
Volume 9, Issue 2, February 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24FEB795 www.ijisrt.com 723

Exploring the Design and Development of

Cloud-Native Applications

(Area of Focus: Cloud-Native Applications)

Richard Karegeya1; Dr. Wilson Musoni2 (PhD)
Masters of Science with honors in Information Technology, at the University of Kigali, Rwanda

Abstract:- Cloud-native application development is a

paradigm that embraces the principles of scalability,

elasticity, resilience, and agility to harness the full

potential of cloud platforms. Cloud-native applications

are designed to take advantage of the cloud computing

model, which offers a number of benefits, such as

scalability, elasticity, and availability. This thesis

investigates the design and development of cloud-native

applications, with a focus on the following topics: The

principles of cloud-native design, the use of microservices

in cloud-native applications, the development of cloud-

native applications using containerization, and The

deployment. The thesis then presents a case study of the

development of a cloud-native application. Cloud-native

applications offer a number of benefits over traditional

monolithic applications. They are more scalable,

adaptable, and evolvable. They are also easier to deploy

and manage. Data will be gathered using a physical

survey which will target different store software

developers, cloud architects, and IT managers of the

Ministry of Justice through questionnaires. Overall, this

thesis aims to contribute to the growing of knowledge on

cloud-native application development. Here are some of

the key points from the abstract: Cloud-native

applications are designed to be scalable, elastic, resilient,

and agile. They are made up of small, independent

services, which makes them easier to deploy and manage.

Cloud-native applications can be developed using

containerization, which makes them portable and easy to

deploy across different cloud platforms. The thesis will

investigate the design and development of cloud-native

applications, as well as the benefits they offer over

traditional monolithic applications. The thesis will also

present a case study of the development of a cloud-native

application.

I. INTRODUCTION

Cloud computing is on-demand access, via the internet,

to computing resources—applications, servers (physical

servers and virtual servers), data storage, development tools,

networking capabilities, and more—hosted at a remote data

center managed by a cloud services provider (or CSP).

The analysis has shown that cloud computing is

replacing traditional outsourcing and premise-based data

centers for software applications and service delivery.

With the rise of cloud computing, there has been a

paradigm shift in how applications are designed and

developed. Cloud-native applications are applications that are

designed specifically for cloud environments, taking

advantage of cloud technologies to improve scalability,

resilience, and agility.

Cloud native applications are software applications that

are designed and built specifically to run on cloud
infrastructure, such as public, private, or hybrid cloud

environments. These applications are developed using a set

of principles and practices that prioritize scalability,

resilience, and flexibility.

 This Study will Focus on Containers, Micro-Services, and

Serverless Architectures as a Cloud Native Applications.

 Containers: Containers are a lightweight way to package

and deploy applications, along with their dependencies

and configurations, in an isolated environment.
Containers use a shared operating system kernel, but each

container has its own file system, network, and resources.

Containers enable faster deployment, portability,

scalability, and consistency across different

environments.

 Microservices are an architectural style that structures an

application as a collection of small, loosely coupled, and

independently deployable services. Each service

represents a specific business capability and can be

developed, deployed, and scaled independently of other

services. Micro services communicate with each other
through well-defined APIs, typically over lightweight

protocols such as HTTP or messaging queues. This

approach enables teams to work on different services

concurrently, promotes scalability, and improves fault

tolerance. micro services architecture facilitates agile

development, continuous deployment, and allows

organizations to evolve their applications more rapidly.

 Serverless Architecture, also known as Function-as-a-

Service (FaaS), is a cloud computing model where

developers focus solely on writing and deploying

individual functions or code snippets, without managing

the underlying infrastructure. In a serverless setup,
developers write functions that are triggered by specific

events or requests, such as HTTP requests, database

changes, or timers. The cloud provider takes care of

automatically scaling the infrastructure to execute the

functions, and developers are billed based on the actual

http://www.ijisrt.com/

Volume 9, Issue 2, February 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24FEB795 www.ijisrt.com 724

usage of resources. Serverless architectures promote a

pay-as-you-go model, improve resource efficiency, and

abstract away infrastructure management tasks, allowing

developers to focus on writing business logic rather than

managing servers.

 Background of Cloud-Native Applications (CNA)

Cloud native is a term that is invoked often but seldom
defined beyond saying ``we built it in the cloud’’ as opposed

to “on-prem”. Although there is no single set of rules for

designing cloud applications, there is a growing consensus on

some key ideas and informal design patterns that have been

used successfully in many applications.

Cloud native applications have emerged as a result of

the growing trend towards cloud computing, which began in

the early 2000s. This trend was fueled by the need for

businesses to leverage the advantages of cloud computing,

such as scalability, flexibility, and cost efficiency. Cloud

computing allowed businesses to move away from traditional
on-premises IT infrastructure, which was costly and

inflexible.

The term "cloud native" was first coined in 2010 by

Adrian Cockcroft, then a cloud architect at Netflix. It was

used to describe applications that were designed specifically

to run in the cloud, taking advantage of the cloud's unique

features and capabilities. These applications were built using

cloud-native technologies and architectures, which were

optimized for the cloud environment.

There are various cloud native technologies which are

Containers, microservices, and serverless The emergence of

cloud-native technologies, such as containers and

microservices, has played a significant role in the

development of cloud-native applications. Containers allow

developers to package their applications into self-contained

units, which can be easily deployed and scaled in the cloud.

Microservices, on the other hand, break down applications

into smaller, modular components, which can be developed

and deployed independently.

In this introduction, we will describe these cloud native

concepts and illustrate them with examples. We will explore

the technical trends that are shaping the future of cloud

applications. We will start by discussing the basic properties

that many cloud native applications have in common. Once
we have identified the basic properties of cloud native

applications, we can then describe how these properties are

achieved through the use of technical design patterns.

II. METHODOLOGY

A. Data Collection Methods and Instruments/ Tools

In this study, the researcher engaged in data collection

through specified procedures, employing a mixed-method

approach encompassing both qualitative and quantitative

methodologies, while examining secondary data sources.

B. Data Analysis

The process of discovering solutions through

investigation and interpretation is known as data analysis.

Understanding survey and administrative source results and

presenting data information require data analysis. Data

analysis is anticipated to provide light on the subject of the

research and respondent's perceptions as well as to increase

reader's understanding of the subject and pique their interest

in this position of the research

C. Research Design
This research design will explore the creation and

design of cloud-native applications. The research will focus

on the key principles of cloud-native design, microservices

and containerization, benefits of cloud-native applications,

challenges of developing and deploying cloud-native

applications, as well as the best practices for cloud-native

application development.

 Process of the Proposed CNA Flowchart Algorithm

Fig 1 Cloud-Native Application Flowchart Algorithm

http://www.ijisrt.com/

Volume 9, Issue 2, February 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24FEB795 www.ijisrt.com 725

 Conceptual Framework

Fig 2 Conceptual Framework

 Cloud-Native Design

Fig 3 Cloud-Native Design

http://www.ijisrt.com/

Volume 9, Issue 2, February 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24FEB795 www.ijisrt.com 726

 Traditional Monolithic Design

Fig 4 Traditional Monolithic Design

 Objective:

The study aims to investigate the current state of cloud-

native application development in Rwanda, including the

level of adoption, the challenges faced, and the growth

opportunities. The study will also examine the advantages of

utilizing cloud-native technologies in application

development, such as scalability, agility, and cost-
effectiveness.

 Data Collection:

Is the procedure of acquiring information using

predetermined methodologies to respond to the study's

predetermined research topic, in this study the researcher will

use interviews and questionnaires as the research instruments

and examine secondary data. it has been stated that

approaching people with questions is an obvious way to

gather quantitative as well as qualitative data from them. The

survey method is used in this study to gather data.

(Walliman, 2011).

 Data Preprocessing:

The University of Kigali officers will offer a

recommendation letter that will authorize the researcher to go

for data gathering. Self-administered questionnaires will be

delivered to the sampled elements for Ministry of Justice.

 Ethical Considerations:

Address ethical considerations such as data privacy,

security and trust, algorithmic bias and fairness, and

intellectual property and open source.

 Data Privacy:

Cloud-native applications often handle large amounts of

user data. Ethical considerations arise regarding the

collection, storage, processing, and sharing of personal and

sensitive information. It is essential to ensure appropriate

data privacy practices, consent mechanisms, and compliance

with relevant data protection regulations.

 Security and Trust:

Cloud-native applications must prioritize robust security

measures to protect user data and systems from unauthorized

access, breaches, and cyberattacks. Ethical considerations

involve implementing strong encryption, secure access

controls, regular security audits, and keeping up with

evolving security threats to maintain user trust.

 Algorithmic Bias and Fairness:

Cloud-native applications that involve machine learning

or data-driven algorithms should address concerns related to

algorithmic bias and fairness. Ethical considerations involve

ensuring fairness in decision-making, avoiding

discrimination, and mitigating biases in data collection,

training, and model development processes.

 Intellectual Property and Open Source:

Ethical considerations arise regarding intellectual

property rights and the use of open-source software in cloud-
native development. Organizations should respect licensing

agreements, give proper attribution, and contribute back to

the open-source community when appropriate.

III. DATA ANALYSIS AND PRESENTATION OF

FINDINGS

 Cloud-Native Application

A cloud-native application is a computer program is

designed to be deployed and operated in the cloud. It is built

using cloud-native technologies, such as microservices,
containers, and DevOps practices.

 Key Characteristics of Cloud-Native Applications

Cloud-native applications have features such as;

 Microservices: Cloud native applications are developed

using microservices, which are small, independent

services that communicate with each other using APIs.

This makes the applications more modular and scalable.

http://www.ijisrt.com/

Volume 9, Issue 2, February 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24FEB795 www.ijisrt.com 727

 Containers: Containers are lightweight virtualization

technology that packages an application and all its

interdependencies into a single unit. This makes it easy to

deploy and manage cloud computing applications.

 DevOps: DevOps is a set of practices that combines

software development (Dev) and IT operations (Ops).

This ensures that applications are developed and deployed

in a way that is efficient, reliable, and secure.

 Auto-scaling: Cloud native apps can be scaled up or down

automatically based on demand. This helps to ensure that

the applications are always running at peak efficiency.

 Continuous delivery: Cloud native applications are

typically deployed using continuous delivery, which is a

process that automates the delivery of new code to

production. This helps to ensure that applications are

always up-to-date and secure.

 This is the demonstration presentation of development

cloud native application; researcher used various tools

which includes;

 Visual studio Code: VS Code, short for Visual Studio

Code, is a popular source-code editor developed by

Microsoft. It is highly extensible, lightweight, and

supports a wide range of programming languages and

frameworks

 XAMPP is a popular open-source software package that

allows you to establish a local web server environment on

your Windows 10 machine. It includes Apache, MySQL,

PHP, and Perl, which are essential components for

running a web server and developing web applications.

 PHP: a shorthand for "PHP: Hypertext Preprocessor" a
popular open-source scripting language used for web

development. For building dynamic web pages and

applications, it is frequently utilized.

 Postman: A well-liked platform for teamwork in API

development is Postman. It makes it easier for developers

to efficiently design, test, and document APIs. With

Postman, you can make API requests, view responses,

and analyze API performance all in one place.

 Docker Desktop: is a tool It enables you to run Docker

containers on your local machine. It provides an easy-to-

use interface for managing Docker images, containers,

and networks.

 Git Bash: is a command-line interface (CLI) tool that

provides a Unix-like environment on Windows systems.

It enables the use of Git commands and other Unix

utilities using the command line

 Different Containers and Images Created

Fig 5 Docker Desktop

http://www.ijisrt.com/

Volume 9, Issue 2, February 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24FEB795 www.ijisrt.com 728

IV. CONCLUSIONS AND DISCUSSIONS ON THE

FINDINGS

 Summary

The exploration of creating and creating cloud-native

software has revealed a transformative contemporary

software architecture strategy. With the help of cloud-native

apps, businesses can increase the productivity, adaptability,
and resilience of their software systems while taking full

advantage of the dynamic and scalable nature of cloud

environments. This exploration delved into key principles

such as microservices architecture, containerization, and

DevOps practices, highlighting their role in facilitating rapid

development, Continuous integration and delivery are both

practices. The adoption of cloud-native strategies requires a

fundamental shift in mindset, focusing on modularity,

automation, and seamless scaling. As organizations continue

to embrace cloud-native paradigms, they are better positioned

to meet the evolving demands of digital business landscapes

and deliver innovative, reliable, and efficient applications.

 Conclusion:

Evolution of the design and cloud-native applications

represents a pivotal advancement in software engineering.

This exploration underscores the significance of decoupling

monolithic applications into microservices, encapsulated

within containers. This architecture not only enables

independent development and scaling of components but also

enhances fault tolerance through isolation. Embracing

DevOps practices further accelerates the development

lifecycle, enabling frequent releases and continuous
improvement. While transitioning to cloud-native approaches

demands careful planning, including consideration for

security, monitoring, and resource management, the benefits

in terms of agility and scalability are substantial. As

organizations worldwide continue to migrate their

applications to the cloud and adopt cloud-native strategies,

the software landscape is poised for a paradigm shift.

REFERENCES

[1]. Andrikopoulos, V., Strauch, S., Fehling, C., and

Leymann, F. (2012). CAP-Oriented Design for Cloud-
Native Applications. In Proceedings of the 2nd

International Conference on Cloud Computing and

Service Science, CLOSER 2012, 18-21 April 2012,

Porto, Portugal, pages 365–374. SciTePress

[2]. Barr, J. (2010). The history of cloud computing.

O'Reilly Radar. Retrieved from

https://www.oreilly.com/radar/the-history-of-cloud-

computing/

[3]. Buyya, R., Vecchiola, C., & Selvi, S. T. (2013).

Mastering cloud computing. McGraw-Hill Education.

[4]. Blog, Elastisys Tech (2022-05-16). "Cloud Native:
why bother, its benefits, and its greatest pitfall".

elastisys. Retrieved 2022-11-08.

[5]. Brunner, S., Blochlinger, M., Toffetti, G., Spillner, J.,

and Bohnert, T. M. (2016). Experimental Evaluation

of the Cloud-Native Application Design. In

Proceedings – 2015 IEEE/ACM 8.

[6]. Pahl, "Containerization and the PaaS Cloud," in IEEE

Cloud Computing, vol. 2, no. 3, pp. 24-31, May-June

2015, doi: 10.1109/MCC.2015.51.

[7]. Codallo, Ana. "Council Post: Building A Tech Stack

For Wartime Economy: Six Things I Learned".

Forbes. Retrieved 2022-11-08.

[8]. Cockcroft, A. (2014, December). DockerCon Europe:

Adrian Cockcroft in regards to Microservices.
Retrievedfromthenewstack.io: https://thenewstack.io/

dockerconeurope-adrian-cockcroft-on-the-state-of-

microservices/

[9]. Cloud Native Foundation, Frequently Asked

Questions, https://www.cncf.io/about/faq/

[10]. Gannon, R. Barga and N. Sundaresan, "Cloud-Native

Applications," in IEEE Cloud Computing, vol. 4, no.

5, pp. 16-21, September/October 2017, doi:

10.1109/MCC.2017.4250939.

[11]. CNCF Cloud Native Definition v1.0".

GitHub(CNCF). 2018-06-11. Retrieved 2020-05-15.

[12]. Dragoni, N., Giallorenzo, S., Lafuente, A. L.,
Mazzara, M., Montesi, F., Mustafin, R., & Safina, L.

(2016, June 13). Microservices: yesterday, today, and

tomorrow. Retrieved from arxiv.org:

https://arxiv.org/pdf/1606.04036v1.pdf

[13]. Gannon, Dennis & Barga, Roger & Sundaresan, Neel.

(2017). CloudNative Applications. IEEE Cloud

Computing. 4. 16-21. 10.1109/MCC.2017.4250939.

[14]. https://mars.gmu.edu/bitstream/handle/1920/11608/ha

ssan_cloud.pdf?sequence=1

[15]. https://www.geeksforgeeks.org/architecture-of-cloud-

computing/amp/
[16]. https://www.devteam.space/blog/microservice-

architecture-examples-and-diagram/

[17]. https://www.ridge.co/blog/docker-vs-kubernetes-

whats-the-difference/

[18]. https://www.atlassian.com/microservices/microservice

s-architecture/microservices-vs

monolith#:~:text=A%20monolithic%20architecture%

20is%20a,monolith%20architecture%20for%20softwa

re%20design.

[19]. https://www.sciencedirect.com/science/article/abs/pii/

S0164121217300018

[20]. https://www.ijert.org/research/impact-of-
implementing-cloud-native-applications-in-

replacement-to-on-premise-applications-

IJERTV9IS061021.pdf

[21]. https://www.commvault.com/blogs/cloud-native-

applications-and-containerization

[22]. https://www.commvault.com/blogs/cloud-native-

applications-and-

containerization#:~:text=With%20containers%2C%20

all%20the%20dependencies,container%20making%20

them%20more%20predictable.

[23]. https://www.techtarget.com/searchcloudcomputing/de
finition/cloud-native-application

[24]. https://openliberty.io/docs/latest/cloud-native-

microservices.html#:~:text=Cloud%2Dnative%20appl

ications%20adapt%20microservice,scale%2C%20and

%20upgrade%20the%20microservices.

[25]. International Utility and Cloud Computing

Conference, UCC 2015, pages 488–493

http://www.ijisrt.com/
https://thenewstack.io/

Volume 9, Issue 2, February 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24FEB795 www.ijisrt.com 729

[26]. Kratzke, N. and Peinl, R. (2016). ClouNS-a Cloud-

Native Application Reference Model for Enterprise

Architects. In Proceedings – IEEE International

Enterprise Distributed Object Computing Workshop,

EDOCW, volume 2016-Septe, pages 198–207. IEEE

[27]. Kratzke, N. and Quint, P.-C. (2017). Understanding

cloud-native applications after 10 years of cloud

computing – A systematic mapping study. Journal of
Systems and Software, 126:1–16.

http://www.ijisrt.com/

	A. Data Collection Methods and Instruments/ Tools

