
Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1016

IJISRT24JUN1016 www.ijisrt.com 338

Online Shopping Item Cost Analysis through

Web Scraping and Nodejs

Dr.K V Nagendra1 ,

Professor, Department of CSE,

Sree Venkateswara College of Engineering,

Nellore, Andhra Pradesh, India

Dr.M.Ussenaiah2

Professor, Department of CS

V S University, Nellore, AP.

Abstract:- The swift expansion of online shopping

platforms has resulted in a wide variety of products

being available for purchase online, necessitating the

development of effective tools for comparing prices. This

initiative suggests a solution that makes use of web

scraping methods and the Node.js framework to gather

and examine the prices of products from various online

stores. The system will make use of web scraping tools to

pull out important pricing data from selected websites,

and Node.js will be used for the processing and

comparison of this data. The goal of this project is to

create an easy-to-use interface that allows customers to

input details about a product and get detailed price

comparisons from various online sellers. Through this

project, we aim to equip consumers with useful

information to make well-informed buying choices in the

competitive online shopping market.

Keywords:- E-Commerce, Web Scraping, Node.js, Data

Processing, Consumers.

I. INTRODUCTION

The rapid growth of e-commerce platforms has led to a

vast array of products being offered online, creating a need

for efficient price comparison tools. This project proposes a

solution leveraging web scraping techniques and the Node.js

environment to collect and analyze product prices from

various e- commerce websites. The system will utilize web

scraping libraries to extract relevant pricing information

from targeted websites, and Node.js will be employed for

data processing and comparison tasks.

The article aims to develop a user-friendly interface
where consumers can input product details and receive

comprehensive price comparisons across different online

retailers.Through this project, we seek to provide consumers

with valuable insights to make informed purchasing

decisions in the competitive e-commerce landscape.

Web scraping has emerged as a powerful technique for

extracting data from websites, allowing for the automated

collection of information such as product prices,

descriptions, and availability. By leveraging web scraping, it

is possible to gather large volumes of data from multiple e-
commerce websites in a structured format. This data can

then be analyzed to identify trends, patterns, and

discrepancies in pricing, enabling consumers to make

informed purchasing decisions. Furthermore, web scraping

can be integrated with programming languages and

frameworks to develop custom applications that cater to

specific needs, such as price comparison tools.

Node.js has gained popularity as a server-side runtime

environment for building scalable and efficient web

applications. Its event-driven architecture and non- blocking

I/O model make it well-suited for handling asynchronous

tasks, such as fetching data from external sources like e-

commerce websites. Through the integration of these
technologies, we aim to address the need for efficient price

comparison in the ever-expanding landscape of online

shopping.

II. RELATED WORKS

Garcia et al. (2021) present a thorough analysis of

price comparison methods in e-commerce. The paper covers

techniques used by consumers and businesses, from manual

browsing to automated web scraping and API-based

solutions. It also addresses challenges such as data accuracy

and legal implications, while suggesting future research
directions including the integration of machine learning for

dynamic pricing analysis and the development of

personalized price comparison tools.

Wang et al. (2024) introduce a web scraping system

tailored for large-scale price monitoring in e-commerce,

focusing on its architecture and implementation details that

leverage distributed computing techniques to gather and

process pricing data from numerous e-commerce sites

simultaneously. The paper also addresses challenges related

to data volume, distributed resource management, and data
quality and consistency, along with performance and

scalability evaluations using real-world e-commerce

datasets, contributing to scalable automated price

monitoring solutions in the e-commerce industry.

Lee et al.'s (2023) study investigates the fusion of

machine learning and natural language processing to enable

real-time price comparison in e-commerce. The researchers

propose a system that utilizes these technologies to extract

pricing information from product descriptions and reviews,

enabling comparison across multiple retailers. The paper
also addresses the challenges of implementing the system

and evaluates its performance, emphasizing its potential to

https://doi.org/10.38124/ijisrt/IJISRT24JUN1016
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1016

IJISRT24JUN1016 www.ijisrt.com 339

improve the accuracy and timeliness of price comparison in

the e-commerce sector.

Martinez et al. (2022) examine the ethical challenges

of web scraping for price comparison, discussing issues of

data ownership, privacy, and fair competition. Their study

offers recommendations for ethical web scraping practices,

aiming to contribute to the ongoing discourse on ethical
considerations in e-commerce data collection and analysis.

Garcia et al. (2021) provide a thorough examination of

price comparison techniques in e-commerce, including

manual browsing, automated web scraping, and API-based

solutions used by consumers and businesses. They also

address challenges such as data accuracy, website

accessibility, and legal implications while suggesting future

research avenues like integrating machine learning for

dynamic pricing analysis and developing personalized price

comparison tools.

The 2017 book "Node.js Web Scraping" by White et

al. offers a comprehensive exploration of web scraping

using Node.js, a popular JavaScript runtime for server-side

applications. The text starts by providing an overview of

web scraping and its importance for extracting data from

websites. It then delves into practical guidance, equipping

developers with the knowledge to leverage Node.js for their

web scraping projects.

III. EXISTING SYSTEM

The existing system implemented in Python for web

scraping and product price comparison has served its

purpose by effectively gathering data from various e-

commerce websites and providing users with comparative

pricing information. However, despite its functionality, the

system has several drawbacks that need to be addressed.

Firstly, the Python-based web scraping implementation

may face challenges when dealing with websites that

heavily rely on client-side rendering using JavaScript. Since

Python libraries like Beautiful Soup and Scrapy primarily
focus on parsing static HTML content, they may struggle to

extract data from dynamically generated web pages. This

limitation can lead to incomplete or inaccurate data

collection, ultimately impacting the reliability of the price

comparison results.

Lastly, the Python-based implementation may face

challenges in terms of maintaining and updating the web

scraping scripts over time. Websites frequently undergo

changes in their structure, layout, and anti-scraping

measures, requiring continuous monitoring and adjustment

of scraping algorithms to ensure data accuracy and
reliability. This manual maintenance process can be time-

consuming and resource-intensive, detracting from the

overall effectiveness and efficiency of the system.

IV. PROPOSED SYSTEM

To overcome the drawbacks of the existing Python-

based system for web scraping and product price

comparison, transitioning to Node.js can offer several

advantages and solutions:

 Handling Dynamic Content:
Node.js, with its non- blocking I/O model, is well-

suited for handling asynchronous tasks and interacting with

dynamic web pages effectively. By leveraging libraries like

Puppeteer, developers can automate browser interactions to

render and scrape dynamically generated content, ensuring

more accurate and comprehensive data collection from

websites that heavily rely on client-side rendering using

JavaScript.

 Robust Data Normalization and Matching:

Node.js provides a flexible environment for
implementing robust data normalization and matching

algorithms. Developers can utilize JavaScript's string

manipulation and regular expression capabilities to

standardize product names, descriptions, and formats across

different e-commerce platforms. Additionally, Node.js

offers a wide range of libraries and frameworks for data

manipulation and analysis, enabling developers to create

more sophisticated matching mechanisms to improve the

accuracy of price comparison results.

 Improved Scalability and Performance:

Node.js' event- driven architecture and non-blocking
I/O model make it inherently scalable and efficient in

handling large volumes of data. By utilizing asynchronous

programming techniques and optimizing code execution,

developers can enhance the system's performance, resulting

in faster response times and improved scalability as the

number of supported e- commerce websites grows.

 Automated Maintenance and Updates:

Node.js ecosystem offers tools and libraries for

automated testing, continuous integration, and deployment,

facilitating the maintenance and updates of web scraping
scripts. By implementing automated testing pipelines and

version control systems, developers can streamline the

process of monitoring and adjusting scraping algorithms to

adapt to changes in website structure, layout, and anti-

scraping measures, reducing manual maintenance efforts

and ensuring data accuracy and reliability over time.

V. DESIGN AND IMPLEMENTATION

The primary objective of this project is to develop a

system that automates the process of comparing prices of

products across different e-commerce platforms.

 Data Collection:

To obtain price data from multiple e- commerce

websites, a web scraping approach was developed. Popular

e-commerce platforms such as Amazon, Flipkart, and eBay

were picked as data sources. Specific product categories or

types were determined to compare pricing across various

https://doi.org/10.38124/ijisrt/IJISRT24JUN1016
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1016

IJISRT24JUN1016 www.ijisrt.com 340

marketplaces. Web scraping techniques using the Beautiful

Soup module in Python were applied to collect product

information, including prices, from the chosen ecommerce

websites. Throughout the data collection process, ethical and

legal compliance was guaranteed by complying to the terms

of service and scraping policies of each website

 Data Preprocessing:
After collecting the price data, multiple preprocessing

steps were conducted to assure data quality and consistency.

Cleaning and transformation processes were employed to

manage missing or erroneous information. Missing values in

the pricing data were resolved by appropriate imputation

techniques or by removing cases with partial information

from the study. Additionally, data standardization

techniques were employed to bring the pricing to a common

format or scale, enabling fair comparisons across multiple

platforms.

 Data Analysis and Comparision:

The obtained and preprocessed price data underwent

analysis and comparison to derive useful insights.

Descriptive statistics, including measures such as mean,

median, and standard deviation, were generated to

understand the distribution and variability of prices within

each product category. Cross-platform comparisons were

undertaken to detect variations and potential cost reductions

for consumers. Data visualization tools, such as histograms,

box plots, or scatter plots, were applied to efficiently

illustrate the pricing comparisons and emphasize patterns or

trends.

 Evaluation Metrics:

To analyze the performance and effectiveness of the

price comparison system, numerous evaluation indicators

were applied. Accuracy was validated by manually

validating a subset of prices against the scraped data.

Efficiency was tested by analyzing the data collecting time,

scalability, and the system's ability to manage a high volume

of products and websites. User satisfaction was acquired

through surveys or interviews to measure the usability and

effectiveness of the price comparison system, providing
insights into user attitudes and experiences

 Comparision with Manual Search:

To validate the accuracy and reliability of the

automated method, manual price searches were performed

on the selected e-commerce platforms for a subset of

products included in the data collection. The results of the

manual searches were compared with the scraped prices

received from the system, allowing for an assessment of the

system's performance and reliability in retrieving correct
pricing information.

 Discussion and Analysis:

The results obtained from the experimental setup were

fully analyzed to assess the accuracy, performance, and

usability of the price comparison system created using web

scraping techniques. Limitations and challenges met during

the web scraping process, such as website structure changes

or data inconsistencies, were discussed. Additionally,

insights into the advantages and limitations of using web

scraping for price comparison were provided, along with
possible areas for future improvements.

 Algorithm:

 Step1:Creating a project directory

 Step2:Install and require necessary modules

 Step3:Initialize Global variables

 Step4:Define ascrapper() function which is responsible

for scrapping amazon products.

 Step5:Define fscrapper() function which is responsible

for scrapping flipkart products.

 Step 6:Initialize the port address

 Step7: Start the web server and handle the user

Interactions.

 Step1: Creating a Project in the Gitbash Mkdir Products

CD Products

 Step2:Install and Require Necessary Modules

To install the required modules we use cmd “npm

install modulename”.After downloading we require them in

the program.to effective execution and they can be used in
another program.

Fig 1 Importing Modules

https://doi.org/10.38124/ijisrt/IJISRT24JUN1016
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1016

IJISRT24JUN1016 www.ijisrt.com 341

 Step 3:Initialize Global Variables

In Fig. 2 ,the code initializes global variables to store the price and the product insormation from two sources.We are using

two arrays to store data from each of them data processed.They are updated when the program is executed.

Fig 2 Initializing Variables

 Step 4: Defining Ascrapper() Function

In Fig. 3, This function takes name of the product as

the input and process the input .The is a url in which the

product name is added and then queried to the web .It

includes the automation tool which is responsible for the
scrsping the html pages when the request is sent then it

receives a html file then it is parsed to get our required ouput

by going through the elements of the web.After getting the

selector name ,it is searched in the page.The received data is

processed and then sent to the server which then analyses it

and then it evaluates. This method is for scraping the
amazon.

Fig 3 Ascrapper() Method

 Step 5:Define Fscrapper() Method

In Fig.4, This function takes name of the product as the input and process the input .The is a url in which the product name

is added and then queried to the web .There are different methods and those include newpage(),browser(),It works as a headless

browser. The received data is processed and then sent to the server which then analyses it and then it evaluates.This method is for

scraping the flipkart.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1016
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1016

IJISRT24JUN1016 www.ijisrt.com 342

Fig 4 Fscrapper() Method

 Step6:Initialize the Port Address

To initialize a webserver there should be a port address

on which it is accessible to put a request.There will be
different routes which are responsibe to handle the different

requests sent to them .The main route is the home route

‘/’,which is the entry point of the application to make

requests.

Expressjs is the main software which is used to handle

the requests that are made by the users and it has methods

which are used to respond them by sending files or the

messages over the server .Body-parser this is the middle

ware which is used to tap into the data submitted by form to

access the data.

 Step7:Start the Webserver and Handle the User Requests

The server is started in two ways by using Node or

Nodemon which restarts automatically whenever the file is

changed and saved.Fig.5,shows the output of the code when

it isexecuted.

Fig 5 Result

VI. COMPARATIVE ANALYSIS

The price comparison project is excellent in a number
of crucial areas. It first demonstrates excellent accuracy by

precisely fetching and comparing prices from multiple e-

commerce websites. The extracted prices are dependable

and trustworthy information that users may rely on. Second,

the system runs effectively, providing quick reaction times

for processing and retrieving data quickly. This improves

the user experience by guaranteeing that consumers can

quickly access price comparisons. Thirdly, a broad range of

e-commerce websites are covered by the project, enabling

customers to compare prices across various platforms and

guaranteeing thorough outcomes. The process is simple and

easy to understand thanks to the user-friendly interface,
which makes it possible to input desired products and choose

website categories. Additionally, the system offers

versatility by enabling users modify the search parameters

that produce results that are unique and customized. In order

to help customers make actions, the project also includes

visualizations like bar graphs that allow users to compare

costs across websites graphically. All things considered, the

price comparison project offers consumers an efficient tool

to help them make educated purchasing decisions by

combining accuracy, efficiency, coverage, user-friendliness,

flexibility, and visualization capabilities.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1016
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN1016

IJISRT24JUN1016 www.ijisrt.com 343

VII. CONCLUSION

In conclusion, the fusion of web scraping and Node.js

for e- commerce product price comparison stands as a

transformative and influential methodology. This dynamic

synergy not only provides businesses and consumers with

instantaneous and precise insights into fluctuating product

prices but also establishes a scalable foundation for
navigating the complexities of the ever-evolving e-

commerce domain. Overcoming challenges such as legal

constraints and data consistency, this innovative approach

reinforces its position as a formidable solution. It empowers

businesses to stay ahead of the competition by adapting to

real-time pricing dynamics, offering consumers the

transparency and information needed to make informed

purchasing decisions.Moreover, the seamless integration of

web scraping and Node.js underscores the adaptability and

versatility of modern technological solutions. By

strategically addressing legal considerations and ensuring
data integrity, this combined approach sets a new standard

for efficiency in the e- commerce sector. As businesses

continue to seek ways to optimize their operations and

enhance the user experience, the amalgamation of web

scraping and Node.js emerges as a key driver in achieving

these objectives.. Through this innovative pairing, the

potential for growth, competitiveness, and user satisfaction

in the e-commerce ecosystem reaches new heights.

REFERENCES

[1]. Jones, M. (2020). "Web Scraping with Python: A
Comprehensive Guide." O'Reilly Media.

[2]. Cantelon, G., Harter, M., & Rajlich, M. (2017).

"Node.js in Action." Manning Publications.

[3]. Nock, R. (2018). "Web Scraping with Python: A

Guide to Data Mining the Modern Web." O'Reilly

Media.

[4]. Mehta, A. (2019). "Mastering Node.js: Build robust

and scalable real-time server-side web

applications." Packt Publishing.

[5]. McKinney, W. (2018). "Python for Data Analysis."

O'Reilly Media.
[6]. Subramanian, V. (2019). "Web Scraping with

Node.js: A Comprehensive Guide." Packt Publishing.

[7]. Hughes, D. (2020). "Node.js 8 the Right Way:

Practical, Server-Side JavaScript That Scales."

Pragmatic Bookshelf.

[8]. Lawson, R. (2018). "Web Scraping with Python and

BeautifulSoup." Apress.

[9]. Rauch, G. (2018). "Concurrency model and Event

Loop." Node.js Documentation. [Online] Available

at: https://nodejs.org/en/docs/guides/event-loop-

timers-and- nexttick/

[10]. Data Protection Authority. (2022). "Guidelines on
Web Scraping and Privacy." [Online] Available at:

https://www.dataprotectionauthority.com/guidelines/

web- scraping-privacy/

[11]. Anand V. Saurkar, Kedar G. Pathare, Shweta A.

Gode, “An overview of web scraping techniques and

tools” International Journal on Future Revolution in

Computer Science and Communication Engineering,

April 2018.

[12]. Jiahao Wu, “Web Scraping using Python: Step by

step guide” ResearchGate publications (2019).

[13]. Matthew Russell, “Using python for web scraping,”
No Starch Press, 2012.

[14]. Ryan Mitchell, “Web scraping with Python,”

O’Reilly Media, 2015.

https://doi.org/10.38124/ijisrt/IJISRT24JUN1016
http://www.ijisrt.com/
http://www.dataprotectionauthority.com/guidelines/web-
http://www.dataprotectionauthority.com/guidelines/web-
http://www.dataprotectionauthority.com/guidelines/web-
http://www.dataprotectionauthority.com/guidelines/web-

