
Volume 9, Issue 7, July – 2024                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                  https://doi.org/10.38124/ijisrt/IJISRT24JUL073 

 

 

IJISRT24JUL073                                                               www.ijisrt.com                                                                                        83  

Prediction of Daily Climate Using Long Short-Term 

Memory (LSTM) Model 
 

 

Jinxin Xu1* 

Department of Cox Business School, Southern Methodist 

University, Dallas, TX, USA 

 

Zhuoyue Wang2 

Department of Electrical Engineering and Computer 

Sciences, University of California, Berkeley,  

Berkeley, CA, USA 

 

 
Xinjin Li3 

Department of Software Engineering, Columbia University,  

New York, NY, USA 

Zichao Li4 

Canoakbit Alliance Inc., Oakville, Canada 

 

 

Zhenglin Li5 

Department of Software Engineering, Texas A&M University,  

College Station, TX, USA 

 

Corresponding Author:- Jinxin Xu1* 

 
 

Abstract:- Climate prediction plays a vital role in various 

sectors, including agriculture, disaster management, and 

urban planning. Traditional methods for climate 

forecasting often rely on complex physical models, which 

require substantial computational resources and may not 

accurately capture local weather patterns. This study 

explores the potential of Long Short-Term Memory 

(LSTM) networks, a type of recurrent neural network, for 

predicting daily climate variables such as temperature, 

precipitation, and humidity. Utilizing historical climate 

data from the city of Delhi, we developed an LSTM model 

to forecast short-term climate trends. The model consists 

of two LSTM layers followed by three Dense layers and is 

compiled with the Adam optimizer, mean squared error 

loss, and mean absolute error as a metric. Our results 

demonstrate the model's capability to capture temporal 

dependencies in climate data, achieving a satisfactory 

level of accuracy in temperature forecasting. This 

research underscores the potential of machine learning 

techniques, particularly LSTM networks, in enhancing 

climate prediction and contributing to more informed 

decision-making in weather-sensitive sectors. 

 

Keywords:- Machine Learning, Prediction Model, Time 

Series Forecasting, Long Short-Term Memory. 

 

I. INTRODUCTION 

 

Climate prediction is a critical area of research that has 

far-reaching implications for agriculture, disaster 

management, and urban planning. The ability to forecast 

weather conditions accurately is vital for farmers to plan their 

crop cycles, for disaster response teams to prepare for 
extreme weather events, and for city planners to design 

infrastructure that can withstand climatic changes. 

Traditional methods for climate forecasting rely heavily on 

complex physical models that simulate atmospheric and 

oceanic processes. These models incorporate various factors 

such as wind patterns, ocean currents, and solar radiation to 

predict future weather conditions. 

 

While traditional models have been instrumental in 

advancing our understanding of climate dynamics, they often 

require substantial computational resources and may struggle 

to capture the intricacies of local weather patterns. The 

complexity of these models lies in their attempt to represent 

the Earth's climate system with a high degree of precision. 
However, this complexity comes at a cost. High-performance 

computing environments are necessary to run these 

simulations, which can be both time-consuming and 

expensive. Additionally, the granularity of these models 

might not always be sufficient to provide accurate predictions 

at a local level, where microclimates can significantly deviate 

from broader regional patterns. 

 

In recent years, machine learning techniques, 

particularly deep learning, have emerged as powerful tools 

for modeling nonlinear and complex relationships in various 
fields, including climate science. Machine learning models 

can process vast amounts of data and identify patterns that 

might be missed by traditional methods. Among these 

techniques, Long Short-Term Memory (LSTM) networks, a 

type of recurrent neural network, have shown great promise 

in capturing temporal dependencies in time series data, 

making them well-suited for climate prediction tasks. LSTMs 

are designed to remember long-term dependencies and are 

particularly effective in scenarios where past events 

significantly influence future outcomes, such as weather 

prediction. 
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LSTM networks offer several advantages over 

traditional climate models. Firstly, they can handle large 

datasets efficiently, learning from extensive historical climate 

data to make accurate predictions. Unlike physical models 

that require explicit programming of each climate factor, 

LSTM networks learn directly from the data, identifying 

complex patterns and relationships autonomously. This data-

driven approach allows for more flexible and potentially 
more accurate climate predictions, especially when dealing 

with the chaotic and nonlinear nature of weather systems. 

 

This paper aims to explore the potential of LSTM 

networks in predicting daily climate variables such as 

temperature, precipitation, and humidity. By leveraging 

historical climate data, we seek to develop a model that can 

accurately forecast short-term climate trends. The 

methodology involves collecting and preprocessing historical 

weather data, training the LSTM network on this data, and 

then validating the model's predictions against actual 
observations. Key factors in this process include selecting 

appropriate features (such as past temperature, humidity, and 

atmospheric pressure), tuning the network architecture 

(including the number of layers and neurons), and optimizing 

the training process to avoid overfitting. 

 

Accurate climate prediction has significant implications 

for various weather-sensitive sectors. In agriculture, better 

forecasts can help farmers optimize planting schedules, 

irrigation practices, and pest control measures, ultimately 

leading to higher yields and reduced losses. In disaster 

management, reliable weather predictions enable authorities 
to issue timely warnings and prepare for events such as 

hurricanes, floods, and heatwaves, thereby reducing the 

potential for human and economic losses. For urban planning, 

accurate climate models inform the design of resilient 

infrastructure, ensuring that buildings, roads, and public 

services can withstand future climatic changes. 

 

The exploration of LSTM networks for climate 

prediction is a promising frontier in climate science. By 

harnessing the power of deep learning, we can develop 

models that provide more accurate and timely weather 
forecasts, supporting better decision-making across various 

sectors. Future research will focus on refining these models, 

incorporating additional data sources, and extending the 

prediction horizon to provide even more valuable insights 

into our changing climate. 

 

II. RELATED WORK 

 

These papers collectively provide a strong foundation 

for understanding the advancements in using LSTM networks 

for climate prediction. They cover various aspects of model 

development, optimization, and application, offering 
valuable insights into the effectiveness of deep learning 

techniques in this field. 

 

 

 

 

 

 Climate Time Series Prediction with Deep Learning and 

LSTM 

This paper presents the application of LSTM networks 

to climate time series prediction, highlighting their ability to 

capture complex climate patterns and improve prediction 

accuracy compared to traditional methods. It provides a 

detailed comparison of different deep learning approaches 

and their effectiveness in climate modeling [1-3].  
 

 TD-LSTM: Temporal Dependence-Based LSTM 

Networks for Marine Temperature Prediction 

This study proposes a new method for predicting sea 

surface temperature using Temporal Dependence-Based 

LSTM Networks (TD-LSTM). The model is evaluated using 

Argo data, demonstrating its effectiveness in capturing 

temporal dependencies and improving prediction accuracy 

across various depths and regions [4-5]. 

 
 A Sequence-to-Sequence Approach for Remaining Useful 

Lifetime Estimation Using Attention-Augmented 

Bidirectional LSTM 

This paper [7-10] proposed a sequence-to-sequence 

approach for predicting the remaining useful lifetime of 

equipment using attention-augmented bidirectional LSTM 

networks. While the focus was not directly on climate 

prediction, the methods and findings regarding temporal 

sequence modeling and attention mechanisms are highly 

relevant to enhancing LSTM-based climate models. 

 

III. METHODOLOGY 

 
A. Data Collection and Preprocessing 

The study utilizes historical temperature data collected 

from Daily climate data in the city of Delhi. The dataset 

comprises daily temperature readings spanning from 2013 to 

2017. To prepare the data for LSTM modeling, the following 

preprocessing steps were undertaken: 

 

 Data Cleaning: Missing or erroneous temperature 

readings were identified and addressed through 

imputation or removal. 

 Normalization: The temperature data were normalized to 
a specific range (e.g., 0 to 1) to enhance the model's 

convergence during training. 

 Sequence Generation: The data were transformed into 

sequences of fixed lengths to capture temporal 

dependencies. Each sequence consists of a set of 

consecutive daily temperatures as input and the 

temperature of the following day as the target output. 

 

B. LSTM Model Architecture 

The LSTM model employed in this study is designed to 

capture the temporal patterns in temperature data. The 
architecture comprises the following layers: 
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 Input Layer: Accepts sequences of normalized 

temperature readings. The input shape is determined by 

the number of time steps and the number of features. 

 LSTM Layer 1: The first LSTM layer has 50 units and 

returns sequences to allow the subsequent LSTM layer to 

receive sequences of inputs. This layer is responsible for 

capturing the short-term dependencies in the data. 

 LSTM Layer 2: The second LSTM layer has 64 units and 
does not return sequences, preparing the data for the dense 

layers that follow. This layer aims to capture longer-term 

dependencies. 

 Dense Layer 1: A fully connected layer with 32 neurons, 

introducing additional complexity and non-linearity to the 

model. 

 Dense Layer 2: Another fully connected layer, this time 

with 16 neurons, further processing the learned features. 

 Output Layer: A final dense layer with a number of 

units, which corresponds to the number of features in the 

output (in this case, the predicted temperature). 
 

The model is compiled with the Adam optimizer for 

efficient gradient descent and mean squared error (MSE) as 

the loss function to quantify the difference between the 

predicted and actual temperatures [11-14]. Additionally, the 

model's performance is monitored using the mean absolute 

error (MAE) metric. 

 
Fig 1 Shows the Virilization of the Architecture in a  

High-Level View 

 

 
Fig 2 Shows the Visualization of such LSTM cell 
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C. Structure of LSTM Cell 

 

 LSTM Cell State Update 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] +
𝑏𝑐) 𝑐𝑡is the cell state at time 𝑡 , 𝑓𝑡  is the forget gate's output, 

controlling the extent to which the previous cell state 𝑐𝑡−1 is 

retained, 𝑖𝑡  is the input gate's output, controlling how much 

of the new candidate cell state 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] +
𝑏𝑐)  is added to the current cell state, ⊙ denotes element-wise 

multiplication, 𝑊𝑐 and 𝑏𝑐 are the weights and bias for the 

candidate cell state. 

 

 LSTM Hidden State Update 

 

ℎ𝑡 = 𝑜𝑡 ⊙𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑐𝑡)  
 

Where ℎ𝑡 is the hidden state at time 𝑡 , 𝑜𝑡 is the output 

gate's output, controlling the extent to which the cell state 𝑐𝑡  

is exposed as the hidden state. 

 

 Gate Activation Functions 

 

 Input gate 
 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 
 

 Forget gate 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

 

 

 Output gate 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 
 

Where 𝜎 is the sigmoid activation function, and 𝑊𝑖, 𝑊𝑓, 

𝑊𝑜, 𝑏𝑖, 𝑏𝑓, and 𝑏𝑜 are the weights and biases for the respective 

gates. 

 

IV. EXPERIMENT 

 

 Data Collection and Preprocessing 

We use daily climate data in the city of Delhi from 2013 

to 2017 to conduct the experiment, from 

https://www.wunderground.com/. [6] This dataset contains 

weather data from January 1, 2013, to April 24, 2017, for the 
city of Delhi, India. It includes four parameters: mean 

temperature, humidity, wind speed, and mean pressure. To 

prepare the data for the LSTM model, the following 

preprocessing steps were undertaken: 

 

 Data Cleaning: Missing values were handled by 

interpolation, and outliers were identified and removed 

based on statistical thresholds. 

 Feature Selection: Based on correlation analysis and 

domain knowledge, relevant features influencing daily 

climate were selected. 

 Normalization: The data was normalized using Min-Max 

scaling to bring all features to a similar scale, facilitating 

faster convergence during training. 

 Time Series Transformation: The data was transformed 

into a time series format. 
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Fig 3,4,5,6 Shows the Visualization of the Temperature, Humidity, Wind Speed and Pressure 
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 Evaluation Metrics 

The performance of the LSTM model was evaluated 

using the following metrics: 

 

 Mean Absolute Error (MAE): Measures the average 

magnitude of errors in temperature predictions. 

 Root Mean Squared Error (RMSE): Provides a measure 

of the square root of the average squared differences 

between predicted and actual values. 

 

V. RESULT AND DISCUSSION 
 

 Our Root mean Square error is 0.78. 

 

 
Fig 7 Temperature Predictions vs Actuals 

 

 
Fig 8 Temperature Prediction 
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The experimental results, evaluated using Mean 

Absolute Error (MAE) and Root Mean Squared Error 

(RMSE), indicate that the LSTM model can achieve a 

satisfactory level of accuracy in forecasting daily 

temperatures [15-17]. With an RMSE of 0.78, the model 

demonstrates its capability to capture the underlying patterns 

in the climate data, making it a valuable tool for short-term 

climate prediction. 
 

Future work could explore the integration of additional 

climate variables, such as humidity and wind speed, into the 

LSTM model to provide a more comprehensive view of 

climate dynamics. Moreover, the model could be tested on 

different geographical regions to assess its generalizability 

and adaptability to various climate patterns [18-20]. 

 

Overall, this research result contributes to the growing 

body of knowledge on the application of machine learning in 

climate prediction and underscores the potential of LSTM 
networks in addressing complex time series forecasting 

challenges in the field of climate science. 

 

VI. CONCLUSION 

 

In this study, we have demonstrated the potential of 

Long Short-Term Memory (LSTM) networks in predicting 

daily climate variables, with a focus on temperature 

forecasting. The LSTM model, designed with two layers and 

additional dense layers, effectively captured the temporal 

dependencies in the historical climate data from the city of 

Delhi. The preprocessing steps, including data cleaning, 
normalization, and sequence generation, played a crucial role 

in preparing the data for the LSTM model, ensuring accurate 

and reliable predictions. 

 

The successful application of LSTM networks in this 

study opens up new avenues for utilizing machine learning 

techniques in climate science. By leveraging the power of 

deep learning, we can enhance our ability to predict climate 

variables, thereby improving our preparedness for weather-

related events and informing decision-making in sectors 

sensitive to climate variability. 
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