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Abstract:- This study investigates the predictive 

capability of a Random Forest model in identifying 

respiratory diseases attributed to PM2.5 exposure in 

Nairobi County. Leveraging a comprehensive dataset 

encompassing demographic and air quality variables, the 

model demonstrated robust performance metrics, 

achieving an accuracy of 79.97% and an area under the 

curve (AUC) of 0.872. These results highlight the model’s 

effectiveness in distinguishing between respiratory and 

cardiovascular conditions. The model’s sensitivity and 

specificity were 81.88% and 73.27%, respectively, 

indicating a strong ability to correctly identify both true 

positives and true negatives. Analysis of feature 

importance revealed that age and PM2.5 concentrations 

were the most influential factors in predicting health 

outcomes, emphasizing the significant impact of air 

pollution and demographic factors on respiratory and 

cardiovascular health. Furthermore, the consistent train 

and test error rates across varying training set sizes 

suggest the model’s stability and generalizability. This 

study underscores the importance of addressing air 

quality issues to mitigate the health impacts of PM2.5 

exposure in urban settings. 
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Accuracy, Feature Importance. 

 

I. INTRODUCTION 
 

Air pollution, particularly fine particulate matter 

(PM2.5), is a critical environmental and public health concern 

worldwide. Nairobi, the capital city of Kenya, is undergoing 

rapid urbanization and industrialization, contributing to 

worsening air quality. The city’s population has surged in 

recent decades, leading to increased motor vehicle emissions, 

construction activities, and industrial operations. Respiratory 

diseases are already a significant burden, and the additional 

strain from pollution-related health issues poses a challenge 

to the healthcare system. To address these challenges, there is 
an urgent need to develop a robust predictive model that can 

bridge existing gaps by providing timely insights into 

potential health risks and enabling proactive measures. 

Machine learning techniques, particularly the Random Forest 

algorithm, offer a promising approach to addressing these 

challenges. Random Forest algorithm is a versatile and 
powerful tool for predictive modeling, capable of handling 

complex datasets with numerous variables. It works by 

constructing multiple decision trees during training and 

outputting the mode of the classes for classification tasks or 

the mean prediction for regression tasks. The utilization of 

machine learning techniques for predictive analytics in the 

context of respiratory diseases and PM2.5 air pollution 

represents a novel approach to public health research. This 

study therefore aimed at developing a predictive model using 

random forest algorithm to forecast respiratory diseases 

attributed to PM2.5 exposure in Nairobi, Kenya. 

 

II. MATERIALS AND METHODS 

 

To achieve the objectives of this study, three-year data 

spanning from 2021 to 2023 of hospital data and PM2.5 data 

were collected from the East Africa Global Environmental 

and Occupational Health Research and Training Center. 

Monthly health records from various files were consolidated 

into a single folder. Similarly, daily PM2.5 records were 

gathered into another folder. These datasets were then 

individually imported into R, explored, and subsequently 

merged. Additionally, descriptive statistics was performed by 
examining the summary statistics of each variable and 

visualizing the data distributions to gain an initial 

understanding of the data. Feature selection played a 

significant role in improving the performance of machine 

learning algorithms by reducing the time to build the learning 

model and increasing the accuracy of the learning process. 

Out of the 16 features initially considered, five features were 

selected to train the model: Real-time PM2.5 Concentrations 

, Hourly PM2.5 Concentrations, Age, Sex, and Diagnosis.  

Addressing potential class imbalances in respiratory disease 

data ensured that the model learns from a representative 
dataset, minimizing bias towards the majority class and 
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improving overall predictive performance. The Random 

Over-Sampling technique was applied to randomly 

synthesize new examples by interpolating from the minority 

class to balance the class distribution. The dataset was 

partitioned into a 70% training set and a 30% test set to train 

the model on a sufficient amount of data and evaluate its 

performance on unseen data. Various evaluation metrics were 

employed to assess the model’s performance. Confusion 
matrix provided a detailed breakdown of true positive, true 

negative, false positive, and false negative predictions, 

offering insights into the model’s strengths and weaknesses 

across different classes. While Random Forest excels in 

predictive accuracy, efforts were made to interpret feature 

importance rankings derived from the model. This analysis 

elucidates which factors, such as PM2.5 concentrations or 

demographic variables, exert the most significant influence 

on respiratory health outcomes in Nairobi County. 

 

III. RESULT AND DISCUSSION 

 

 Confusion Matrix and Statistics: 

 

Table 1 Model Performance Summary 

Metric Accuracy Sensitivity/Recall Specificity Precision Balanced 

Accuracy 

F1 Score AUC 

Score 

Value 0.7997 0.8188 0.7327 0.9148961 0.7757 0.86418 0.87196 

 

Table 2 Feature Ranking 

Feature Mean Decrease Gini 

ConcRT.ug.m3 

ConcHR.ug.m3 

AGE 
SEX 

13217.7847 

13285.0345 

45895.2029 
838.4769 

 

 Learning Curve 

 

 
Fig 1 Learning Curve for Random Forest Model 

 

 Confusion Matrix Analysis 

The confusion matrix provides a detailed breakdown of 

the model’s predictions compared to the actual outcomes. 

From the confusion matrix: 

 

 True Positives (Respiratory): 40,002 cases 

 False Positives (Respiratory): 3,721 cases 

 True Negatives (Cardiovascular): 10,200 cases 

 False Negatives (Cardiovascular): 8,853 cases 

 Model Accuracy 

The model’s accuracy is a measure of its overall ability 

to correctly classify cases. 

 

 Accuracy: 79.97% 

 95% Confidence Interval (CI): (0.7965, 0.8028) 

 No Information Rate (NIR): 77.82% 

 P-Value [Acc > NIR]: < 2.2e-16 
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This indicates that the model performs significantly 

better than random guessing. 

 

 Sensitivity and Specificity 

Sensitivity and specificity assess the model’s 

performance in detecting positive and negative cases, 

respectively. 

 

 Sensitivity (Recall) for Respiratory Diseases: 81.88% 

 Specificity for Cardiovascular Diseases: 73.27% 

 

The high sensitivity indicates the model’s strong ability 

to identify true positive cases of respiratory diseases, while 

the specificity shows a moderate ability to correctly classify 

cardiovascular cases. 

 

 Precision and F1 Score 

Precision and F1 score provide insights into the balance 

between the model’s accuracy in identifying positive cases 
and its overall performance: 

 

 Precision: 91.49% 

 Recall (Sensitivity): 81.88% 

 F1 Score: 86.42% 

 

The high precision and F1 score reflect the model’s 

effectiveness in correctly identifying positive cases and 

balancing precision and recall. 

 

 Model Error Rates 
The model’s error rates are consistent, reflecting its 

robustness and reliability: 

 

 Training Error: Ranged from 13.77% to 14.20% 

 Test Error: Ranged from 15.75% to 15.91% 

 

The small difference between training and test error 

rates indicates good generalization capability, with minimal 

overfitting. 

 

IV. CONCLUSIONS 

 
By demonstrating the effectiveness of machine learning 

algorithms, notably Random Forest, in predicting respiratory 

disease outbreaks in relation to PM2.5 air pollution levels, 

this study contributes to evidence-based health and 

environmental policy-making. Age and PM2.5 

concentrations were identified as the most significant 

predictors of respiratory disease outcomes. The prominence 

of age as a critical feature suggests that younger populations 

are more vulnerable to respiratory diseases in the context of 

PM2.5 pollution. This study therefore, recommends targeted 

health interventions for younger populations, who are 
identified as more susceptible to respiratory diseases. We also 

encourage policies that promote cleaner technologies and 

reduce pollution from major sources such as traffic and 

industrial activities and utilization of predictive models to 

forecast high-risk periods and inform the public and 

healthcare providers in advance. While this study provides 

valuable insights, several areas warrant further investigation. 

Future studies should consider incorporating more 

comprehensive datasets, including socio-economic status, 

lifestyle factors, and genetic predispositions, to improve 

model accuracy. Additionally, exploring and comparing 

different machine learning models can help identify the most 

efficient and accurate approaches for health outcome 

predictions. 
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