
Volume 9, Issue 12, December – 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24DEC455 www.ijisrt.com 290

Ai Powered Code Converter and Code

Analyser – Code AI

Girish R,

Assistant Professor, CSE Department,

SNS College of Engineering, Coimbatore

Sheerin Farjana M,

IV Year CSE,

SNS College of Engineering, Coimbatore

Jeevitha S,

IV Year CSE,

SNS College of Engineering, Coimbatore

Surya B,

IV Year CSE,

SNS College of Engineering, Coimbatore

Krishna Kumar V,

IV Year CSE,

SNS College of Engineering, Coimbatore

Abstract:- Code developers and students often face

challenges in translating code across various

programming languages. An efficient code converter is

vital to ensure accurate translations and minimize the

time spent on manual rewriting. In today’s fast-paced

development environment, the ability to seamlessly

transition code between languages enhances productivity

and streamlines workflows, enabling developers to focus

on higher-level tasks. However, many existing code

converter tools fall short in key areas. A major issue is the

production of inaccurate translations, which can

introduce bugs and functional discrepancies that hinder

development. Furthermore, these tools often lack

customization options, limiting developers' ability to

tailor conversions to specific needs. This lack of

flexibility complicates debugging, as unclear

representations of the original logic make it harder to

identify and resolve issues. This project addresses these

challenges with an AI powered code conversion tool

designed to automate translation and analysis across

multiple programming languages, including Java,

Python, and C++. This innovative solution ensures

functional equivalence by preserving the original code’s

performance and logic during the conversion process. It

incorporates a code converter for automated syntax

translation and a code analyzer that identifies

vulnerabilities, verifies logical consistency, and suggests

performance optimizations. By overcoming common

pitfalls of existing converters, this tool enhances

flexibility and usability, empowering developers and

students to work confidently with diverse programming

languages. With features like customizability and

comprehensive analysis, the tool facilitates a more

effective software development process, helping users

harness the potential of different programming

environments without compromising quality.

Keywords:- AI-Powered Code Conversion, Code Analysis,

Programming Language Translation, Automated Code

Converter, Java, Python, C++, Functional Equivalence,

Syntax Conversion, Code Optimization, Debugging, Logical

Consistency, Software Development Productivity, and

Customization.

I. INTRODUCTION

As software development evolves, developers face

challenges in maintaining code quality, enhancing

efficiency, and ensuring compatibility across programming

languages. With diverse languages, each with unique syntax

and semantics, translating code while preserving functional

integrity is complex. Manual methods, though effective at

times, are labor-intensive, prone to human error, and cause

inefficiencies. The need for a streamlined, error reducing

solution is evident. Code AI addresses these challenges by
automating code conversion and providing intelligent code

analysis. Its core lies in a code converter that enables

seamless translation between popular languages like Java,

Python, and C++. Beyond simple language conversion,

Code AI ensures functional equivalence, validating the code

through iterative compilation and comparison to preserve

performance and logic. The platform transcends basic

translation by integrating a robust code analyzer that

significantly enhances code quality and performance. It

assesses translated code against best practices, focusing on

three key areas: 1. Functionality Check ensures the code

behaves as intended, aligning with design specifications and
catching discrepancies early in the development cycle. 2.

Loophole Detection identifies inefficiencies in loops and

vulnerabilities like buffer overflows, enhancing both

performance and security. 3. Optimization Suggestions

improve runtime efficiency by analyzing algorithms, data

structures, and control flow, recommending improvements

to reduce resource consumption and enhance overall

application performance. By automating labor- intensive

tasks, Code AI saves time, mitigates human error, and

enables developers to focus on higher-level tasks like

architecture design. Its seamless integration into existing

http://www.ijisrt.com/

Volume 9, Issue 12, December – 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24DEC455 www.ijisrt.com 291

workflows enhances adoption and collaboration,

accelerating development while reducing post- deployment

bugs. Future advancements include machine learning for

detecting complex issues, support for more languages, and

real-time feedback during coding. With its integrated

approach to code conversion, analysis, and optimization.

II. LITERATURE REVIEW

A. Ms. Naziya Shaikh and Prof. Manisha Naik Gaonkar

2021, “Development of Intermediate Model for Source
to Source Conversion ISOR Journal of Computer

Engineering (IOSR JCE)” [1]

The IOSR Journal of Computer Engineering (IOSR-

JCE) launched a project in 2021 that automates source code

conversion between programming languages using a

template-based intermediate file approach. This system

significantly reduces the time, cost, and errors associated

with manual translations, facilitating software upgrades and

code reuse between languages like Java and PHP. The

project consists of two key components: Intermediate File

Generation and Mapping to the Target Language. In the first
step, the intermediate file captures the essential logic and

structure of the source code while abstracting its syntax. By

utilizing templates specific to the source language, this

component ensures accurate representation and simplifies

the subsequent conversion process. The second component

converts the intermediate file into the target language using

predefined templates that align with the target’s syntax. This

approach minimizes errors and maintains functional

integrity by focusing on semantic equivalence rather than

direct translation. Overall, the system aims to streamline

code conversion, allowing developers to concentrate on

coding logic and application design rather than tedious
manual translations. By promoting code reuse and upgrades,

this innovative solution enhances software development

practices, benefiting developers and organizations alike.

B. Eman J. Coco, Hadeel A. Osman and Niemah I. Osman

(May 2018) “JPT : A Simple Java- Python Translator

”Journal of An International Journal (CAIJ), Vol.5, No.2

[2]

The JPT project (2018), developed by Eman J. Coco

and colleagues, presents an innovative solution for

translating Java code into Python, utilizing XML as an
intermediary to streamline the code conversion process. This

project focuses on facilitating the transition for developers

by effectively handling basic programming constructs,

making it easier for Java developers to adapt to Python’s

syntax and paradigms. By providing clear insights into the

conversion process, the JPT project helps users understand

not only how the code is transformed but also the rationale

behind specific translation choices, thereby enhancing their

learning experience. One of the standout features of the JPT

project is its adaptable design. While its primary focus is on

Java-to- Python translation, the architecture is flexible

enough to accommodate future developments aimed at
translating code between other programming languages.

This adaptability addresses broader challenges in language

interconversion, which is a critical aspect of software

development in a multilanguage environment. As

programming languages continue to evolve and diversify,

tools like the JPT project become essential in bridging the

gaps between languages, promoting code reuse, and easing

the migration of legacy systems.

Ultimately, the JPT project contributes significantly to

enhancing productivity and fostering collaboration among

developers working across different programming

languages.

C. Christie Thottam and Imran Mirza (2024)”Intelligent
Python Code Analyzer [IPCA]”Journal of (IJCRT)

Volume 12, Issue 3 2024 [3]

Christie Thottam, Nigel Fernandes, Rehan Joseph, and

Teacher Imran Mirza, is an progressed device outlined to

improve Python improvement through AI driven and

context- aware code investigation. By leveraging

manufactured insights, the IPCA viably recognizes a wide

extend of coding issues, from sentence structure blunders to

potential execution bottlenecks, whereas too giving

important optimization proposals that offer assistance

designers progress the generally quality of their code. One
of the standout highlights of the IPCA is its consistent

integration with well known Python Coordinates

Advancement Situations (IDEs), making it effortlessly open

to designers in their commonplace coding situations. This

integration upgrades the client involvement, permitting for

real-time input as designers type in and alter their code. A

key component of the IPCA is the Tree Traversal

Calculation, which navigates the Unique Language structure

Tree (AST) utilizing preorder, in-order, and post-order

strategies. This intensive examination of the code

structure empowers the analyzer to perform an in-depth

appraisal of the code’s rationale and semantics. By
combining AI-driven bits of knowledge with progressed tree

traversal methods, the IPCA altogether contributes to

progressing coding hones, empowering designers to

compose more effective, viable, and error-free Python code.

D. Chongzhou Fang, Ning Miaoand others (2024)”Large

Language Models for Code Analysis: Do LLMs Really

Do Their Job?” Journal of international Journals, vol.

1, pp. 1-18, March 2024. [4]

Changzhou Tooth, Ning Miao, and their group, speaks

to a groundbreaking activity in the operation of expansive
dialect models(LLMs) for improving law examination

forms. This plan centers on building specialized datasets

acclimatized for law examination, which are key for

preparing LLMs to get it the subtleties of programming

dialects and their isolated structures. The activity thoroughly

assesses the capabilities of LLMs in insightful and assaying

both standard and obscured law, which is especially

appropriate in security- related assignments where law may

be designedly clouded to evade revelation. By conducting

nitty gritty case considers, the plan investigates how LLMs

can be connected to genuine- world scripts, surveying their

viability in relating vulnerabilities and certain
inconveniences inside the law. To accomplish this, the

plan utilizes progressed computerized devices, comparative

as Theoretical Sentence structure Trees(AST), which oil a

more profound understanding of the law’s coherent influx

http://www.ijisrt.com/

Volume 9, Issue 12, December – 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24DEC455 www.ijisrt.com 292

and structure. By utilizing LLMs nearby modern

investigation ways, the plan points to superior the delicacy

and viability of law investigation, inevitably contributing to

upgraded program security and strength in an steadily

complex representation topography.

E. Gang Fan and their teams ”Static Code Analysis in the

AI Era: An In-depth Exploration of the Concept,

Function, And Potential of Intelligent Code Analysis

Agents ” Journal of Ant Groups, China, 2023 [5]

Gang Fan and partners at Insect Gather, speaks to a
noteworthy progression in bug disclosure and program

quality confirmation by utilizing critical expansive dialect

models LLMs) like GPT- 3 and GPT- 4. This inventive

device addresses a basic challenge in computer program

improvement the recurrence of wrong cons in bug reports.

By working out the capabilities of LLMs, the ICAA has

effectively diminished wrong cons from an scaring 85 to a

more distant reasonable 66, whereas accomplishing an

passionate review rate of 60.8. The examination handle

facilitated by the ICAA is standard and user friendly. It

starts with law accommodation, where the specialist surveys
for violations and irregularities inside the codebase.

Through progressed calculations and common dialect

handling, the ICAA judgments issues successfully, outfitting

formulators with a clearer understanding of understood

issues. Once the investigation is total, the ICAA produces

point by point reports that enlighten connected issues and

offer practicable suggestions for enhancement. In spite of

the tall privileged costs related with utilizing LLMs, the

ICAA appears extraordinary promise in improving bug

disclosure and determination forms. By streamlining law

survey workflows, it points to meliorate program quality,

decrease advancement time, and contribute to the creation of
more distant vigorous and dependable operations.

F. Eric Jin and Yu Sun(2021) “ An Calculation- Versatile

Source law Engine to Computerize The summarizing

From Python To Java”Diary in AIRCC Distributing

Enterprise, USA,. [6]

Eric Jin and Yu Sun(2021) created an inventive device

that computerizes the transformation of Python law into

Java, accomplishing an enthusiastic delicacy rate with lower

than 10 violations whereas preserving the unique usefulness.

This plan is especially critical in moment’s multi- dialect
advancement landscape, as it streamlines cross language

rendering for both fledglings and prepared experts.

Working out an count approach, the apparatus successfully

interprets different Python structures closely resembling as

records, lexicons, and capacities into their Java rivals,

subsequently facilitating the move for formulators who may

be more commonplace with Python. To guarantee the tool’s

duty and adequacy, it was thoroughly approved and tried

against a extend of USACO(USA Computing Olympiad)

comes about and client- submitted law tests. This

comprehensive testing handle not as it were illustrated the

tool's capability to handle a diverse set of rendering scripts
but too given perceptivity into its qualities and verifiable

zones for advancement. stored nearby striking calculations

like Google’s GWT(which changes over Java to JavaScript)

and Facebook’s HipHop(which interprets PHP to C), this

Python- toJava engine offers a down to earth and successful

result for formulators looking to base the hole between

dialects. By streamlining the transformation handle, the

instrument improves efficiency and brings down the

blockade to passage for those modern to Java, eventually

contributing to a assist flexible and successful coding

involvement in an progressively multilingual advancement

landscape.

III. EXISTING FRAMEWORK

The existing framework of the Code AI AI- powered

Code Converter and Analyzer is planned to automate the

change of code between various programming dialects,

counting Java, Python, and C++. It points to streamline the

traditionally manual and error- prone handle of code

interpretation, diminishing improvement time and

minimizing human blunder. The framework works by

analyzing the source code, changing over it into an halfway

organize, and at that point creating the corresponding code

in the target dialect whereas maintaining utilitarian keenness.

Also, the Code Analyzer component of the framework
performs a intensive assessment of the interpreted code,

checking for best hones, effectiveness, and security. It gives

recommendations for optimizing code execution,

distinguishing bottlenecks, and identifying potential

vulnerabilities. This guarantees that the changed over code

not as it were capacities as anticipated but too meets tall

guidelines of quality and security. The integration of both

the code converter and analyzer offers a comprehensive

arrangement that empowers designers to make strides their

productivity, code quality, and by and large development

productivity.

IV. PROPOSED APPROACH

Code AI is an AI-powered application arranged to

revolutionize how originators related with source code by

improving code change between programming tongues

while improving code quality through examination and

optimization. By utilizing made bits of knowledge machine

learning, and common lingo processing (NLP), Code AI

computerize time consuming assignments, lessens botches,

updates code efficiency, and encourages moves between

programming lingos. One of Code AI’s center features is its
capacity to alter over source code from one programming

tongue to another. The change engine utilizes a template

based midway record approach, abstracting the code’s basis

and putting absent it separately from linguistic unpretentious

components. The system then maps this midway record to

the target language, ensuring semantic proportionality

instead of facilitate sentence structure elucidation.

Predefined templates for both source and target tongues help

minimize goofs. The engine ceaselessly improves its

precision utilizing machine learning, training on perpetual

datasets of code tests over multiple tongues and frameworks.

Another key incorporate is the advanced AI-driven code
analysis engine. This engine analyzes the quality of the

source code, recognizing issues such as dialect structure

botches, execution bottlenecks, security vulnerabilities, and

best sharpen violations. By combining inert code

http://www.ijisrt.com/

Volume 9, Issue 12, December – 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24DEC455 www.ijisrt.com 293

examination, pattern affirmation, and significant learning,

the engine gives vital bits of information into potential

optimizations and upgrades. Facilitates into well known

IDEs, it offers real-time input as architects compose code,

highlighting districts for improvement, prescribing

optimizations, and identifying potential security flaws.

The NLP component additionally offers human-

readable explanations for recognized issues, making a

distinction developers get it why certain coding practices

may be unsafe. Code AI not as it were identifies issues but
as well gives recommendations for courses of action. The

optimization engine prescribes ways to update performance

by murdering dreary operations, unraveling complex

capacities, or implementing more compelling calculations.

Machine learning is associated to analyze designs in coding

and recognize common execution issues, allowing the

system to propose specific optimization strategies.

Moreover, Code AI encourages industry best sharpens

through its refactoring capabilities, promoting proposition to

improve coherence, common sense, and scalability. For

case, it might recommend replacing significantly settled
circles with more efficient calculations or utilizing more

suitable data structures. Botch area and exploring are critical

components of Code AI. The AI illustrate analyzes the code

for potential runtime and logical botches that appear lead to

crashes or unexpected behavior. By leveraging known bug

patterns and machine learning desires, the system recognizes

unsafe zones in the code before execution. The examining

system makes a difference developers by prescribing fixes,

publicizing code snippets, and coordinating them through

complex debugging scenarios, engaging speedier

identification and assurance of issues. Security is a key

concern in cutting edge computer program development,

and Code AI planning advanced security examination

highlights. The AI appear channels the code for common

vulnerabilities like SQL injection, cross-site scripting

(XSS), and buffer overflows. By analyzing code plans and

using chronicled data of known vulnerabilities, the system

recognizes potential security perils. Code AI gives critical

bits of information on securing the code, endorsing best

practices, secure libraries, and frameworks, while disturbing

engineers to untrustworthy sharpens and promoting course

on how to address vulnerabilities. This ensures engineers
make secure applications and decrease the likelihood of

security breaches. The organize highlights an intuitive client

interface (UI) that planning seamlessly into common change

workflows. Open through a web-based platform, browser

developments, and IDE plugins, it ensures architects can

successfully get to the device across their favoured coding

circumstances. Users can input code, select target tongues,

and begin examination or change with irrelevant effort. The

UI as well supports multi-language functionality, openness

gadgets, and flexible compatibility, making it usable for

diverse populations, checking people with failures. To help
bolt in clients, Code AI offers educational resources such as

webinars and tips to offer help originators make strides their

coding practices. AI-based Code Converter and Analyzer

system streamlines program development by promoting

creators a competent tool for changing over, analysing, and

optimizing code. By leveraging advanced AI and machine

learning procedures, Code AI makes coding more viable,

error-free, and secure. It makes a contrast improve code

quality, decrease change time, enhance program security,

and progress way better development sharpens, inevitably

changing the way code is composed, kept up, and executed.

http://www.ijisrt.com/

Volume 9, Issue 12, December – 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24DEC455 www.ijisrt.com 294

Fig: 1 Flow Diagram

V. CODE AI - OVERVIEW

A. List of Modules and Its Working:

List of maintenance to ensure ongoing functionality,

stability, and reliability for each module. Maintenance focus

on verifying that features continue to work as expected after

updates, optimizations, or changes to the application’s

environment

 Home

 Ensure all sections and navigation links load properly

after UI or frontend updates.

 Verify links and buttons function correctly after

routing changes.

 Code Analyzer

 Confirm code analysis runs smoothly with accurate

results after backend or algorithm updates.

 Verify performance metrics display correctly post-

engine updates.

 Functionality

 Check core functions perform consistently across

devices after updates.

 Ensure compatibility with different browsers.

 Loop Holes

 Verify detection of inefficiencies and loop optimizations

after analysis engine updates.

 Optimization

 Confirm accurate optimization suggestions after

algorithm changes.

 Check display accuracy of suggestions post-backend

updates.

 Choose File

 Test file selection and upload compatibility with various

types and sizes after updates.

 Load to Analyze

 Ensure files load into the analyzer correctly and display

accurate data post-update.

 Code Converter

 Verify code conversion remains accurate and error-free

after engine updates.

http://www.ijisrt.com/

Volume 9, Issue 12, December – 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24DEC455 www.ijisrt.com 295

 Choose Language

 Confirm smooth language selection and display accuracy

after language module updates.

 Upload

 Test upload consistency and compatibility with

supported file types after backend changes.

 Choose Language – User’s Preferred Language

 Ensure language preference applies correctly across

sessions after backend or frontend changes.

 Specification

 Check accurate display of language specifications

after UI or content updates.

 Convert

 Confirm code conversion is error-free and functional

post-algorithm or syntax updates.

This checklist supports consistent performance and

user experience for Code AI’s Code Converter and

Analyser.

VI. RESULT

The execution of a code converter and analyzer

application offers noteworthy benefits to the program

advancement prepare. By computerizing code interpretation

between programming dialects, the application boosts
productivity, empowering engineers to center on higher-

level errands like plan and include advancement. This is

crucial in today’s fast- paced situations, where dexterity is

key. The application moreover upgrades exactness by

minimizing blunders common in manual interpretations,

such as sentence structure blunders and consistent

irregularities. Its vigorous calculations guarantee that

changed over code capacities accurately from the begin,

diminishing investigating time and moving forward

unwavering quality. Customization and adaptability are

center highlights, permitting designers to alter the

transformation prepare to meet particular venture needs. The
coordinates code analyzer gives experiences into code

quality, distinguishing vulnerabilities and proposing

optimizations to keep up security and execution. Supporting

numerous programming dialects, the application cultivates

collaboration among assorted groups and advances a more

effective advancement prepare. Its user- friendly interface

makes effective highlights open to both amateur and

experienced engineers without a soak learning bend.

Security is too prioritized, guaranteeing restrictive code

remains ensured amid change and examination, which

builds client certainty and complies with industry
guidelines. Generally, the code converter and analyzer

streamlines the coding handle and improves collaboration,

making it an basic instrument for engineers.

VII. CONCLUSION AND FUTURE WORK

Our Code Converter and Code Analyzer venture is

outlined to address key challenges confronted by

developers, understudies, and teachers in computer program

development. A major challenge is changing over code

between dialects like Java, Python, and C++. By robotizing

this handle, we make strides efficiency and decrease

blunders, guaranteeing functional precision in the changed

over code. This automation permits clients to center on

coding logic and usefulness, or maybe than manual
translation. The coordinates Code Analyzer evaluates code

quality, recognizing vulnerabilities and recommending

optimizations to help clients create vigorous, high-quality

software. It catches potential issues early, maintaining

security and execution standards. Existing apparatuses

frequently endure from inefficiency, moderate execution,

and restricted language back. Our arrangement leverages AI

to overcome these confinements, advertising a consistent,

flexible client involvement. The shrewdly algorithms

streamline change and give deeper experiences amid code

examination. Moving forward, we arrange to grow dialect
back and coordinated machine learning for more

sophisticated examination. Eventually, our venture points to

disentangle code transformation, allowing clients to center

on development and creativity. By progressing efficiency

through automation and shrewdly investigation, we trust to

foster a collaborative coding environment where engineers,

understudies, and teachers can thrive.

REFERENCES

[1]. P. M. N. G. Ms. Naziya Shakh, “Development of

intermediate Model for Source to Source Conversion,”
IOSR Journal of Computer Engineering IOSR - JCE,

pp. 1-5, 2021.

[2]. H. A. O. a. N. I. O. Eman J. Coco, “JPT : A Simple

Java-Python Translator,” An Internatonal Journal -

CAIJ, vol. 5, pp. 1-18, 2018.

[3]. N. F. R. J. I. M. Christie Thottam, “Intelligent Python

Code Analyzer [IPCA],” International Journal Of

Creative Research Thoughts [IJCRT], vol. 12, no. 3,

pp. 1-11, 2024.

[4]. N. M. S. S. J. L. R. Z. R. F. A. R. T. N. N. H. W. a. H.

H. Chongzhou Fang, “Large Language Models for Cde
Analysis: Do LLMs Really Do Their Job?,”

International Journals, vol. 1, pp. 1- 18, 2024.

[5]. X. X. X. Z. Y. L. P. D. Gang Fan, “Static Code

Analysis in the AI Era: An In depth Exploration of the

concept, Function, and Potential of Intellgent Code

Analysis,” Ant Groups, China, vol. 1, pp. 1-13, 2023.

[6]. E. J. a. Y. Sun, “An Algorithm-Adaptive Source Cde

Converter to Automate The Translation From Pythn To

Java,” AIRCC, pp. 1-15, 2021.

http://www.ijisrt.com/

	Abstract:- Code developers and students often face challenges in translating code across various programming languages. An efficient code converter is vital to ensure accurate translations and minimize the time spent on manual rewriting. In today’s fa...
	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. EXISTING FRAMEWORK
	IV. PROPOSED APPROACH
	Fig: 1 Flow Diagram
	 Home
	 Code Analyzer
	 Functionality
	 Loop Holes
	 Optimization
	 Choose File
	 Load to Analyze
	 Code Converter
	 Choose Language
	 Upload
	 Choose Language – User’s Preferred Language
	 Specification
	 Convert

	VI. RESULT
	VII. CONCLUSION AND FUTURE WORK

