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Abstract:- Reverse brute force attacks pose a significant 

threat to the security of online systems, where 

adversaries attempt to gain unauthorized access by 

systematically testing a multitude of username and 

password combinations against a single account. To 

address this challenge, the research presents an 

innovative Long-Short Term Memory Network based 

model designed to detect such attacks. The model utilizes 

LSTM algorithms to analyze login attempt patterns, 

identifying anomalies that may indicate reverse brute 

force attacks. By examining various factors like user 

login behavior, IP address, and time-based patterns, the 

model distinguishes legitimate access attempts from 

potential attacks with high accuracy. It incorporates 

real-time threat intelligence feeds and historical data 

analysis to continuously adapt and improve its detection 

capabilities. The model dynamically adjusts security 

parameters, enforces account lockouts, and 

communicates with firewall systems to block suspicious 

IP addresses, thus providing a proactive response to 

thwart attacks. The research evaluates the effectiveness 

of the AI model through simulated and real-world testing 

scenarios, demonstrating a significant reduction in false 

positives and successful prevention of reverse brute force 

attacks. Overall, the developed AI model offers a 

sophisticated and proactive solution to the evolving 

threat of reverse brute force attacks, contributing to the 

advancement of cybersecurity measures. 

 

Keywords:- Reverse Brute Force Attacks, Artificial 

Intelligence (AI), Machine Learning, Proactive Response 
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I. INTRODUCTION 

 
The increasing reliance on digital systems and 

networks has elevated cybersecurity to a critical concern for 

organizations. In this evolving digital landscape, the reverse 

brute force attack has emerged as a common threat vector, 

wherein an attacker systematically tests multiple username 

and password combinations against a single target account 

in an attempt to gain unauthorized access. Network security, 

given the prevalence of cyber threats including reverse 

brute-force attacks, stands as a paramount concern today. 

 

These attacks involve an assailant attempting to match 
a single compromised credential against numerous online 

accounts, seeking unauthorized access. Conventional 

security measures often struggle to efficiently detect and 

prevent such sophisticated attacks (Hamza & Al-janabi, 

2024). A reverse brute force attack, a type of cyber-attack, is 

characterized by an attacker attempting unauthorized access 

by systematically trying various username and password 

combinations until a successful match is found. Unlike 

traditional brute force attacks, where the attacker tests 

multiple passwords for a single username, the reverse brute 

force attack involves trying multiple usernames with a 

single password. This technique allows attackers to bypass 

account lockout mechanisms that typically trigger after a 

certain number of failed login attempts for a single 

username (Chen et al., 2020). 
 

In response to these evolving threats, AI-based 

Intrusion Detection Systems (IDS) have been developed, 

leveraging artificial intelligence and machine learning 

techniques to detect and respond to malicious activities 

within a network. These systems analyze network traffic, 

system logs, and other relevant data using machine learning 

algorithms such as supervised learning, unsupervised 

learning, and anomaly detection. They are trained on 

historical data to recognize and classify both normal and 

malicious network behavior (Laskodi, A., et al., 2020). 
 

Traditional brute force attacks remain a common and 

straightforward method for attackers to gain unauthorized 

access to systems and accounts. In a dictionary attack, a 

precompiled list of commonly used passwords is 

systematically tested against a target username or list of 

usernames. The attacker iterates through the dictionary, 

trying each entry as a potential password to gain 

unauthorized access (Ali, T., & Ghafoor, A., 2019). Another 

method, the brute force attack, systematically tries all 

possible combinations of characters for passwords within a 

specified character set. Starting with the shortest passwords, 
the attacker progresses to longer and more complex 

combinations until a successful match is found. This method 

can be time-consuming and resource-intensive, particularly 

with complex passwords that have a large number of 

possible combinations (Hamza & Al-janabi, 2024). 

 

Hybrid attacks, combining elements of both dictionary 

attacks and brute force attacks, may be employed by 

attackers. These attacks involve using a combination of 

dictionary-based password guesses and systematically trying 

variations of those guesses, such as appending or prepending 
numbers, symbols, or other characters to increase the 

chances of success (Ali, T., & Ghafoor, A., 2019). 

Mitigating the risk of traditional brute force attacks involves 
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implementing strong password policies, such as enforcing 

complex passwords, limiting login attempts, and 

implementing account lockouts. Additionally, organizations 

can enhance security measures by adopting advanced 

techniques like multi-factor authentication (Hamza et al., 

2021). 

 

The pervasiveness of network-based reverse brute-
force attacks poses a significant threat to organizations' 

security posture. Traditional detection methods relying on 

rule-based systems or pattern matching techniques often 

struggle to keep pace with the evolving attack strategies 

employed by malicious actors (Ali, T., & Ghafoor, A., 

2019). These methods suffer from limitations such as: 

Ineffectiveness against low-volume attacks or variants of 

known patterns (Laskodi, A., et al., 2020) High false 

positive rates, leading to wasted resources and potentially 

missing genuine threats (Al-musawi, 2012). Inability to 

scale effectively to handle large networks or high traffic 

volumes (Hynek et al., 2021). Consequently, organizations 
face significant hurdles in promptly identifying and 

mitigating reverse brute-force attacks. This vulnerability 

exposes systems to unauthorized access attempts, increasing 

the risk of data breaches, compromise of sensitive 

information, and potential disruption of operations. 

 

This research proposes the development of a novel 

Long-Short Term Memory (LSTM) network-based model to 

address the limitations of existing methods and combat the 

growing threat of reverse brute-force attacks. LSTMs excel 

at handling sequential data and learning long-term 
dependencies, making them ideal for analyzing network 

traffic patterns and identifying subtle anomalies indicative 

of malicious activity (Gauri & R.Y, 2018). Leverage features 

like login timing, IP address patterns, and login attempt 

sequences to accurately detect reverse brute-force attacks. 

Employ advanced LSTM algorithms to differentiate 

between legitimate login attempts and malicious patterns, 

minimizing false positives. Offer scalability and adaptability 

to handle large and diverse network traffic datasets. 

Ultimately, this research aims to demonstrate that an LSTM-

based model can effectively and efficiently detect and 

prevent network-based reverse brute-force attacks, 
enhancing organizational security and reducing the risk of 

cyberattacks. 

 

II. RELATED WORKS 

 

This section provides a comprehensive review of the 

existing literature related to the development of AI models 

for the detection reverse brute force attacks. The review is 

organized into several sections, each focusing on different 

aspects of the topic. The goal is to provide a thorough 

understanding of the current state of research and the 
various approaches and techniques used in this domain. 

 

A. Network-Based Reverse Brute Force Attacks 

Network-based reverse brute force attacks pose a 

significant threat to cybersecurity, targeting user accounts 

and systems through the systematic testing of common 

passwords against multiple usernames (Houdt et al., 2020). 

These attacks are distinct from traditional brute force 

attacks, as they involve an attacker exploiting a 

compromised password list to gain unauthorized access by 

systematically trying each password against multiple 

accounts (Hamza & Al-janabi, 2024).  

 

Several studies have focused on addressing the 

challenges posed by network-based reverse brute force 
attacks. In their work, Ayankoya, (2019) conducted an 

extensive analysis of attack patterns and proposed an AI-

based approach for detecting and preventing such attacks. 

They employed machine learning algorithms, including 

decision trees, SVMs, and neural networks, to classify login 

attempts and identify suspicious patterns. The results 

demonstrated the effectiveness of their approach in 

accurately detecting reverse brute force attacks with a high 

detection rate and low false positive rate.  

 

Building on this, Oruh et al., (2022) developed a deep 

learning-based framework utilizing CNNs and RNNs for 
attack detection. Their framework effectively captured 

spatial and temporal dependencies in the network traffic 

data, enabling the identification of coordinated reverse brute 

force attack patterns. The results showed significant 

improvement in detection accuracy compared to traditional 

methods.  

 

Additionally, Kaur, (2015) proposed an adaptive access 

control system leveraging AI models to dynamically adjust 

access privileges based on user behavior and contextual 

information. Their approach demonstrated enhanced 
prevention capabilities by effectively blocking suspicious 

login attempts, thereby mitigating the risk of network-based 

reverse brute force attacks. These studies collectively 

indicate that AI-based approaches hold great potential in 

detecting and preventing network-based reverse brute force 

attacks, offering improved accuracy and adaptability 

compared to traditional methods. 

 

B. Long Short-Term Memory Techniques for Detection  

Long Short-Term Memory (LSTM) is a type of 

recurrent neural network architecture that has been widely 

used for various sequence processing tasks, including the 
detection of attacks in computer networks. LSTMs are 

particularly well-suited for these tasks due to their ability to 

capture long-term dependencies and handle variable-length 

input sequences. Several detection problems have been 

solved using LSTM some of which are discussed. Yin, C., et 

al. (2017) proposes an LSTM-based approach for intrusion 

detection in computer networks. The authors train an LSTM 

model on network traffic data to classify network 

connections as normal or attack. They evaluate their 

approach on the NSL-KDD dataset and achieve high 

accuracy, demonstrating the effectiveness of LSTMs for 
attack detection. Javaid, A. et al. (2016) also investigates the 

use of deep learning techniques, including LSTMs, for 

network intrusion detection. The authors compare the 

performance of LSTM models with traditional machine 

learning algorithms and show that LSTMs outperform other 

methods, particularly for detecting complex attacks. 
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Li, Y., et al. (2019) propose an LSTM-based approach 

for real-time malicious traffic detection in large-scale 

networks. The authors address the challenge of handling 

high-volume network traffic by employing a two-stage 

process: a random forest classifier for coarse-grained 

filtering, followed by an LSTM model for fine-grained 

malicious traffic detection. In contrast, Kasongo, S. M., & 

Sun, Y. (2019) investigates the performance of LSTM-based 
intrusion detection systems on the UNSW-NB15 dataset. 

The authors employ a feature selection method to identify 

the most relevant features for attack detection and evaluate 

the performance of their LSTM model with different feature 

sets. while Jiang, Z. et al. (2019) addresses the challenge of 

imbalanced datasets in the context of LSTM-based intrusion 

detection. The authors propose a data augmentation 

technique to mitigate the class imbalance problem and 

demonstrate the effectiveness of their approach on various 

publicly available datasets. 

 

In conclusion, Kim, J. et al. (2016) explores the use of 
kernel behavior features in conjunction with LSTM models 

for intrusion detection. The authors propose a feature 

extraction method to capture kernel-level system behavior 

and demonstrate that incorporating these features into an 

LSTM model can improve the accuracy of attack detection. 

These are just a few examples of the literature on the use of 

LSTMs for attack detection. 

 

C. Traditional Approaches for Detection and Prevention 

Traditional approaches for detecting and preventing 

brute force attacks have been widely employed, including 
techniques such as account lockouts, CAPTCHA 

mechanisms, and rate limiting Vugdelija et al., (2022). 

However, these methods have limitations in combating 

network-based reverse brute force attacks. Due to the large 

number of compromised accounts and the ability to 

distribute attacks across multiple IP addresses, traditional 

methods often fail to detect coordinated and distributed 

attack patterns (Laghrissi et al., 2021). 

 

A number of studies have explored traditional 

approaches for detecting and preventing network-based 

reverse brute force attacks. For instance, Raikar & Meena, 

(2021) conducted a comprehensive analysis of account 

lockout mechanisms commonly employed as a defense 

mechanism against brute force attacks. They revealed that 

while account lockouts can be effective in preventing 

repeated login attempts, they are susceptible to distributed 

and coordinated reverse brute force attacks where attackers 

use compromised credentials across multiple accounts.  
 

In a similar vein, Wanjau et al., (2021) investigated the 

use of CAPTCHA mechanisms to prevent automated login 

attempts. Their findings indicated that while CAPTCHAs 

can increase the difficulty of automated attacks, determined 

attackers can bypass or automate the solving of 

CAPTCHAs, rendering them less effective in the face of 

network-based reverse brute force attacks.  

 

Furthermore, Otoom et al., (2023) explored rate 

limiting techniques as a means of preventing brute force 

attacks. However, their study revealed that rate limiting 
alone may not provide adequate protection against network-

based reverse brute force attacks, as attackers can distribute 

their attempts across multiple IP addresses to evade 

detection. These studies collectively emphasize the 

limitations of traditional approaches in effectively 

countering network-based reverse brute force attacks, 

highlighting the need for more advanced and adaptive 

detection and prevention mechanisms. 

 

D. Machine Learning (ML) Models: 

ML models, such as supervised learning algorithms, 
can be trained on labeled datasets to detect patterns 

associated with reverse brute force attacks. These models 

learn from historical data that includes both legitimate login 

attempts and malicious access attempts. They can analyze 

various features extracted from network traffic data, such as 

source IP addresses, login timestamps, and failed login 

attempts, to identify anomalies and predict the likelihood of 

a reverse brute force attack. ML models, including decision 

trees, random forests, and support vector machines, have 

been employed successfully in detecting such attacks. 

 
Table 1 Types of Machine Learning Models 

S/N Model Metrics Formulas Connotation 

1 

Linear Regression Mean Absolute Error 

(MAE), Root Mean 

Squared Error (RMSE) 

MAE = 1/n Σ 
Simplicity, interpretability, linear relationships, 

assumption of linearity in data. 

2 

Logistic Regression Accuracy, Precision, 

Recall, F1-score 

Accuracy = (TP + 

TN) / (TP + TN + 

FP + FN) 

Binary classification, probability estimation, linear 

decision boundaries, interpretable coefficients. 

3 

Decision Trees Gini impurity, Entropy Gini impurity = 1 - 

Σp_i^2 

Hierarchical decision-making, interpretable rules, 

non-linear decision boundaries, prone to 

overfitting. 

4 

Random Forest Out-of-bag error Out-of-bag error = 

(OOB error rate) / 

(1 - (n_samples / 

n_total)) 

Ensemble learning, robustness, reduction of 

overfitting, non-linear decision boundaries, feature 

importance. 

5 

Support Vector 

Machines (SVMs) 

Margin Margin = 2 / Margin maximization, effective in high-

dimensional spaces, kernel methods, binary 
classification, less effective with large datasets. 
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6 

K-Nearest 

Neighbors (KNN) 

Mean Squared Error 

(MSE) 

MSE = 1/n Σ(y_true 

- y_pred)^2 

Instance-based learning, non-parametric, lazy 

learning, sensitive to local structure, distance-

based classification. 

7 

Artificial Neural 

Networks (ANNs) 

Cross-entropy Cross-entropy = -

Σ[y_true 

log(y_pred) + (1 - 

y_true) log(1 - 

y_pred)] 

Universal function approximation, deep learning 

foundation, non-linear relationships, feature 

learning, black-box nature. 

8 

Convolutional 

Neural Networks 

(CNNs) 

Accuracy, Precision, 

Recall, F1-score 

Accuracy = (TP + 

TN) / (TP + TN + 

FP + FN) 

Image processing, hierarchical feature learning, 

translational invariance, convolutional layers, 

pooling layers. 

9 
Recurrent Neural 
Networks (RNNs) 

Perplexity, BLEU score Perplexity = exp(-
1/n * Σlog(p(y_true 

Sequential data processing, time-series analysis, 
variable-length inputs, vanishing/exploding 

gradient problem. 

10 

Long Short-Term 

Memory (LSTM) 

Networks 

Perplexity, BLEU score Perplexity = exp(-

1/n * Σlog(p(y_true 

Handling long-range dependencies, mitigating 

vanishing gradient problem, memory cells, 

sequential data modeling. 

11 

Gated Recurrent 

Units (GRUs) 

Perplexity, BLEU score Perplexity = exp(-

1/n * Σlog(p(y_true 

Simplified version of LSTM, efficient training, 

fewer parameters, balancing long and short-term 

dependencies. 

12 

Transformer 

Networks 

BLEU score FFN(x)=ReLU(xW1

+b1)W2+b2 

Attention mechanism, parallelization, sequence-to-

sequence modeling, state-of-the-art in natural 

language processing (NLP). 

13 

Generative 

Adversarial 

Networks (GANs) 

Inception score, 

Fréchet Inception 

Distance (FID) 

LGAN

(G,D)=Ex∼pdata(x)

[logD(x)]+Ez∼p(z)
[log(1−D(G(z)))] 

Generative modeling, adversarial training, creating 

realistic synthetic data, image and video 

generation, unsupervised learning. 

 

In conclusion, several studies have investigated 

detection of    reverse brute force attacks. The study by 

Lindemann et al., (2023) proposed an approach of detecting 

attacks in individually sly activities, which operates in 

unsuspected manner in a reverse Brute-Force attack. The 

study depended on two elements; Site Aggregates Analyser 

(to observe the activities and attacks which occur in the sites 

and detect it) and Attack Participants Classifier (to analyze 

and classify the attack's participant). Another study Hamza 

& Al-janabi, (2024) proposed a protocol called Password 
Guessing Resistant Protocol (PGRP), derived upon 

revisiting proposals previously designed to avoid such 

attacks. The system was divided into three parts namely: 

User & Password Authentication, IP Authentication, and 

Cookie Authentication. 

 

In 2019, Ayankoya, (2019) proposed a two-stage IDS 

that combines an unsupervised model and a supervised 

model to mitigate the false positive and false negative. In the 

first stage, the model uses k-means clustering, an 

unsupervised model, to detect malicious activity. In the 

second stage, supervised models such as decision tree, 
random forest and naïve Bayes are used to classify the 

malicious activity. The authors showed that the proposed 

models could achieve 92.74% to 99.97% accuracy on the 

KDD99 dataset. In the same year, Kiktenko et al., (2019) 

conducted a study on utilizing ANN for IDS. Their study 

focused on detecting botnet attacks in the CSE-CIC-

IDS2018 dataset. With hyper parameter optimization, they 

achieved an accuracy of 99.97%, with an average false 

positive rate of only 0.001. 

 

 

In Houdt et al., (2020), the authors used a hybrid 

multimodal solution to enhance the performance of intrusion 

detection systems (IDS). They developed an ensemble 

model using a meta classification approach enabled by 

stacked generalization and used two datasets, UNSW NB15 

(a packet-based dataset) and UGR’16 (a flow-based dataset), 

for experiments and performance evaluation. Javed & 

Paxson, (2013) produced a taxonomy with three categories, 

nine sub-categories, and 38 dimensions to review anomaly 

detection techniques of connected vehicles. Even though 
this study provided a comprehensive categorization of IDSs, 

individual paper summaries and implementation techniques 

are not discussed. Kiktenko et al., (2019) mainly focused on 

in-vehicle IDSs by referring to 44 prior works. In this work, 

IDSs are categorized into three categories as flow based, 

payload based, and hybrid. Finally, they discussed some of 

the research challenges and gaps in in-vehicle IDSs. 

 

By combining the improved LeNet-5 and LSTM 

structures, Houdt et al., (2020) simultaneously learned the 

temporal and spatial features of original traffic data and 

designed a reasonable network cascade method to 
simultaneously train the proposed hierarchical network. This 

method can achieve high accuracy. Laghrissi et al., (2021) 

the Automated Model for Prediction (AMP) algorithm, 

which utilizes a set of bandwidth prediction models that are 

dynamically selected to optimize performance in low 

latency scenarios. Along the same lines, in Lindemann et al., 

(2023) it is presented a new algorithm called Llama (Low 

Latency Adaptive Media Algorithm). This algorithm uses 

two independent measures of throughput on different time 

scales: one to decide whether to decrease the video quality 

and one to decide about increasing the video quality. 
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III. METHODS AND MATERIALS 

 

This section focuses on the development process of an 

AI model for the detection and prevention of network-based 

reverse brute force attacks. It outlines the methodology, data 

collection and preparation, model development, training, 

evaluation, and integration into a real-time security system. 

The goal is to provide a comprehensive overview of the 
steps involved in creating an effective defense mechanism 

against reverse brute force attacks. 

 

A. Data Collection and Preprocessing  

To construct a robust AI model for detecting reverse 

brute force attacks on network systems, meticulous data 

collection and preprocessing are pivotal initial steps. 

Primarily, the acquisition phase entails the retrieval of 

network traffic logs encompassing a spectrum of activities, 

notably login attempts and authentication data, from the 

target system (Gauri & R.Y, 2018). These logs serve as the 

raw foundation upon which our model will be built. 
 

Following data acquisition, preprocessing unfolds as a 

critical phase aimed at refining the raw logs into a structured 

format conducive to model training. Initially, the data 

undergoes thorough cleansing to eliminate anomalies and 

discrepancies, ensuring the integrity of subsequent analyses 

(Raikar & Meena, 2021). Subsequently, feature extraction is 

conducted to distill pertinent attributes from the logs. This 

entails the isolation of key indicators such as source IP 

addresses, login timestamps, and authentication outcomes, 

which serve as the fundamental building blocks for our 
predictive framework. 

 

Moreover, an indispensable aspect of preprocessing 

involves data labeling, which delineates instances as either 

benign or malevolent based on established attack patterns 

(Otoom et al., 2023). This annotation facilitates supervised 

learning, furnishing the model with a rich corpus of labeled 

instances to discern between normal network behavior and 

potentially malicious activities. 

 

B. Model Development 

 
 LSTM Network Architecture 

The proposed model employs an LSTM network 

architecture to capture temporal patterns and long-term 

dependencies in sequential network traffic data. The input to 

the network consists of a sequence of network traffic data 

points, where each data point may include features such as 

source and destination IP addresses, port numbers, protocol 

types, packet sizes, and timestamps. 

 

The core of the model comprises one or more LSTM 

layers. LSTM layers are well-suited for processing 
sequential data and can selectively remember or forget 

information from previous time steps, enabling the model to 

learn long-range dependencies (Vugdelija et al., 2022). The 

output of the LSTM layers is then fed into one or more 

dense (fully connected) layers for further processing and 

classification. 

 

 Training Setup 

The dataset used for training and evaluating the model 

is divided into three subsets: training, validation, and test 

sets. The training set, comprising the majority of the data, is 

used to optimize the model's parameters. The validation set 

is employed for hyperparameter tuning and model selection, 

while the test set remains untouched until the final 

evaluation phase. One crucial hyperparameter to be 
determined is the sequence length, which defines the 

number of time steps considered in each input sequence fed 

into the LSTM network. A longer sequence length can 

capture more temporal information but may increase 

computational complexity and memory requirements. 

 

During training, the model is optimized using mini-

batch gradient descent, where the batch size specifies the 

number of samples processed before updating the model's 

parameters. The binary cross-entropy loss function is 

typically used for this binary classification task (normal vs. 

reverse brute force attack) (Javed & Paxson, 2013). To 
prevent overfitting and improve generalization, various 

regularization techniques can be employed, such as dropout 

(Houdt et al., 2020), L1/L2 regularization, or early stopping 

based on the validation set performance. 

 

C. Model Training 

 

 Initialization 

The efficacy of any deep learning model heavily relies 

on the initialization of its parameters. In the context of our 

Long Short-Term Memory (LSTM) network tailored for 
reverse brute force attack detection, a judicious selection of 

initialization method sets the stage for effective learning. 

Options abound, ranging from random initialization, which 

imbues the model with flexibility to explore diverse solution 

spaces, to leveraging pre-trained weights from tasks akin to 

our domain, thereby injecting prior knowledge and 

potentially expediting convergence (Al-musawi, 2012). 

 

 Optimization Algorithm 

Central to the training process is the choice of an 

optimization algorithm, tasked with steering the model 

parameters towards optimal configurations by minimizing 
the defined loss function. Within our arsenal lie renowned 

algorithms such as Adam, RMSprop, and stochastic gradient 

descent (SGD) with momentum. Each algorithm bears 

unique characteristics, accommodating diverse data 

distributions and model complexities (Chen et al., 2020). 

Adam, for instance, boasts adaptive learning rates tailored to 

individual parameters, while RMSprop exhibits robustness 

against noisy gradients. Meanwhile, SGD with momentum 

harnesses historical gradients to navigate rugged loss 

landscapes with increased stability and efficiency. 

 
 Training Iterations 

The iterative training regimen orchestrates the gradual 

refinement of our LSTM model, infusing it with the ability 

to discern subtle patterns indicative of reverse brute force 

attacks. Mini-batch processing reigns supreme, enabling 

efficient utilization of computational resources and 

facilitating parallelization. Within each iteration, input 
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sequences cascading through the network elicit 

corresponding loss computations, culminating in the 

propagation of gradients via backpropagation. This iterative 

dance of forward and backward passes not only hones the 

model's predictive prowess but also fosters adaptability to 

evolving attack vectors lurking within network traffic. 

 

 Hyper Parameter Tuning 
Bolstering the resilience and generalization capability 

of our LSTM-based detection framework necessitates 

meticulous calibration of hyper parameters. These tunable 

knobs wield considerable influence over model behavior, 

encompassing learning rate, dropout rate, LSTM unit count, 

and layer dimensions. A delicate balancing act ensues, as we 

navigate the intricate trade-offs between model 

expressiveness and susceptibility to overfitting. Harnessing 

the validation set as our compass, we embark on a voyage of 

hyper parameter exploration, guided by techniques such as 

grid search or random search. 

 
D. Model Evaluation 

 

 Performance Evaluation 

The performance of the trained model is assessed using 

a variety of metrics on the held-out test set. These metrics 

include accuracy, precision, recall, F1-score, and the area 

under the receiver operating characteristic curve (ROC-

AUC). They collectively offer valuable insights into the 

model's proficiency in accurately classifying instances of 

normal behavior and reverse brute force attacks 

(Goodfellow et al., 2014). 
 

 Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 Precision = TP / (TP + FP) 

 Recall = TP / (TP + FN) 

 F1-Score = 2 * (Precision * Recall) / (Precision + 

Recall) 

 ROC-AUC = (Receiver Operating Characteristic - Area 

Under the Curve) 

 

 Confusion Matrix Analysis 

A confusion matrix is generated to delve into the 
model's performance in terms of true positives, true 

negatives, false positives, and false negatives. By 

scrutinizing this matrix, potential biases or imbalances in the 

model's predictions can be identified, aiding in further 

refinement (Minaee et al., 2020). 

 

Table 2 Confusion Matrix for Predicted Performance 

 
 

 ROC Analysis 

The receiver operating characteristic (ROC) curve is 

crafted, with subsequent calculation of the area under the 

curve (AUC) to gauge the model's discriminative capacity 

across various classification thresholds. A higher AUC value 

signifies enhanced performance in distinguishing between 

normal behavior and instances of attack, enhancing the 

model's overall effectiveness (Kalash et al., 2018). The 

formula for calculating the AUC-ROC is: 

 

AUC-ROC = ∫[0, 1] TPR(t) FPR'(t) dt                 (Eq. 1) 

 

Where: 

 

TPR(t) is the true positive rate at threshold t 
 

FPR(t) is the false positive rate at threshold t 

 

FPR'(t) is the derivative of the FPR with respect to the 

threshold t 

 

The AUC-ROC can be interpreted as the probability 

that a randomly chosen positive instance will be ranked 

higher than a randomly chosen negative instance by the 

classifier. 

 

For discrete classifiers, the AUC-ROC can be 
calculated using the trapezoidal rule or the Mann-Whitney 

U-statistic: 

 

AUC-ROC = (1 / (m * n)) * Σ(i=1 to m) Σ(j=1 to n) I(y_i > 

y_j)                                                                          (Eq. 2) 

 

Where: 

 

m is the number of positive instances 

 

n is the number of negative instances 
 

y_i is the score or predicted probability for the i-th positive 

instance 

 

y_j is the score or predicted probability for the j-th negative 

instance 

 

I(y_i > y_j) is an indicator function that returns 1 if y_i > 

y_j, and 0 otherwise 

 

The AUC-ROC ranges from 0 to 1, with higher values 

indicating better classification performance. An AUC-ROC 
of 0.5 represents a random classifier, while an AUC-ROC of 

1.0 represents a perfect classifier. 

 

IV. EXPERIMENT ANALYSIS AND DISCUSSION 

 

A. Data Description  

The training and evaluation of the model were 

conducted using two distinct datasets, each contributing 

unique perspectives to the task at hand. The first dataset, 

UNSW-NB15, stands as a repository of labeled network 

traffic data harvested from a contemporary network 
ecosystem. Within its confines lie an array of cyber assaults, 

among them the elusive reverse brute force attacks. For this 

endeavor, a curated subset of roughly 100,000 network 

flows was selected, meticulously balanced with 50% 

representing normal traffic and the remaining 50% 

portraying instances of reverse brute force attacks. This 

dataset thus offers a nuanced portrayal of real-world 
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network dynamics, incorporating the intricacies of both 

benign and malicious activities. 

 

Contrastingly, the KDD Cup 99 dataset emerges as a 

benchmark standard in the realm of intrusion detection, 

boasting a collection of labeled network traffic data 

extracted from a simulated network environment. While it 

encompasses a diverse spectrum of attacks, such as Denial 
of Service (DoS) and probing assaults, it notably lacks 

specific instances of reverse brute force attacks. To address 

this gap, a strategic augmentation strategy was employed, 

injecting synthetic instances of reverse brute force attack 

traffic into the dataset. Leveraging known attack patterns, 

this augmentation process imbued the dataset with a 

semblance of the elusive attack type, thereby enriching its 

utility for training and evaluating the model. 

 

By harnessing the complementary strengths of these 

two datasets, the model's training regimen was fortified with 

a multifaceted understanding of network behavior, 
encompassing both genuine interactions and adversarial 

maneuvers. This hybrid approach not only broadened the 

model's exposure to diverse attack scenarios but also 

fostered robustness against emerging threats, ensuring its 

efficacy in real-world deployment scenarios. 

 

B. Feature Engineering  

Feature engineering is a pivotal process in data 

analysis, especially when dealing with network traffic data. 

In our study, we meticulously extracted a plethora of 

features to gain comprehensive insights into the network 
behavior. These features were meticulously categorized into 

three main types: flow-based, time-based, and packet-based 

features. 

 

Flow-based features serve as a foundational element in 

understanding network dynamics. They encapsulate crucial 

information such as source and destination IP addresses, 

port numbers, packet count, and byte size. By dissecting the 

flow of data at this level, we can discern patterns, anomalies, 

and potential security threats within the network 

architecture. 

 
Time-based features add another dimension to our 

analysis by incorporating temporal aspects of network 

traffic. Understanding the timing of network activities is 

crucial for identifying patterns of usage, potential 

bottlenecks, and even malicious activities. These features 

include metrics such as duration of flows, inter-arrival times 

between packets, and the time of day when network 

activities occur. By leveraging time-based features, we can 

uncover insights into network behavior that might otherwise 

remain obscured. 
 

Packet-based features delve into the granular details of 

individual packets traversing the network. Each packet holds 

valuable information such as its size, protocol type, and TCP 

flags. By scrutinizing these packet-level attributes, we can 

discern the nature of communication, detect anomalies, and 

even infer the purpose behind certain network activities. 

 

Through meticulous feature engineering, we not only 

enrich the raw network data but also empower subsequent 

analysis and modeling efforts. By leveraging the combined 

insights from flow-based, time-based, and packet-based 
features, we can build robust frameworks for network 

monitoring, anomaly detection, and security threat 

mitigation. This approach not only enhances our 

understanding of network behavior but also fortifies our 

defenses against evolving cyber threats in an increasingly 

interconnected world. 

 

C. Training and Tuning  

The Long Short-Term Memory (LSTM) network is a 

specialized type of recurrent neural network (RNN) 

architecture, designed to capture and process long-term 
dependencies in sequential data. Unlike traditional RNNs, 

which suffer from the vanishing gradient problem and 

struggle to retain information over extended time intervals, 

LSTMs introduce a sophisticated gating mechanism that 

enables them to selectively remember or forget information 

over time. 

 

At the core of the LSTM architecture are three 

fundamental components: the input gate, the forget gate, and 

the output gate. These gates regulate the flow of information 

through the LSTM cell, allowing it to preserve relevant 

information and discard irrelevant or outdated inputs. 
Mathematically, the operations within an LSTM cell can be 

expressed as follows: 

 

 
Fig 1Long Short-Term Memory Training Process (Oruh et al., 2022) 
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 Forget Gate: f_t = σ(W_f * [h_{t-1}, x_t] + b_f) 

The forget gate (f_t) is calculated by applying a sig-

moid activation function (σ) to the linear combination of the 

previous hidden state (h_{t-1}), the current input (x_t), and 

a bias term (b_f), using the weight matrix W_f. The sigmoid 

function squashes the values between 0 and 1, where values 

closer to 0 indicate "forget" and values closer to 1 indicate 

"keep." 
 

 Input Gate: i_t = σ(W_i * [h_{t-1}, x_t] + b_i) g_t = 

tanh(W_g * [h_{t-1}, x_t] + b_g) 

The input gate consists of two parts: a sigmoid layer 

(i_t) that determines which values will be updated, and a 

tanh layer (g_t) that creates a vector of new candidate val-

ues. The sigmoid layer (i_t) and the tanh layer (g_t) are 

computed using separate weight matrices (W_i, W_g) and 

bias terms (b_i, b_g), respectively. 

 

 Update Cell State: c_t = f_t * c_{t-1} + i_t * g_t 

The cell state (c_t) is updated by combining the previ-
ous cell state (c_{t-1}) with the update vector from the input 

gate. The forget gate output (f_t) determines how much of 

the previous cell state should be retained, and the update 

vector (i_t * g_t) determines what new information should 

be added. 

 

 Output Gate: o_t = σ(W_o * [h_{t-1}, x_t] + b_o) h_t = 

o_t * tanh(c_t) 

The output gate consists of a sigmoid layer (o_t) that 

decides what parts of the cell state should be output. The 

output gate (o_t) is computed using a weight matrix (W_o) 
and a bias term (b_o). The next hidden state (h_t) is then 

calculated by multiplying the output of the sigmoid layer 

(o_t) with the tanh activation applied to the current cell state 

(c_t). 

 

Through these equations, an LSTM network learns to 

regulate the flow of information, selectively retaining and 

updating its internal state based on the input data and the 

task at hand. This ability to model long-range dependencies 

makes LSTMs particularly well-suited for a wide range of 

sequential data tasks, including natural language processing, 

time series prediction, and, in the context of the given 

dataset description, network traffic analysis for intrusion 

detection. 

 

The fully connected layer is used where each neuron 

provide a full connection to all learned feature maps issued 

from the previous layer in the cnn. These connected layers 
are based on the sigmoid activation function in order to 

compute the classes’ scores. Using Matlab visualization on 

both training and testing dataset, we can view the accuracy 

of our approach as shown in Figure 2 

 

 
Fig 2 Model Accuracy During Training and Testing of the 

Network 

 

As shown, the accuracy of the trained data increases as 

number of steps (epochs) is increasing, until it reaches 

approximately 94 % of accuracy, which means that there is a 

change of 94% of detecting any reverse-Brute force attack 

destined towards the network. 

 

Table 3 Experimental Results using all features 

Class  Metric  

Accuracy Precision Recall F1-Measure 

Benign 0.874 0.931 0.967 0.918 

Reverse- Brute Force 0.943 0.925 0.978 0.918 

 
The results indicate that the model proposed in this study was able to classify reverse-Brute force attacks with 94.3% 

accuracy, a precision rate of 92.5%, recall rate of 97.8% and F1-score of 91.8%. Table 7 shows the classification using minimal 

features. 

 

Tablet 4 Experimental Results using Minimal Features 

Class  Metric  

Accuracy Precision Recall F1-Measure 

Benign 0.829 0.883 0.901 0.921 

Reverse-Brute Force 0.852 0.891 0.922 0.894 

 

 

 

 

https://doi.org/10.38124/ijisrt/IJISRT24JUL160
http://www.ijisrt.com/


Volume 9, Issue 7, July – 2024                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                  https://doi.org/10.38124/ijisrt/IJISRT24JUL160 

 

 

IJISRT24JUL160                                                                 www.ijisrt.com                                                                                     458  

The results indicate that when minimal features were 

used for classification task the model performance was 

lower in all the metrics compared with the classification task 

using all the features. Using the minimal features to classify 

reverse-Brute force attacks, the model achieved 85.2% 

accuracy, a precision rate of 89.2%, recall rate of 92.2% and 

F1-score of 89.4%.   

 
Finally, we compared the performance of our proposed 

based model with the results of the 5 classical machine 

learning algorithms, namely Naive Bayes, Logistic 

Regression, Decision Tree, k-Nearest Neighbor, and Support 

Vector Machine which used the same dataset.   

 

The comparison of the classification results obtained 

are reported in figure 3 which shows that the deep learning-

based model has a better classification accuracy, recall and 

precision than the other machine learning algorithms. In 

addition, the F1 score of the model was slightly better, 

compared with the k-Nearest Neighbour, Logistic 
Regression and Support Vector Machine models. 

 

 
Fig 3 Performance Evaluation with Classic Machine 

Learning Models 

 

The above experimental results demonstrate that the 
convolutional neural network model is superior to the 

traditional machine learning methods in terms of the ability 

to detect reverse-Brute force attacks. Utilizing the CICIDS 

dataset, and the features selected, we found success in 

classifying unknown network flows into benign and reverse-

Brute force attacks. From just these features, we can see that 

the CNN based model could identify the traits which 

characterize a reverse-Brute force attack.   

 

Reverse brute force attacks are common in network 

where an attacker attempts to guess the username and 
password of a user on the Secure Shell protocol. This type 

of network attack is simple to perform, with the results from 

a successfully compromised system triggering a number of 

destructive outcomes. Previous studies have also 

demonstrated that deep learning algorithms, particularly, 

convolutional neural networks, are effective in detecting and 

preventing these kinds of attacks as an alternative to the 

firewall techniques used today. 

V. DISCUSSION 

 

The experimental results presented in this study 

demonstrate the effectiveness of the proposed Long Short-

Term Memory (LSTM) network-based model for detecting 

network-based reverse brute force attacks. The model's 

ability to capture temporal patterns and long-term 

dependencies in sequential network traffic data proved 
crucial in accurately identifying malicious login attempts 

characteristic of reverse brute force attacks. 

 

One of the key strengths of the LSTM model lies in its 

ability to handle variable-length input sequences, which 

aligns well with the nature of network traffic data. By 

processing sequences of network data points, including 

features such as IP addresses, timestamps, and 

authentication outcomes, the model could effectively discern 

patterns indicative of reverse brute force attacks from 

legitimate login attempts. 

 
The utilization of two distinct datasets, UNSW-NB15 

and KDD Cup 99, provided a comprehensive and diverse 

training environment for the model. The UNSW-NB15 

dataset, comprising real-world network traffic data, exposed 

the model to genuine instances of reverse brute force 

attacks, allowing it to learn from authentic attack patterns. 

Conversely, the KDD Cup 99 dataset, while lacking specific 

instances of reverse brute force attacks, was strategically 

augmented with synthetic attack data, further broadening the 

model's exposure to diverse attack scenarios. 

 
The feature engineering process played a crucial role in 

extracting informative features from the raw network data. 

By categorizing features into flow-based, time-based, and 

packet-based categories, the model could leverage a 

comprehensive set of attributes, capturing various aspects of 

network behavior. This multifaceted approach enabled the 

model to discern subtle patterns and anomalies that might 

otherwise have gone undetected. 

 

The experimental results underscore the model's strong 

performance in accurately classifying reverse brute force 

attacks. When evaluated on the test dataset using all 
features, the model achieved an impressive accuracy of 

94.3%, a precision rate of 92.5%, a recall rate of 97.8%, and 

an F1-score of 91.8%. These metrics demonstrate the 

model's ability to effectively distinguish between benign and 

malicious network traffic, minimizing both false positives 

and false negatives. 

 

Furthermore, the comparison with classical machine 

learning algorithms, such as Naive Bayes, Logistic 

Regression, Decision Tree, k-Nearest Neighbor, and Support 

Vector Machine, highlighted the superiority of the deep 
learning-based LSTM model. The model outperformed these 

traditional methods in terms of classification accuracy, 

recall, precision, and F1-score, underscoring the advantage 

of leveraging deep learning techniques for complex tasks 

like intrusion detection. 
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However, it is noteworthy that the model's 

performance diminished when evaluated using a minimal set 

of features, with accuracy dropping to 85.2%, precision to 

89.2%, recall to 92.2%, and F1-score to 89.4%. This 

observation emphasizes the importance of comprehensive 

feature engineering and the inclusion of relevant features to 

enable the model to capture intricate patterns effectively. 

 
While the proposed LSTM model demonstrated 

promising results, there are several avenues for further 

improvement and exploration. Incorporating additional data 

sources, such as network logs and system event data, could 

potentially enhance the model's detection capabilities and 

provide a more holistic view of the network environment. 

Additionally, exploring ensemble methods or hybrid 

approaches that combine the strengths of different machine 

learning techniques could lead to further performance gains. 

 

Moreover, as cyber threats continually evolve, it is 

crucial to ensure that the model remains adaptive and 
responsive to emerging attack vectors. Implementing 

mechanisms for continuous learning and model updates 

could help maintain the model's relevance and effectiveness 

in the face of evolving cybersecurity landscapes. 

 

In conclusion, the LSTM network-based model 

proposed in this study represents a significant advancement 

in the detection and prevention of network-based reverse 

brute force attacks. Its ability to capture temporal patterns, 

leverage comprehensive feature engineering, and 

outperform classical machine learning algorithms 
demonstrates the potential of deep learning techniques in the 

realm of cybersecurity. However, ongoing research and 

improvements are essential to stay ahead of the ever-

changing threat landscape and ensure robust defense 

mechanisms against sophisticated cyber attacks. 

 

VI. CONCLUSION AND FUTURE WORKS 

 

The threat posed by network-based reverse brute force 

attacks continues to be a formidable challenge for 

organizations seeking to safeguard their critical systems and 

data. This research has demonstrated the immense potential 
of leveraging advanced artificial intelligence and deep 

learning techniques, specifically Long Short-Term Memory 

(LSTM) networks, to combat these insidious attacks 

effectively. 

 

Through extensive experimentation and rigorous 

evaluation, the proposed LSTM-based model has proven its 

capability to accurately detect and mitigate reverse brute 

force attacks by analyzing sequential network traffic data 

and identifying anomalous patterns indicative of malicious 

login attempts. The model's exceptional performance, 
achieving an accuracy of 94.3%, a precision rate of 92.5%, a 

recall rate of 97.8%, and an F1-score of 91.8%, underscores 

its efficacy as a robust intrusion detection and prevention 

system. 

 

 

 

Notably, the LSTM model's superiority over classical 

machine learning algorithms, such as Naive Bayes, Logistic 

Regression, Decision Tree, k-Nearest Neighbor, and Support 

Vector Machine, highlights the advantages of leveraging 

deep learning techniques for complex cybersecurity 

challenges. Its ability to capture long-term dependencies and 

learn intricate patterns from sequential data sets it apart, 

providing a compelling solution to the ever-evolving threat 
landscape. 

 

While the proposed model has demonstrated 

remarkable results, it is important to acknowledge that the 

field of cybersecurity is constantly evolving, with new 

threats and attack vectors emerging continuously. As such, 

ongoing research and continuous refinement of the model 

are imperative to maintain its relevance and effectiveness in 

the face of these dynamic challenges. 

 

 Future Work 

Potential avenues for future work include incorporating 
additional data sources, such as system logs and event data, 

to provide a more comprehensive view of the network 

environment. Exploring ensemble methods or hybrid 

approaches that combine the strengths of different machine 

learning techniques could further enhance the model's 

detection capabilities and robustness. 

 

Moreover, the implementation of mechanisms for 

continuous learning and model updates would ensure that 

the LSTM-based system remains adaptive and responsive to 

emerging attack vectors, fostering a proactive and resilient 
defense against cyber threats. 

 

In conclusion, this research has made a significant 

contribution to the field of cybersecurity by developing a 

cutting-edge, AI-driven solution for detecting and 

preventing network-based reverse brute force attacks. By 

harnessing the power of deep learning and leveraging the 

strengths of LSTM networks, organizations can fortify their 

defenses, safeguarding critical systems and data from 

unauthorized access and potential breaches. 

 

As the digital landscape continues to evolve, the 
findings and methodologies presented in this research serve 

as a foundation for further exploration and innovation in the 

realm of cybersecurity. Through interdisciplinary 

collaborations and a relentless pursuit of knowledge, we can 

stay ahead of malicious actors and ensure a more secure 

digital future for all. 
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