Creating Dashboard for Groundwater Level Prediction

T. Swathi
Department of Electronics and Communication Engineering
Kalasalingam Academy of Research and Education
Virudhnagar, Madurai, India

Bhargav Ram M
Department of Automobile Engineering
Kalasalingam Academy of Research and Education
Virudhnagar, Madurai, India

Suriyamoorthi
Department of Automobile Engineering
Kalasalingam Academy of Research and Education
Virudhnagar, Madurai, India

J. Mohamed Ismail Sait
Department of Automobile Engineering
Kalasalingam Academy of Research and Education
Virudhnagar, Madurai, India

T. Sam Pradeep Raj
Department of Computer Science and Engineering
Kalasalingam Academy of Research and Education
Virudhnagar, Madurai, India

Abstract: This article introduces the creation and implementation of a real-time dashboard for forecasting groundwater levels using javascript and web technologies. The dashboard utilizes historical data and real-time sensor information to offer nearly instantaneous predictions of groundwater levels, aiding in water resource management. The groundwater government URL is a JavaScript program that establishes an interactive web-based platform for forecasting and interpreting groundwater levels visually. By combining machine learning models with geospatial data and continuous monitoring, GPD can anticipate changes in groundwater depth (such as flood risk) and local water table levels at any given moment. Information such as purity level (mg/l), water depth in meters, borewell location, and Ph Level is presented on this dashboard. Users can add parameters to forecast values, visualize predictions, and download data.

Keywords: Groundwater, Prediction, Parameters.

I. INTRODUCTION

Groundwater is a crucial resource for human consumption, agriculture, and industry, accounting for over 30% of worldwide freshwater. However, the alarming reality is that groundwater levels are decreasing globally due to excessive extraction. To address this issue, the implementation of earth-receiver technology is essential for accurately predicting groundwater levels, ensuring sustainable use and conservation of this vital resource. Groundwater levels fluctuate based on the connectivity and functionality of storage areas, highlighting the need for continuous monitoring and forecasting to manage water resources effectively. This approach can lead to improved water resource management, early warning systems for droughts and floods, balancing water supply and demand, reducing energy consumption for pumping and treatment, protecting aquatic ecosystems and biodiversity, promoting farming and food security sustainability, and providing valuable data for policymakers to make informed decisions. Groundwater, the largest freshwater source on Earth is vital to human life as well as agriculture, industry and our environment.

- The Consequences of Declining Groundwater Levels are Far-Reaching, Including:
 - Decreased water availability for human consumption and agriculture
 - Land subsidence and sinkholes
 - Saltwater intrusion into freshwater aquifers Loss of biodiversity and ecosystem disruption
 - Economic impacts on agriculture, industry, and energy production

II. LITERATURE SURVEY

A. Selecting a Template

[1] "Review of Machine Learning Techniques for Predicting Groundwater Levels" (2020) - This review paper explores the application of various machine learning techniques in predicting groundwater levels, such as neural networks, support vector machines, and random forests. "Comparison of Machine Learning Algorithms for Groundwater Level Prediction" (2019) - This study evaluates the effectiveness of different machine learning algorithms, including ARIMA, LSTM, and GRU, in predicting groundwater levels. [2] "Creation of a Real-Time Groundwater Level Monitoring Web Dashboard" (2020) - This paper introduces a web-based dashboard created using Django and React for monitoring groundwater levels in real-time. "Exploration of Web Technologies for Environmental..."

III. METHODS

The literature review conducted in this paper heavily relied on secondary sources, as is common in most desk studies where existing data are utilized for analysis and to draw important conclusions. Various sources of information for the study included books, journal articles, unpublished papers, government reports, organizational and personal websites. This research method is employed when a significant amount of work has already been done on a research topic and when the study aims to address specific questions based on previous research. Therefore, the current paper utilized this approach to examine the findings of other researchers on waste, its classification, and management.

Classification And Methods:

These methods can be utilized individually or in combination to forecast groundwater levels, depending on the specific application and data accessibility.

- Time Series Analysis
- Machine Learning
- Physical Modeling
- Statistical Modeling
- Artificial Neural Networks
- Fuzzy Logic
- Genetic Programming
- Hybrid Models

Ensemble Methods

These methods are based on various theoretical frameworks and mathematical formulations, and are used to predict groundwater levels in different contexts.

Challenges

- Data Quality: Ensuring precise, dependable, and uniform data from diverse origins.
- Data Integration: Merging data from various sources, formats, and resolutions.
- Scalability: Managing extensive datasets and guaranteeing dashboard efficiency.
- Visualization: Clearly conveying intricate data insights through visual representations.
- Interpretability: Confirming that forecasts and visualizations are comprehensible to non-technical stakeholders.
- Real-time Processing: Handling and updating data instantly to reflect fluctuations in groundwater levels.
- User Experience: Creating an instinctive and user-friendly interface for a range of stakeholders.
- Security: Upholding data confidentiality and security, especially for sensitive data.
- Maintenance: Upgrading and upholding the dashboard to ensure ongoing accuracy and significance.
- Stakeholder Buy-in: Ensuring that stakeholders comprehend and have faith in the dashboard's forecasts and suggestions.
- Hydrological Complexity: Considering intricate hydrological processes and uncertainties.
• Data Gap Handling: Dealing with absent data and ensuring resilient forecasts despite data gaps.
• Model Ensemble: Combining numerous models and techniques to enhance forecast accuracy.
• Explainability: Offering insights into model decision-making processes and forecasts.
• Adaptability: Guaranteeing the dashboard can adjust to evolving data, models, and stakeholder requirements.

![Water Quality Management](image1)

Fig-1 Water Quality Management

IV. IMPLEMENTATION

- **Data Collection:**
 - Gather historical groundwater level data from diverse sources such as sensors, monitoring stations, and databases.
 - Acquire additional pertinent data such as precipitation, evaporation, and soil moisture.

- **Data Preprocessing:**
 - Purify and preprocess the data by addressing missing values, normalizing, and transforming it.
 - Divide the data into training and testing sets.

- **Model Development:**
 - Construct a machine learning model, such as LSTM, ARIMA, or GRU, to forecast groundwater levels.

![Ground Water Prediction Dashboard](image2)

Fig-2 Implementation of dashboard
V. CONCLUSION

Creating a system for groundwater level forecasting is a multifaceted endeavor that necessitates meticulous consideration of a multitude of variables, such as data accuracy, machine learning algorithms, and user interface. By utilizing JavaScript alongside a variety of tools and technologies, a sturdy and efficient system can be developed to facilitate well-informed decision-making in water resource management.

Key Takeaways:
- It is essential to ensure high data quality and proper preprocessing in order to make accurate predictions.
- Machine learning algorithms such as LSTM, ARIMA, and GRU have proven to be effective in predicting groundwater levels.
- An interactive and user-friendly dashboard with visualizations can greatly improve the communication of predictions and insights.
- The dashboard can be built using JavaScript libraries like React, Angular, and Vue.js.
- It is crucial to consider scalability, security, and maintainability when developing a dashboard for production use.
- Creating a dashboard for groundwater level prediction can help in managing water resources sustainably and reducing the impacts of groundwater depletion.

Fig-3 MongoDB database
REFERENCES

