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Abstract:- The research study involves estimation of an

input  pair of vectors (X,,<€R",y,,€R")
corresponding to an embedded space vector b, € R®
where “S ” is the embedding dimension corresponding to
the input dimension pair (M, n) .The estimation of the

vector pair involves solving a euclidean norm
minimization problem, constrained over a convex hull
generated by a finite subset of solutions of an associated
linear system of equations. The research initiative
presents the mathematical formulation of the estimation
framework and illustrates the presented methodology
through appropriately chosen numerical case study
examples.
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I INTRODUCTION

The vector embedding methodology based on the
framework of Spacer component matrices invokes
compatibility among vectors belonging to coordinate spaces
of non-compatible dimensions [6, 7, 8, 9, 10, 11, 12 and 13].
The compatibility is introduced by mapping the input

coordinate vectors into the embedding coordinate space RS,
where “ S denotes the embedding dimension corresponding

to the input dimension pair(m’ n) . The mapping into the
embedded coordinate space using the Embedding matrices

Gsxm and Won preserves the Euclidean vector norm under
the embedding transformations.

The primary objective of the present research initiative
has been to address the inverse problem corresponding to the
embedding approach based on spacer component matrices
methodology, namely, given an arbitrary vector belonging to

. b.,eR®
the embedded coordinate space, denoted as 5 ,
. . . X . eR"
estimate an input vector pair (Xnatr Yia) where ~“m<
n
and yn><1 € R

NISRT24DEC683

The estimated vector pair is obtained from solution to a
convex optimization problem [1, 3, and 17] which
essentially involves minimizing the euclidean norm over a
convex hull formed from a finite subset of solutions to an
associated linear system of equations; the linear system
associated with the estimation problem involves a Coefficient

matrix Ho which is constituted by the spacer component

matrices Pes and Quim and utilizes the orthogonal
projection approach associated with the least squares
methodology [2, 4, 5, 16, 18, 19, 20 and 21] , this results in

projection of the embedded vector bsxl onto CSp(QSX'“)
T
when M>N and onto CSPUFe) ) \ypen n>m,

The cardinality of the finite solution subset is

determined by the critical dimension: d =min(m, n), the
block-partitioning framework utilized in the present
mathematical formulation, results in a linearly independent

set and hence a full column rank matrix Zig , the optimal
0

solution vector ¥ 4 which is appropriately block

0 0
partitioned into the optimal input pair (XY ”Xl), is a

convex combination of the columns of the matrix thd
Q(d) R

which minimizes ” 2 gver the convex hull

The mathematical framework developed in the present
research study has been numerically illustrated using suitable
case study examples: the input dimension pairs considered

M=2n=3) 31y M=31=2) ¢, poth of which

the embedding dimension: S=4  The research study
concludes with a section on discussion of insights obtained
from case studies and possible directions for follow up
research.
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> Notations e “S’ denotes the Embedding Dimension , ‘U denotes the

N Sum Dimension and * d- denotes the Critical Dimension
denotes the set of all Natural numbers M _(R)
axf}

R denotes the set of all Real numbers
by Gﬂ b

P .
o R’ denotes the real coordinate space of order P

denotes the real matrix space of order ‘&’

(m, n) denotes the Input pair of dimensions

0
0
1p><1 = Opxl =
1 . eR” 1 0 ,eR” 0
L such that T ed T such that =T e
u1 Vl
u2 VZ
upxl = Vp><1 =
u v u,eR”’ v ,€R” U2V, . u,>v,
Lopd L 21 where ¢ , . therefore ~1~ "~ implies that 1 |
Vi=12,...p
Csp(A A
P(Ap) denotes the Column Space of the matrix = **#
Nsp(A A
P(A,) denotes the Null Space of the matrix = **/
i p
dim(V) denotes the dimension of the vector space \ , Where VcR
£*P denotes the Identity matrix of order * P>
T
A’ denotes the Transpose of the matrix A
X - . X . X X =X X 1=
( pxp) denote the Proper Inverse of the Invertible matrix po,I.e.( PXP) P PXP( pxp) P*p

% %
prp € Mpxp(R) (X ) € Mpxp(R) , (prp) |S

%
we also have: (XPXP) EMPXP(R) ,
)= (X)X, ) =

pxp

X . . . -
such that  #*# is symmetric and positive definite , then P

(Xpp) H(X,,) = (X,
(X, ) (X

symmetric and positive definite such that:
(X,.,)"

(X

P is symmetric and positive definite such that: PP PP PXP) PP and

b4 ¥ _
) (X ) _prp

pxp pxp

Coth(V) denotes the Convex Hull of the subset \ of R”
. v . eR’
2 denotes the Euclidean norm of the vector #4

“LICQ” is the abbreviation for Linear Independence Constraint Qualification
“p-Inverse” is the abbreviation for Pseudoinverse

Vpxl

max(a, b) denotes the maximum of the two inputs ‘a’ and ‘b’

-b
| | denotes the absolute value of the difference between the two inputs ‘a’ and ‘b’
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1. MATHEMATICAL FRAMEWORK

» Properties of the Spacer Component Matrices and Set of Pertinent Results

meN , neN and m==n, we define the following: S =max(m, n)+|m—n| , t=m+n andwe have d =min(m,n)
, therefore, we have the following implications:

e SEN gpchthat S>Mand S>N | teN gypcnthar 1> MXMN) 5ng e have d €N VMNEN
and Q. are formulated as follows:
I

mxm

- 1
—)1 1 T
( ) (s—m)xl( mxl)

The Spacer Component matrices P,

1 stm
ans = I:Inxn (E)lnxl (1(s—n)x1)T:|

» We have the Following set of Associated Results:

rank(P,..) = rank((P,.)") = rank(P, . (P,
Csp(R,,) =R" Nsp((R,..)") ={0,..}

. Csp((P.)")cR Nsp(R.) < R* here dIMCSP((R,..)")) =n ~dim(Nsp(F,;)) =s-n
rank (Q,.,) = rank ((Q,..,)") = rank ((Qy.,)" Qun) = rank (Q, Q)" ) =M
Csp((Qum)') =R™  Nsp(Qy.) =050}

CspQum) =R* Nsp((Qua) ) =R o dIM(CsP(Q,.,)) =M dim(Nsp((Q.)")) =5 —m

’

)") =rank((P,)" B.,)=n

XS xS

, therefore

X8

, therefore

» The Embedding Matrices Gsxm and Wen are formulated as follows:

_ T - T _ T
G = QSX’“[(QSX”‘) stm] therefore (Com) Goan = e , Gon (Goam) is the Orthogonal Projector onto
T T
CSp(QSX”‘) and ISXS Gsxm (GSX”‘) is the Orthogonal Projector onto NSp((stm) )

_ T T1-% T _ T
stn - (ans) [ans(ans) ] therefore (Vvsxn) stn - Ir‘|><n , stn (\Nsxn)
Csp(( ans )T ) sts _stn (\Nsxn)T

is the Orthogonal Projector onto

Nsp(P,.,)

and is the Orthogonal Projector onto

> The Relationship between Matrices P, And Q
o Case: M>N

sxm *

nxn

> (P.)' =Q,.J. . where wehave J__=| 1
(H)l(mfn)xl (1n><1)T

e Case: N>M
|

> Q.,=(P.) F, wherewehave F_=| 1 .
(E)l(nfm)xl (lmxl)

» Formulation of the Coefficient Matrix and the Associated Linear System of Equations

e The Coefficient matrix H__, is formulated as follows:

e Case: Mm>nN

sxt
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> Hs><t = [stm nxs) :I s><m sxm‘]mxn] = stm [Imxm ‘]mxn] ' therefore we have’ rank(stt) =m !

-J
Csp(H,,) =Csp(Q,.) » Nsp(H,,) =R such that Nsp(H,,) =CSIO({ | mx”}) , dim(Nsp(H,,)) =n

nxn

e Case: N>M
> Hs><t :[stm nxs) :I [( nxs) nxs) :I ( n><s n><m Inxn] ’ therefore we have’

|
rank(Hth) =N Csp(stt) Csp(( nxs) ) J Nsp(stt) R such that NSp(stt) :CSp(|: Ir;xm :|) )
dim(Nsp(H..)) =m

» The Associated Linear Systems Are Formulated As Follows:

e Case: m>n

s N s - T m n
. DaeR , We define b,, R such that A C . we have “ma € R , Yma € R ,

|:Xm><l:|
t tx1
o We define “a € R such that Yna
Xy .
H ~ Qs><m [ Im><m ‘]mxn ]|: y i| sxm (Gs><m) bsxl

e Linear system: s¢®a = Bsa hich implies =l
e Case:N>m
> b, €R®,we define b , € R® such that b W, (W, )b, wehave X, €R", y,,eR",

mel
We define @,, € R' such that @,

nx1

X
> Linear system: H_ @, , =b,, which implies ( nxs) [ e Inxn]{ } s><n(VVs><n) b,
nx1

» Formulation of Solution subsets and associated Convex Hulls

e Case: M>N
L 1
> We define the following set of vectors: Y(1),, =1, Y(2),.=| -1 ;Y3 = o | o upto
0
(n-2)x1
" O(n 3)x1

y(n) — l(n—l)xl
nx1 _(n _1)

> We define X(0),, =—J,..Y(0),., +[(Q..)" stm]’l(stm) ., for every @ e{l,2,....,n}, therefore we have the

solution vector w(8),,, € R' formulated as follows:

©) :{xw)mﬂ}{—mew)m+[<stm)Tstm]1<stm)TGsXm(GSXm)TbSX1
. Y()na Y(0) 1a

} Where we have 8 =1,2,....,Nn
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e Case: N>M

1

> We define the following set of vectors: X(1),,., =1, , X(2)na =| -1 X(3),y = , |

O(m—z)xl o
(m-3)x1

1( m-1)x1

..... upto X(M),.\ = {_(m —1)}

> We define y(0),, =—F, . X(0),, +[P..(P.s)' 1" Pn><565><1 for every 0 €{1,2,....,m} , therefore we have the solution

mx1

vector (8),,, € R' formulated as follows:

X(0)ma X(O)ma

0 — =
C()( )tXl |: y(0) nxli| |:_Fn><mx(9)mx1 + [ans (ans )T ]_l ansstn (Vvs><n )T bs><1

} Where we have 8 =1, 2,....,m

e We define Zia :[a)(l)m @(2)y4 ' ' a)(d)m] , the associated convex

hull, denoted as Q(d) , is formulated as follows:
Q(d) = R" such that Q(d) = convh(@(), ,, @(2) 4, @(d),,) , this implies

Q) ={a,, R' |, = thdwdxl1wd><l eR’, (ldxl)T Wy, =L W, >0,,}

A ~

> Properties of the matrix Zig and the associated matrix Agug

e Case: d=m

> Z — |: X(l)mxl X(2)m><1 * . X(m)mx1:| — |:Xm><m:|
o y(l)nxl y(z)nxl * - y(m)nxl Ynxm ’
Where X = [ X(2) e X(2),a . : X(m)mxl]
The vectors  X(1) .4, X(2) g5 X(M),,  forms an orthogonal basis for R" which implies that
rank(X,,.)=rank(Z,)=m
> Wedefine A =(Z, ) Z, . therefore A__eM__(R) and A___ issymmetric, positive definite
e Case: d=n
> Z — |: X(l)mxl X(2)m><1 ) . X(n)mxl:| — |:Xm><n:|
. y(l)nxl y(2)n><l : ) y(n) nx1 Ynxn '
Where Yn><n = [ y(l)nxl y(2)n><1 ) ) y(n)nxl]

The vectors Y(1) .4, Y(2) pas -
rank(Y, ) = rank(Z,.,) =
> Wedefine A =(Z, ) Z

.., Y(n),,, forms an orthogonal basis for R" which implies that

, therefore A, €M __(R) and A, __ is symmetric, positive definite

txn txn n
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> Estimation of the Optimal Input Vector Pair (X°,.,,¥°...)

0
mx1

0
nx1

e The optimal vector a)otxl 2{ } where a)otxl e R', is estimated from the solution to the following optimization

problem, denoted as Opt.PDb:

1 .
(Opt.Pb) minimize (E)(WM)T Ay qWy,  subjecttothe constraints W, , € R® |, (1,,)"W,, =1, w,, >0,

0
> W’ bea solution of Opt.Pb, the optimal vector @°,, is formulated as: @°,, ={XOM} = thdWdel , therefore, the
y nx1
vector pair (Xomxl, yonxl) is the estimated input vector pair corresponding to the Embedded space vector b, ;
> We define the Polyhedral set Q(d) as follows: Q(d) cR* such  that
Q(d) ={w,, e R* | (1,.,) " W,, =L, w,, >0,,}, therefore the optimization problem Opt.Pb can be restated as given

below:

1 . _
(Opt.Pb) minimize (E)(del)TAdxdexl , subject to the constraint: W, , € Q(d)

e The optimization problem Opt.Pb is a Convex optimization problem, the LICQ conditions are satisfied VYw,_, € Q(d)

» The Karush-Kuhn-Tucker Conditions [14, 15] Associated with the Optimization Problem Opt.Pb
I . 1 ~ T 5
- Objective function (Wq) = () (Ws.0)" Ag.aWoa = ()| ZusWa],)
Equality constraint: g(W,.,) = (1,.,) W, —1=0
Wl
W2
Inequality constraints: IT,, (W, ,)=W,, >0,, where W, =|. |, w,,eR’
L Wo |
e Lagrange parameter associated with the equality constraint: 2z , where 1 € R
™
m,
Lagrange parameters associated with the inequality constraints: 77,,77,,....,774 ~ we define 77, , =1 . , My € R
L7

e The Lagrange function associated with the problem, denoted as ®(W, ., £,7,,) . is formulated as following:

OWy,s £4,774,0) = 2 (Wypy) — 29 (W) — (77dx1)T Ty, (Wy,,) which implies that

1 ~
®(de1’ H, 77dx1) = (E)(del)T AWy — /u((]'dxl)T Wi -1)- (77dx1)T Wi

e The Karush-Kuhn-Tucker conditions associated with Opt.Pb are the following:
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B3

1

P3><4 =

Q4><2 =

NI, NP

5x4

60
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Numerical Case Studies

’ G4><2

;
24

1
31

-14 -14
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=(

Dual feasibility condition: 774, =0,
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Stationarity condition: A, W, = 2y, +77,4
Primal feasibility condition: (1,,)"W,,, =1, W,, >0,

Complimentary slackness condition: 77,w; = 0 vj=12,...,d

The numerical computations are performed using the Scilab 5.4.1 computational platform
The Convex Quadratic Programming problem formulations are solved using the Linear Quadratic Programming built-in Solver:

» m=2,n=3 , therefore S=4, t=5 and d =2

I 4+J3 -2+ —2+«/§_
W= (| 2V 3 2l ,F32=(1)§ ;
T8 2443 2443 4+B| T 2 11
B BB
1442 1-2] 6 0 6 0 0
1 |1-v2 1442 1./0 6 0 6 0
ﬁ)l 1 'H4><5=(€)3 30 0 6
1 1 3 3 2 2 2
9 9
9 9
-14 6 | Where H,, isthep-Inverseof H,
-14 6
46 6 |

A

We have b, , =W, ,\W, ,)"'b,, and @, =H,b,, where @, is the least Euclidean norm solution

o Example 1

1
1 _ _ -
.= , we have the following set of associated results: b, , =
X. l X
1

NISRT24DEC683
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1
1
L and Zg, =
1

O O O - B
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Therefore: o
9
1.7 1 ° 1.(9 1 °
o W, = (5){2} L', = (5) 0 | which implies x°,, = (5){5:| and y°,, 2(5) 4
4 2
2
3]
1 > 6 14
o W, = (g) ; , we have (”a_)le 2)2 = g < (Ha)om 2)2 = 3
_2 -
o Example 2
"3 37
1 4 s -3
-1 : : . L2| 5 1
b,, = nE we have the following set of associated results: b, , = (5) | Z,= (5) 1 1
1 0 >
-5 -2
Therefore: -
9
1,[2 1|7 1[9 | °
o W, = (5) {7} WO (5) 3 | whichimplies X’ = (5) {_5} and y°,, = (5) -1
-1 -8
-8
-3
1|7 5 20
o W5, = (g) i , we have (||a_)5><1 2)2 = § < (Ha)05><1 2)2 = E
__4 -
e Example 3
"6 6
1 7 6
0 : : - AL 1
b, = ol we have the following set of associated results: b, , = (E) it Zs,= (E) 1 1
-5
1 3
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Therefore:

1
o Wole = (%) |:J , a)05><1 = (%)

o Example 4

b4><l =
-1

Therefore:

% m=3,n=2

NISRT24DEC683

F337

3

, we have (|,

3

N -1

o’ =(2)] -1
5x1 (3)

0

__2_

, wehave (|@s,
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1
which implies X°,, {J and Y’ = (%) 1

2)2 = g_g < (Ha)OSXl 2)2 =

!
6

~ 1.|-
, we have the following set of associated results: b, , = (5)

2
1
1
0

3
-1

- 1
’ Z =\z
5x2 (3)

1

-2

which implies x°, , = (%){ } and y°,, = (%)

N

,therefore S=4, t=5 and d =2
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L1 1442 1-42]
1 0 I = 2 0
2 2 1 |1-v2 1+42 1
P2x4: ’ W4x2 :(_) ’ ‘]3x2:(_) 0 2 ’
o 1 L1 2|1 ! “l1 1
2 2 1 1 |
1 0 O
4+3 —2+V3 -2+
0, = 0 1 0 G _(1) 2+J3  4+3 2443
v 0 o0 1 T8 248 2443 444
3 3 3
111 3 B B
L 3 3]
[ 31 1 -14 6 |
6 0 0 6 O
1 31 -14 6
H (1)O 6 0 060 H (1) 14 -14 46 6 | Where H,, is th [ f
=(— =(—)| — — ere IS the -Inverse o
»= N0 0 6 3 3 54 = 60 5x4 p
24 -6 9 9
2 2 2 3 3
| 6 24 9 9 |
H4><5

We have b,, =G, ,(G,;)'b,, and @,, =H,b,, where @,, isthe least Euclidean norm solution

e Example 1
"0 o
1 1
1 1 0 2
.= 1 , We have the following set of associated results: 64X1= 1 and stz =/ 0 1
1 1
1 1 1 1
Therefore: o i i
0
1,|7 1 ) 1 ° 1,9
o w°2x1=(§){2} 0, (5) S which implies Xosxl=(§) 421 and y°2x1:(§){5}
_5_
5]
1 ? 6 14
o By =(3) 2 pwehave (|4],)" = =< (@'sa] ) =
_3_
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e Example 2
11
1 4 |
-5 1
-1 _ _ ~ 1,| -2 1
b,,= 1l we have the following set of associated results: b, , = (5) 5 52 = (g) -5 -2
3 3
1 0
[ 3 3]
Therefore:
"3
R 1] 9
o W, ( ) @’, =(=)| =8 | whichimplies X°,, =(=)| =1| and y°,, =(l)
9 9 91 -5
9 -8
__5 -
e
R 5 20
o W5, = (g) —4 |, we have (||a_)5><1 2)2 = § < (Ha)05><1 2)2 = E
3
__3 -
e Example 3
F 1 1]
1 7
-5 7
0 1,11 1
b,, = ol we have the following set of associated results: b4><l (6) A By = (E) -5 1
6 6
1 3
Therefore: o
1
1 0 1
o W, == ) o’ = (E) ~2 | which implies X, = (= ) 1 |andy,, = 0
6 -2
- 0 -
37
1 ! 43 7
o E’snz(&) -8 | , we have (”a_)m 2)2 60 <(H Bxl )2 :g
33
(- 3 -l
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e Example 4
1
b,, = , we have the following set of associated results: 64X1
-1
Therefore:
-1
1 0
o W, = ){ } °5X1:(§) —2 | which implies X%, , =
3
__1 -
F 5
1|7 5
o Wy =(=)|-4 | ,wehave (|o == < (|
0= (35) (135],)" = 35 < (@’s.
3
__3 -

1. DISCUSSION AND CONCLUDING REMARKS

The least euclidean norm solution to the linear system

HSXta) bSXl |S '[Xl HtXSbSXl Where HtXS |S the p_

inverse of the matrix HSX‘ .Nevertheless the convex hull

Q(d) , Which is the feasible set of the associated
optimization problem , may not necessarily contain the p-

inverse  based solution  point 1 and hence

D, <l Vo : :
” L2 B l2 ,in the numerical case

tx1 € Q(d)
study examples , we observe strict inequality to hold for all
the considered example cases.

The projection of the wvector bsxl , denoted as
leECSp(H

A

Sxt) , determines the matrix thd and hence

the convex hull (d) , therefore variations in choice of the
complementary pair of Projection matrices

o lovs = Zss) Csp(Z,.;) =Csp(H,,,)

SxS 7 7 sxs
" s
allows for choices of different by for a given by, €R
this approach allows for generalizing the mathematlcal
framework developed in the present research initiative to the
situation involving oblique decomposition of the embedded

b, , eR®
space vector s .

where

NISRT24DEC683
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) -1 -1
1.|-1 L2
=( , 2o, =(3)] -4 -1
(3) —l 5x2 (3)
0 3 3
- 3 _3_

-1
() andyle ()|: :|
2

5
2—_
)_3

In conclusion, it can be emphasized that the presented
mathematical framework allows for a constrained
optimization approach to estimate an input vector pair from
an embedded space vector element under the framework
based on the spacer matrices and related matrix components.
The approach presented in the research can be appropriately
modified, as required, to handle estimation issues pertaining
to the associated regularized problems. Research studies
along these lines would be addressed through follow up
studies.
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