of vildagliptin in bulk and pharmaceutical dosage forms," Res. J. Pharm. Tech., 2020, 13(6), 2807-2810.
- [95]. Rao K. Hanumantha, Rao A. Lakshmana, and K. B. Chndraa: "Development and validation of HPLC method for the estimation of vildagliptin in pharmaceutical dosage form," Int. J. Pharm. Chem. Bio. Sci., 2014, 4(2), 361-366.
- [96]. Charyulu, S.S. and Kumar, J. V. S.: "Development of a new related substance by HPLC method for vildagliptin for quantification of purity," J. Pharm. Res. Int., 2022, 34(34A), 26-35.
- [97]. Padmanabh B. Deshpande, Saurabh R. Jadhav, Shraddha S. Jadhav, Sandeep Swami and Dipak Supe: "Chromatographic methods for determination of dipeptidyl peptidase-4(dpp-4) inhibitors," IJPRIF,2021, 14(02), 199-212.
- [98]. Razia Sultana, Sitesh C. Bachar and Fatema Rahman: "Development and validation of stability indicating assay method of vildagliptin in bulk and tablet dosage form by RP-HPLC," IJPLS, 2013, 4(4), 2530-2534.

- [99]. Vijay GovindraoNapateand Pratik AnantraoNapate: "Method development and validation for the vildagliptin by RP-HPLC method," AJPAMC, 2020, 8(1), 24-31.
- [100]. A.M.Kashid, D. A. Ghorpade, P. P. Toranmaland S. C. Dhawale: "Development and validation of reversed phase HPLC method for the determination of vildagliptin using an experimental design," J. Anal. Chem., 2015, 70, 510-515.
- [101]. Pragati Ranjan Satpathy, V. Mohan Goud, Bhoga Bhagya, JVC. Sharma and N. Shyamala: "Development and validation of a RP-HPLC method for the assay of vildagliptin," Wrld. J. Pharm. Pharmaceu. Sci., 2014, 3(2), 2303-2310.
- [102]. Meetali M. Chaphekar and Purnima D. Hamrapurkar: "Development and validation of RP-HPLC assay method for vildagliptin using QBD approach and its forced degradation studies," IJPSDR, 2016, 8(3), 157-165.
- [103]. ThangabalanBoovizhikannan and Vijayraj Kumar Palanirajan: "RP-HPLC determination of vildagliptin in pure and tablet formulation," J. Pharm. Res., 2013, 7(1), 113-116.
- [104]. Jagdale Ramkrishna Rao Saheb, Dabhade M. and Kokate Shekhar Vikram P.: "RP-HPLC method development and validation of vildagliptin in bulk and dosage form," WJPPS, 2017, 6(9), 1161-1176.
- [105]. Sharifa Sultana, Uttom Kumar, Md. Shahadat Hossain, Dilshad Noor Lira and Abu SharaShamsurRouf: "Qbd approach for the development and validation of RP-UHPLC method for quantitation of vildagliptin," J. Pharmaceu. Sci., 2017, 16(1), 107-117.
- [106]. Shrinivas, C., Qureshi, H. K. And Veeresham C.: "Validated chiral ultra fast liquid chromatographic method for quantitative analysis of enantiomeric vildagliptin, American J." Anal. Chem., 2021, 12(11), 429-439.
- [107]. Amanda Thomas Barden, Barbara Salamon, Elfrides Eva Sherman Schapoval and Martin Steppe: "Stability-indicating RP-LC method for the determination of vildagliptin and mass spectrometry detection for a main degradation product," J.Chromatogram. Sci., 2012, 50(5), 426-432.
- [108]. Ayushman Tiwari, Vandana Arora Sethi, Arshad H. Khuroo and Lalit Kumar Tyagi: "Bioanalytical method development and validation of vildagliptin in rat plasma using LCMS/MS method," J. Adv. Sci. Res., 2019, 10(3), 22-29.
- [109]. Sharif Arar, Enas Al-Qudah, Muhammad Alzweiriand Kamal Sweidan: "New forced degradation products of vildagliptin, identification structural elucidation using LC-MS, with proposed formation," Journal Of Liquid Chromatographic And Related Technologies, 2020, 43(15-16), 633-644.
- [110]. De Andrade C., De Araujo Lock G., Pigatto M. C., Hass S. E. and De Araujo B. V.: "Validation of LC-MS/MS method applied to evaluation of free tissue concentrations of vildagliptin in diabetic rats by microdialysis," Biomed. Chromatogr., 2014, 28(12), 1722-1727.

- [111]. Chaitali Dhale and Janhavi R. Rao: "Stability indicating HPLC-MS method for determination of degradation products in vildagliptin, J. Anal. Bioanal." Tec., 2019, 10(2), 420.
- [112]. Bashar Al-Sabti And Jehad Harbali: "Development and validation of an analytical method for quantitative determination of three potentially genotoxic impurities in vildagliptin drug material using HPLC-MS," J. Anal. Sci., 2021, 44(13), 2587-2595.
- [113]. Santosh R. Butle and Padmanabh B. Deshpande: "Validated stability-indicating HPTLC method development for determination of vildagliptin as bulk drug and in tablet dosage form," EJPMR, 2015, 2(6), 234-237.
- [114]. Amruta S. Khurd, Pankaj B. Miniyar, Sandip R. More, Kajal V. Doshi and Vandana Gawande: "Analytical method development and validation of vildagliptin by using quality by design approach," EJBPS, 2020, 7(3), 223-229.
- [115]. Gayatri Dhobale, Priya Sahane, Suresh Jadhav and Dushyant Gaikwad: "A comprehensive review on analytical profile of anti-diabetic drug," IJBPAS, 2021, 10(12), 331-352.
- [116]. A. V. V. N. K. Sunil Kumar, T. V. Reddy and C. B. Sekharan: "Utility of picric acid and 2,4 dinitrophenol as chromogenic reagents for visible spectrophotometric quantification of alogliptin," Bull. Fac. Pharma., Cairo Uni., 2017, 55(1), 177-184.
- [117]. A. V. V. N. K. Sunil Kumar, T. V. Reddy and C. B. Sekharan: "Spectrophotometric determination of alogliptin in bulk and tablet dosage form using bromate-bromide mixture as bromination agent," Karbala Int. J. Modern Sci., 2016, 3(1), 8-17.
- [118]. Mohamed M. Salim, Aya A. Marie, Amira H. Kamal, Sherin F. Hammad and Mahmoud M. Elkhoudary: "Using of eosin Y as a facile fluorescence probe in alogliptin estimation: application to tablet dosage forms and content uniformity testing, Spectrochimia Acta Part A: Molecular and Biomolecular Spectroscopy," 2023, 285, 123-131.
- [119]. Sayed M. Dereyea, Ahmed A. Gahlan, Mahmoud A. Omar, Gamal A. Saleh and Ahmed M. Haredy: "Spectrofluorometric determination of alogliptin an antidiabetic drug in pure and tablet form using fluorescamine, a fluorogenic agent: application to content uniformity test, Luminescence," 2020, 35(7), 1028-1035.
- [120]. Azza S. Tammam, Ahmed A. Gahlan, Mahmoud A. Taher and Ahmed M. Haredy: "Hantzsch condensation reaction as a spectrofluorometric method for determination of alogliptin, an antidiabetic drug, in pure form, tablet form, and human and rat plasma, Luminescence," 2021, 37(4), 543-550.
- [121]. Yadav Priyanka J., Jadhav Sayali S. and Mohite S. K.: "Development and validation of RP-HPLC method for alogliptin benzoate in bulk drug and dosage form, IJPPR.Human," 2014, 1(2), 1-9.

- [122]. SnigdhaDhamireddy, Dr. Sanjeev Kumar Subudhi, Veermalla Swetha, KallepelliShirisha, CheripelliSrinija and N. Sneha Sadashiv: "RP-HPLC method development and validation of alogliptin tablet dosage form," 2019, 4(11), 43-50.
- [123]. Ingle Suyash, Tegeli Varsha, Birajdar Avinash and Nangare Gajanand: "Development and validation of rp-hplc method for the estimation of alogliptin in api and tablet formulation," Res. J. Pharma. Tech., 2022, 15(4), 1791-1794.
- [124]. Ramzia I. El-Bagary, Ehab F. Elkady and Bassam M. Ayoub: "Liquid chromatographic determination of alogliptin in bulk and in its pharmaceutical preparation," Int. J. Biomed. Sci., 2012, 8(3), 215-218.
- [125]. Charise DallazemBertol, Maria Tereza Friedrich, Graciela Carlos and Pedro Eduardo Froehlich: "Analytical stability-indicating methods for alogliptin in tablets by LC-CAD and LC-UV," J. AOAT Int., 2017, 100(2), 400-405.
- [126]. Shivarudregowda GS, Jose Gnana Babu C. and Tamizh Mani T.: "Validated RP-HPLC method for the quantitation of alogliptin in bulk and tablet dosage form," Am. J. PharmTech Res., 2018, 8(2), 140-148.
- [127]. A. Madhukar, Afreen Fathima, A. Usha, A. Satish Kumar Chary, A. Prashanth Kumar and K. Usha: "RP-HPLC method development and validation of alogliptin bulk and tablet dosage form," IAJPS, 2018, 5(4), 2897-2904.
- [128]. Rakesh V. C., T. Srinivas Rao, Dr.Chandanman Sreedhar, Akkamma HG and Josef Yakin: "Development and validation of new RP-HPLC method for the determination of alogliptin benzoate on bulk form and dosage form," JETIR, 2019, 6(4), 52-58.
- [129]. Bassam M. Ayoub: "Mini-review: analytical procedures for alogloptin determination in biological fluids and pharmaceutical formulations," Der Pharma Chemica, 2016, 8(9), 18-22.
- [130]. Yatha Ravi and Bigala B. Rajkamal: "A validated LC-MS/MS method for the pharmacokinetic study of alogliptin in healthy rabbits," J. Appl. Pharmaceu. Sci., 2019, 9(2), 29-37.
- [131]. Sabyaschi Biswal, Sumanta Mondal and Prasenjit Mondal: "Liquid chromatography-electro spray ionization-tandem mass spectroscopy method for the quantification of alogliptin in spiked human plasma," Egypt. Pharmaceut. J., 2021, 20, 82-91.
- [132]. Hao CHEN, Xue XIA, Linjin LI, Wenbing JIANG, Yi WANG, Huixia XIA, Zhiyi WANG and Yilong WANG: "Pharmacokinetic and bioavailability study of alogliptin in rat plasma by UPLC-MS/MS," Lat. Am. J. Pharm., 2016, 35(2), 233-241.
- [133]. Bashar Al-Sabti and Jehad Harbali: "HPLC-MS analysis of four genotoxic impurities in alogliptin pharmaceutical materials," J. AOAC Int., 2022, 105(2), 362-369.
- [134]. Gayathri M. Nair and S. Malathi: "Alogliptin: a review of analytical methods," EJBPS, 2021, 8(6), 267-271.

- [135]. Supriya P., Madhvi Latha N., Rohit H. KBV, Ramana GV, Harini U. and Pawar AKM: "Development and validation of UV spectrophotometric and reversed phase-high performance liquid chromatography - PDA methods for the estimation of alogliptin benzoate," Asian J. Pharmaceu. Clinic. Res., 2016, 9(1), 282-287.
- [136]. P. J. Yadav, V. N. kadam and S. K. Mohite: "Development and validation of UV spectrophotometric method for alogliptin benzoate in bulk drug and tablet formulation," J. Curr. Pharma Res., 2014, 4(4), 1286-1290.
- [137]. Heba A. Aref, Sherin F. Hammad, Khaled M. Darwish and Mohammed S. Elgawish: "Novel spectrofluorometric quantification of alogliptin benzoate in biofluids exploiting its interaction with 4chloro-7-nitrobenzofuran, Luminescence," 2019, 35(2), 284-291.
- [138]. Kun Zhang, Panqin Ma, Wenna Jing and Xiangrong Zhang: "A developed HPLC method for the determination of alogliptin benzoate and its potential impurities in bulk drug and tablets," Asian J. Pharmaceu. Sci., 2015, 10, 152-158.
- [139]. Hani Naseef, Ramzi Moqadi and MoammlQurt: "Development and validation of an HPLC method for determination of antidiabetic drug alogliptin benzoate in bulk and tablets," J. Ana. Methods Chem., 2018, 2018, 77-83.
- [140]. YuXia Zhou, WenTao Zhou, LiLi Sun, QiaoGen Zou, Ping Wei and PingKaiOuYang: "Characterization of process-related impurities including forced degradation products of alogliptin benzoate and the development of the corresponding reversed-phase high-performance liquid chromatography method," J. Sep. Sci., 37(11), 1248-1255.
- [141]. Sherin F. Hammad, Inas A. Abdallah, Alaa Bedair and Fotouh R. Mansour: salting-out induced liquidliquid microextraction for alogliptin benzoate determination in human plasma by HPLC/UV, BMC Chem., 2021, 15(2), 256-265.
- [142]. G. Srinivasa Rao, K. Mallesh, G. Vijay Kumar, Ch. Surekha and B. Venugopala: "A validated chiral HPLC method for the enantiomeric purity of alogliptin benzoate, Der Pharma Chemica," 2014, 6(3), 234-239.
- [143]. Surati Jasmina Shivlal, "Development and validation of stability indicating assay methods for estimation of anti diabetic drugs," Gujarat Technological University Ahmedabad, 2020, 86,145,180.
- [144]. Shubhangi C. Daswadkar, Madhumita A. Roy, Sanjay G. Walode and C. B. Mahendra Kumar: optimization of RP-HPLC method for determination of alogliptin benzoate on bulk and dosage form, Int. J. Chem. Sci., 2016, 14(2), 649-660.
- [145]. Yuting Lu, Danyi Yang, Zhiyu Li, Taijun Hang and Min Song: Isolation and characterization of related substances in alogliptin benzoate by LC-QTOF mass spectrometric techniques, J. Pharmaceu. Biomed. Ana., 2016, 128, 253-263.

- [146]. Komal Sharma and Amrita Parle: "Development and validation of HPTLC method for estimation of alogliptin benzoate in bulk drugs and tablet dosage forms," Int. Bull. Drug Res., 2015, 5(8), 81-89.
- [147]. KunjanBharatkumarBodiwala, Shailesh Shah, Jeenal Thakor, Bhavin Marolia and Pintu Prajapati:
 "Degradation kinetics study of alogliptin benzoate in alkaline medium by validated stability-indicating HPTLC method," J. AOAT Int., 2016, 99(6), 1505-1512.
- [148]. K. R. Patil, T. A. Deshmukh and V. R. Patil: "Stability indicating high performance thin layer chromatographic determination of alogliptin benzoate as bulk drug and in tablet dosage form," Am. J. PharmTech Res., 2019, 9(3), 332-343.
- [149]. Vinyas M., Velivela Swapna, Yadav Gopi, Pati Nikunja B and Gupta VRM: "Analytical method development and validation of alogliptin by RP-HPLC method," Res. J. Pharm. Tech., 2016, 9(7), 775-778.
- [150]. Maruthi R., Chandan R. S., Kumara Kinjal and Geetha R.: "Analytical method development and validation of teneligliptin by UV spectroscopy," Res. J. Pharm. Tec., 2021, 14(1), 75-78.
- [151]. Kalyani V. Tighare and Amol V. Sawale: "Development and validation of stress degradation studies for quantification of teneligliptin by UV spectroscopic method," WJPR, 2021, 10(7), 901-918.
- [152]. Sanket A. Kshirsagar, Sryesta B. Mane, Yogesh S. Hanchate, Aniket S. Katte and Kaushik V. Kulkarni: "UV spectrophotometric method development and validation for determination of teneligliptin hydrobromide in API and in pharmaceutical dosage form," IJPRS, 2018, 7(1), 19-27.
- [153]. Pritam S. Jain, Prafulla M. Patil, Savita J. Sonawane and Sanjay J. Surana: "UV-AUC spectrophotometric method for quantitative estimation of teneligliptin," ACTA Sci. Pharmaceu. Sci., 2019, 3(6), 43-47.
- [154]. Karthikeyan R., Ranjith Kumar B. and Muniyappan S.: "Validated colorimetric methods for the estimation of teneligliptin in tablets," IDDT, 2017, 7(4), 38-40.
- [155]. Maruthi R., Kumara M. Kajal and Geetha R.: "Analytical method development and validation of teneligliptin by RP-UFLC," Res. J. Pharm. Tec., 2020, 13(9), 4035-4040.
- [156]. Dr.PradnyaLokhande: "Analytical method development and validation of teneligliptin by using RP-HPLC with ICH guidelines," IJTSRD, 2019, 3(3), 259-263.
- [157]. Biswas Bhanu, Kumar Manish, Sharma Jai Bharti and Saini Vipin: "Method development and validation for estimation of teneligliptin in tablet dosage form by RP-HPLC," Res. J. Pharm. Tec., 2020, 13(4), 1774-1778.
- [158]. Bhoomi Dineshkumar Patel, Nidhi J. Dharsandiya and Ankit Chaudhary: "Development and validation of RP-HPLC method for estimation of teneligliptin and its impurity in tablet," Int. j. pharm. Sci. res., 2021, 69(2), 127-133.

- [159]. S. Vidyadhara, Niteen Ashok Narkhede and Y. Sai. Silpa: "Method development, validation and stability studies of teneligliptin by RP-HPLC and identification of degradation products by UPLC tandem mass spectroscopy," J. Anal. Sci. tec.,2016, 7(27), 97-108.
- [160]. MukthinuthalapatiMathrusri Annapurna, Sara Almas, BaswaniRajasree and Angirekula Narendra: "Stability indicating ultrafast liquid chromatographic method for the estimation of teneligliptin," Asian J. Pharmaceu., 2018, 12(2), S670-674.
- [161]. SrinivasuGunnam, ThirupathiChoppari, Narayana Chennuru Lakshmi and Sarah Imam Siddiqui: "Development and validation of teneligliptin stereoisomers by HPLC using cellulose based immobilized polysaccharide chiral stationary phase," Curr. Pharmaceu. Anal., 2021, 17(10),1317-1322.
- [162]. Ganesh Prabhu K., "Analytical method development and validation for the estimation of teneligliptin in oral solid dosage form by reverse phase chromatographic technique using UHPLC," The TamilnaduDr. M. G. R. Medical University, 2017, 88.
- [163]. Nallakumar P. and Siva Kumar R.: "Bioanalytical method development and validation of teneligliptin using RP-HPLC in rabbit plasma," WJPR, 2017, 6(10), 589-602.
- [164]. Snigdha Rani Behera, Abhishek Mohapatra and Priyanka Rani Sahu: "Teneligliptin: a literature review on analytical and bio-analytical methods," EJPMR, 2021, 8(11), 223-228.
- [165]. Pudi Rajesh and MukthinuthalapatiMathrusri Annapurna: "Validated isocratic liquid chromatographic method for the quantification of teneligliptin in the presence of internal standard," Int. J. Grn. Pharm., 2018, 12(3), S670-S674.
- [166]. S. Shantikumar, N. Satheeshkumar and R. Srinivas: "Pharmacokinetic and protein binding profile of peptidomimetic DPP-4 inhibitor teneligliptin in rats using liquid chromatography-tandem mass spectrometry," J. Chromatogr., 2015, 1002, 194-200.
- [167]. Sandesh R. Lodha, Karishma D. Patel, Sunny A. Patel and Shreya G. Patel: "Development and validation of HPTLC method for estimation of teneligliptin hydrobromide hydrate in tablet dosage form," J. Pharm. Appl. Sci., 2016, 3(1), 26-33.
- [168]. Dimal A. Shah, Khushboo Agarwal, Falgun A. Mehta and Vandana B. Patel: "Stability indicating HPTLC method for the estimation of anti-diabetic drug teneligliptin," Curr.Pharmaceu. Anal., 2018, 14(6), 547-554.
- [169]. Prafulla M. Patil, Pritam S. Jain, Sanjay J. Surana and Swati D. Yeole: "Development and validation of high-performance thin-layer chromatography method for estimation of teneligliptin in bulk and pharmaceutical formulation," Arc. Nat. Med. Chem., 2017, 2017(2), 66-79.

- [170]. Murugan Maniavannan, PalaniappanIlayaraja and Paramasivam Parthiban: "Trace-level analysis of genotoxic sulfonate ester impurities in teneligliptin by GC-MS," J. Appl. Pharm. Sci., 2022, 12(11), 052-060.
- [171]. Farkade Kalyani and Tawar Mukund: "Analytical method validation and quantitative analysis for active pharmaceutical ingredient and marketed formulation of teneligliptin hydrobromide by UV spectroscopy," Asian J. Pharmaceu. Anal., 2021, 11(3), 195-198.
- [172]. Vishnu C. Shinde, Kiran B. Aher and Girija B. Bhavar: "Development and validation of UV spectrophotometric method and high performance thin layer chromatographic (HPTLC) method for estimation of teneligliptin hydrobromide in pharmaceutical preparation," Scholars Res. Library, 2016, 8(8), 291-301.
- [173]. Bansode Ashwini S., Devhadrao Nitin V. and Shinde Ashwini C.: "Analytical method development and validation of teneligliptin hydrobromide in pure form by HPLC," World J. Pharm. Sci.,2017, 5(10), 37-48.
- [174]. Nita Yadav and Anju Goyal: "Method development and validation of teneligliptin in pharmaceutical dosage form by UV spectrophotometric methods," Int. J. Pharmaceu. Chem. Anal., 2017, 4(3), 54-58.
- [175]. Anvesha Vinit Ganorkar, Rekha S. Jibhkate and Krishna Radheshyam Gupta: "Development of stability indicating and robust RP-HPLC method for determination of teneligliptin," AJACR, 2018, 1(4), 1-12.
- [176]. Girish D. Dahikar and Gayatri Bobade: "Development and validation of stability indicating RP-HPLC method for Teneligliptin hydrobromide hydrate," AJPTR, 2020, 11(1), 45-56.
- [177]. Maruthi R., Chandan R.S. and Tengli Anand Kumar: "Characterization of impurities in teneligliptin hydrobromide hydrate by using LCMS/MS and NMR," Res. J. Pharm. Tec., 2020, 13(8), 3569-3576.
- [178]. Sohan S. Chitlange, Diptee G. Rawat and Sejal P. Gandhi: "Estimation of anti diabetic teneligliptin in bulk and formulation by densitometric and spectrophotometric method," Anal. Chem. Letters,2017, 7, 556-566.
- [179]. Wafaa A. Zaghary, Shereen Mowaka and Mostafa A. Hassan: "suitability of various chromatographic and spectroscopic techniques for analysis and kinetic degradation study of trelagliptin," Sci. Rep., 2017, 7(1), 112-123.
- [180]. K. durgaMalleshwar, B. Venugopala Rao and K. VenkateswaraRao: "A validated chiral HPLC method for the enantiomeric purity of trelagliptin," Indo Am. J. Pharma. Res., 2019, 9(11), 582-587.
- [181]. Qi Wang, Xiuli Chen and CuiweiZhang: "dtermination of the enantiomeric purity of trelagliptin by pre-column derivatization and liquid chromatography on a chiral stationary phase," Chromatographia, 2015, 78, 1395-1400.

- [182]. Xiao-Xia Hu, Tian Lan and Zhe Chen: "A rapid and sensitive UHPLC-MS/MS assay for the determination of trelagliptin in rat plasma and its application to a pharmacokinetic study," J. Chromatogr. B, 2016, 1033-1034, 166-171.
- [183]. Li Zhou, Wang Xi and Hui Zhang: "The chiral bioconversion and pharmacokinetic analysis of trelagliptin in beagle dog plasma by LC-MS/MS," J. Chroma. Sci., 2019, 58(1), 31-36.
- [184]. Zhiqiang Luo, Xinjing Chen and Guopeng Wang: "development of a validated HPLC method for the quantitative determination of trelagliptin succinate and its related substances in pharmaceutical dosage forms," European J. Pharma. Sci., 2018, 111, 458-464.
- [185]. Hui Zhang, Lili Sun and Liang Zou: "Identification, characterization and HPLC quantification of processrelated impurities in trelagliptin succinate bulk drug: six identified as new compounds," J. Pharma. Bio. Anal., 2016, 128, 18-27.
- [186]. Dr. Arjit Ancrao, Vikas Mundekar and Satish Jhon: "development and validation of related substances method by HPLC for analysis of trelagliptin succinate," World J. Pharm. Pharma. Sci., 2016, 5(8), 1844-1858.
- [187]. Bassam M. Ayoub, Shereen Mowaka and Mona G. Arafa: "Factorial design optimization of micelle enhanced synchronous spectrofluorimetic assay of omarigliptin: Applied to content uniformity testing and in vitro drug release," The J. Bio. Chem. Lumin., 2018, 33(4), 797-805.
- [188]. Juliana Emanuelli and Elfrides Eva SchermanSchapoval: "Stability- indicating HPLC method for estimation of omarigliptin in tablets – oxidative and photolytic kinetics and degredation products formed under oxidative conditions," Microchemical Journal, 2020, 157, 105084.
- [189]. Mahmoud A Tantawy, Amal M Hassan and Maha A Hegazy: "Quality and stability profile assessment of the recent antidiabetic omarigliptin by using different chromatographic methods," J. Chrom. Sci., 2021, 59(8), 762-769.
- [190]. Tesfaye Biftu, Ranabir Sinha-Roy and Ping Chen: "omarigliptin(MK-3102): A novel long-acting DPP-4 inhibitor for once-weekly treatment of type 2 diabetes," J. Med. Chem., 2014, 57(8), 3205-3212.
- [191]. Shereen Mowaka, NermeenAshoush and Mariam Tadros: "Enhanced extraction technique of omarigliptin from human plasma- applied to biological samples from healthy human volunteers," Molecules, 2020, 25(18), 4232-4242.
- [192]. Meng-Fang li, Xiao-Xia Hu and Ai-Qun Ma: "Ultrahigh pressure liquid chromatography- tandem mass spectrometry method for the determination of omarigliptin in rat plasma and its application to a pharmacokinetic study in rats," Biomed. Chrom., 2017, 31(10), 991-1003.

- [193]. Amod S. Patil and Atul A. Shirkhedkar: "Development and validation of five simple UVspectrophotometry methods for estimation of anagliptin in bulk and in-house tablets," Pharm. Methods, 2016, 7(2), 127-131.
- [194]. Charu P. Pandya and Sadhana J. Rajput: "Stress degradation studies of anagliptin, development of validated stability indicating method, degradation kinetics study, identification and isolation of degradation products," Chromatographia, 2018, 81, 1533-1550.
- [195]. K. Durga Malleswar, B. Venugopala Rao and S. Shylaja: "A validated chiral HPLC metod for the enantiomeric purity of anagliptin," IAJPR, 2019, 9(7), 3096-3105.
- [196]. Amod Shivaji Patil and Atul Arun Shirkhedkar: "Application of quality by design in the development of HPTLC method for estimation of anagliptin in bulk and in-house tablets," Eurasian J. Ana. Chem., 2017, 12(5), 443-458.
- [197]. Yogesh Purushottam Agrawal, Mona yogesh Agrawal and Siddhesh Bharat Jadhav: "Development and validation of novel UV spectrophotometric method for the determination of evogliptin in pharmaceutical dosage form," Indian J. Pharmaceu. Edu. Res., 2020, 54(4), 1174-1179.
- [198]. Hetvi M. Ahir, Dulendra P. Damahe and Sachin B. Narkhede: "Development and validation of stability indicating RP-HPLC method for the estimation of evogliptin tartrate in pharmaceutical dosage form," Int. J. Pharm. Sci. Rev. Res., 2022, 72(2), 1-6.
- [199]. Jagruti Dolas, Shailesh Jawarkar and Rani Jagdish Rode: "Novwlmwthod development, validation, and stability indicating assay method for evogliptin tartrate in pharmaceutical dosage form by RP-HPLC," JETIR, 2022, 9(2), b327-b345.
- [200]. Arpit Patel, Rakesh Patel and Priyank Yadav: "Development and validation of RP-HPLC method for estimation of evogliptin in pharmaceutical dosage form," Int. J. Pharmaceu. Res. App., 2021, 6(2), 775-781.
- [201]. Patel, K., Shah, U.A. & Patel, C.N. "Box–Behnken design-assisted optimization of RP-HPLC method for the estimation of evogliptin tartrate by analytical quality by design." Futur J Pharm Sci., 2023,9, 1-12.
- [202]. Giri Prasad Goumutchu, Venkata NadhRatnakaram and SireeshaMallad: "Ninhydrin based visible spectrophotometric determination of gemigliptin," Orient. J. Chem., 2019, 35(1), 363-369.