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Abstract:- This work investigated the application of the 

Alternative II refined plate theory in the analysis of an 

anisotropic plate subjected to in-plane and lateral loads. 

The kinematic equations developed from the Alternative 

II Refined plate theory were used together with a 

complete three-dimensional constitutive relation to obtain 

the total potential energy of an anisotropic plate under 

lateral and in-plane loads. General variation of the total 

potential energy was done, a governing equation and two 

compatibility equations were obtained. A polynomial 

displacement function was obtained by solving the 

governing and compatibility equations. This was used to 

obtain peculiar displacement functions by satisfying the 

boundary conditions of any plate. The stiffness 

coefficients were obtained using the displacement 

function. With the displacement functions and the 

stiffness coefficients, the equations for the in-plane 

normal and shear stresses as well as the transverse normal 

and shear stresses were determined for any applied 

lateral load when the applied in-plane load is a fraction of 

the buckling load. Also, the equations for the 

displacements of the plate were determined. Numerical 

values of the stresses and displacement parameters were 

determined for span to thickness ratios of 5, 10, 20 and 

100 at angle of fiber orientations of 0 and aspect ratios of 

1, 1.5 and 2.0 when the ratio of applied in-plane load to 

buckling load are 0, 0.25 and 0.5. Using simple percentage 

difference, the results from this work were compared with 

the works of previous researchers. 

 

Keywords:- Alternative II Theory, Anisotropic, In-plane and 

Lateral Loads, Rectangular Plate. 

  

I. INTRODUCTION 

 

Plates are flat structural members bounded by plane or 

curved surfaces, separated by a plane known as the thickness. 

They are three-dimensional elements with length and breadth 

usually large when compared to the thickness (Shufrin and 

Eisenberger, 2005). In engineering applications, plates are 

greatly used as structural parts to withstand loads which can 

result to bending or buckling of the plate.  Some of the uses 

of plates are in the fields of civil, mechanical, marine and 

aeronautical engineering for the construction of roofs of 

structures, building floors, bridges, aircraft, vehicles, ships 

etc. A plate can be classified as thick plate or thin plate. This 

classification is based on the ratio of the span of the plate to 

the thickness.  Plates whose span to thickness ratio are less 

than 20 are usually called thick plates while plates whose 

span to thickness ratio are higher than 50 are called thin 

plates. In between these two classes are the moderately thick 

plates (Ibearugbulem, Ezeh, Ettu and Gwarah, 2018, Ghugal 

and Sayyad, 2011).  

 

Many plate theories have been developed in the past for 
the analysis of plates. The classical plate theory is one of the 

earliest theories used to solve plate problems. It has many 

assumptions that made the analysis appear so much 

simplified (Vaghefi, 2010). However, due to these 

assumptions, the classical plate theory, does not offer very 

good results when used in thick plate analysis. This is due to 

the development of shear stresses that occur across the 

thickness of the plate in thick plates (Rajesh and Meera, 2016, 

Liew, Hung and Lim, 1993). The assumption that a vertical 

cross section that is initially straight and normal to the mid-

surface of the plate before deformation remains normal to the 
mid-surface after deformation used in the classical plate 

theory relaxes the consideration of these transverse shear 

stresses. Since significant transverse shear stresses occur in 

thick and moderately thick plates, it is necessary to seek for 

theories that would adequately treat these stresses. The first-

order shear deformation theory which is developed by 

Reissner and Mindlin is one of the plate theories that consider 

the transverse shear stresses (Shimpi and Patel, 2006). In the 

first-order shear deformation theory, the displacement field 

has a linear relationship with the mid-plane displacements. It 

projects the shear stresses to be constant throughout the 

thickness of the plate. Hence, shear correction factors are 
needed to obtain the actual distribution of the shear stresses. 

These shear correction factors satisfy constitutive relations 

when used in the formulation of the kinematics equations and 

produce accepted variation of transverse shear stress across 

the thickness of the plate (Shufrin and Eisenberger, 2005; 

Sadrnejad, Daryan, and Ziaei, 2009; Ghugal and Sayyad, 

2011). Higher-order shear deformation theories are other 

theories that consider the shear deformation of the plate. An 

example of the higher-order shear deformation theories is the 

theory developed by Reddy which uses parabolic variations 

in the shear stresses across the thickness of the plate (Sayyad, 
2011). 
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Plates are three-dimensional elements. Some scholars 

resort to treating plate as a two-dimensional element or 

treating it as a partial three-dimensional element because of 

the expected ease in the computation when using such 

assumptions. An example of this is the classical plate theory. 

When such assumptions are made, the results obtained are 

only approximate results (Sayyada and Ghugal, 2012, Rajesh 

and Meera, 2016). Some earlier scholars have carried out 
three-dimensional analysis on rectangular thick plates. Most 

works on three-dimensional analysis are for functionally 

graded (or sandwich) plates (Uymaz and Aydogdu, 2012; 

Srinivas and Rao, 1971; Vaghefi et al., 2010; Wuxiang and 

Zheng, 2009; Sburlati, 2014; Zhang, Qi, Fang and He, 2020). 

However, Ibearugbulem, Onwuegbuchulem and 

Ibearugbulem (2021) carried out analytical three-dimensional 

bending analysis of simply supported rectangular plate using 

a third order shear deformation function while Onyeka, 

Mama and Okeke (2022) investigated the three-dimensional 

stability analysis of plate using a direct variational energy 
method.  

 

Anisotropic materials have gained more popularity in 

the field of structural engineering especially with the increase 

in the use of composite materials. An anisotropic material has 

its elastic properties vary in different directions. The elastic 

properties include the modulus of elasticity, Poisson ratio and 

the shear modulus. Composite materials, wood and most 

crystals are examples of anisotropic materials. A material can 

also be classified as orthotropic or isotropic. An orthotropic 

material is a special case of anisotropic materials which has 

the material properties vary along three mutually 

perpendicular axis whereas an isotropic material has the 

material properties the same in all directions. An example of 

orthotropic material is wood while an example isotropic 

material is steel (Caterina, 2019). Njoku, Ibearugbulem, Ettu 

and Anya (2023) carried out bending analysis of thick 
rectangular anisotropic plate using a modified first order 

shear deformation theory known as the Alternative I theory. 

In their formulation, the scholars expressed the displacement 

of the plate as a single unit, not having a classical component 

and shear deformation part. This is unlike in the Alternative 

II theory used in this work which treats the displacement as 

made up of the classical part and shear deformation part. 

 

II. FORMULATION OF STRESSES AND 

DISPLACEMENT EQUATIONS 

 
The deformed section of a plate based on the Alternative 

II theory is as shown on Figure 1. The rotation of the plate is 

expressed as the summation of the rotation from the classical 

plate theory (CPT), which is given as ϕc and the rotation from 

shear deformation given as ϕs. The displacement equations 

are also made up of the classical part (uc and vc) and the shear 

deformation components (us and vs). This is as shown on 

Equation (1) and (2). 

 

 
Fig 1: Deformed Section of a Plate 

 

 The Basic Assumptions Made in this Study are as Given 

Below: 

 

 The plate material is flat before loading.  

 The deflection (w) of the middle in-plane surface of the 

plate is small when compared with the thickness of the 

plate. That is w/t < 0.3. 

 The middle surface of the plate never stretches nor 

compresses before, during or after bending. 

 A straight and flat x-z or y-z section, which is normal to 

middle x-y plane before bending shall remain straight and 

flat but not normal to the middle x-y surface after bending. 

 The actual transverse shear stresses, that is, x-z and y-z 

shear stresses distributed across the thickness of the plate 

are the product of nominal x-z and y-z shear stresses and 

shear stress shape profile, g(z). That is: 
 

 τxza = τxz g(z)  
 τyza = τyz g(z) 

 
 Displacement field and Kinematics 

The displacements of the plate in the x and y directions 

are given in Equations 1 and 2 respectively. 

 

u = uc + us                                                                              (1)   
 

v = vc + vs                                                                               (2) 
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Where uc and vc are the Classical Components of the 

displacement gives as: 

  

uc =  z 
∂w

∂x
                                                                                 (3) 

 

vc =  z 
∂w

∂y
                                                                                (4)   

 

Also, us and vs are the shear deformation components of the displacement given as: 
 

us =  zՓ𝑥                                                                                     (5)  
 

vs =  zՓ𝑦                                                                                    (6)  

 

Substituting Equations (3) to (6) into Equations (1) and 
(2) gives the displacements u and v as. 

 

u = z 
∂w

∂x
+  zՓ𝑥                                                                        (7) 

 

v = z 
∂w

∂y
+  zՓ𝑦                                                                       (8) 

 

The kinematic relations which are equations showing 

the relationship between strain and displacement are obtained 

using Equations (7) and (8). This is as shown below.  

 

εx = 
∂u

∂x
= 𝑧(

∂2𝑤

∂𝑥2
+
∂Փ𝑥
∂x
)                                                 (9) 

 

εy = 
∂v

∂y
= 𝑧 (

∂2𝑤

∂𝑦2
+
∂Փ𝑦
∂y

)                                              (10)  

 

εz = 
∂w

∂z
                                                                                  (11)  

 

γxy = 
∂u

∂y
+
∂v

∂x
= 𝑧 (2

∂2𝑤

∂x∂y
+
∂Փ𝑥
∂y

+ 
∂Փ𝑦
∂x

)              (12) 

 

γxz = 
∂u

∂z
+
∂w

∂x
= 2

∂w

∂x
+ Փ𝑥                                           (13) 

 

γyz = 
∂v

∂z
+
∂w

∂y
= 2

∂w

∂y
+ Փ𝑦                                           (14) 

 

 Constitutive Relations 

A complete three-dimensional constitutive relation is 

used to express the relationships between stresses and strains. 

This will consist of six stresses and six strains as shown 

below: 

 

[
 
 
 
 
 
σ11
σ22
σ33
τ12
τ13
τ23]

 
 
 
 
 

=
E0
Δ
 

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 0 0 0
𝑐21 𝑐22 𝑐23 0 0 0
𝑐31 𝑐32 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐55 0
0 0 0 0 0 𝑐66]

 
 
 
 
 

 

[
 
 
 
 
 
 
 
ε11

ε22

ε33

γ12

γ13

γ23]
 
 
 
 
 
 
 

                                                                                             (15) 

 

For an anisotropic material, the stresses above which are in local coordinate (1-2 coordinate) system would be transformed to 
the global coordinate (x-y coordinate) system as shown in Equation (16). 

 

[
 
 
 
 
 
σx
σy
σz
τ𝑥𝑦
τ𝑥𝑧
τ𝑦𝑧]
 
 
 
 
 

=

{
 
 

 
 

[𝑇]−1
E0
Δ

[
 
 
 
 
 
e11 e12 e13 0 0 0
e21 e22 e23 0 0 0
e31 e32 e33 0 0 0
0 0 0 e44 0 0
0 0 0 0 e55 0
0 0 0 0 0 e66]

 
 
 
 
 

[𝑇]−𝑇

}
 
 

 
 

[
 
 
 
 
 
 
 
 
εx

εy

εz

γxy

γxz

γyz]
 
 
 
 
 
 
 
 

                                                               (16) 

 

[T] is a transformation matrix given as shown on Equation (17). 

 

[𝑇] =

[
 
 
 
 
 
𝑚2 𝑛2 0 2𝑚𝑛 0 0
𝑛2 𝑚2 0 −2𝑚𝑛 0 0
0 0 1 0 0 0

−𝑚𝑛 𝑚𝑛 0 (𝑚2 − 𝑛2) 0 0
0 0 0 0 𝑚 𝑛
0 0 0 0 −𝑛 𝑚]

 
 
 
 
 

                                                                                                       (17)   

https://doi.org/10.38124/ijisrt/IJISRT24JUN1201
http://www.ijisrt.com/


Volume 9, Issue 6, June – 2024                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                               https://doi.org/10.38124/ijisrt/IJISRT24JUN1201 

 

 

IJISRT24JUN1201                                                           www.ijisrt.com                                                                                     1823 

 

Where: 𝑚 and 𝑛 are Cos θ and  Sin θ respectively while θ is the angle of orientation of the fibres.   
 

Substituting Equation (17) into Equation (16) produces the complete stress-strain relationship as: 

 

[
 
 
 
 
 
σx
σy
σz
τ𝑥𝑦
τ𝑥𝑧
τ𝑦𝑧]
 
 
 
 
 

 =
E0
Δ

[
 
 
 
 
 
a11 a12 a13 a14 0 0
a12 a22 a23 a24 0 0
a13 a23 a33 a34 0 0
a14 a24 a34 a44 0 0
0 0 0 0 a55 a56
0 0 0 0 a56 a66]

 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
εx

εy

εz

γxy

γxz

γyz]
 
 
 
 
 
 
 
 

                                                                                                     (18) 

 

 Total Potential Energy Functional 

The total potential energy is the summation of the strain 
energy stored in the plate and the external work done on the 

plate. This is expressed as in Equation (19) 

 

П =  U − V                                                                               (19)  

 

Where U and V are the strain energy and external energy 
respectively. 

 

The strain energy is given by Equation (20). 

 

U = 
1

2
∫ ∫ ∫ (σxεx + σyεy + σzεz + τxyγxy + τxzγxz + τyzγyz )

1
2

−
1
2

1

0

1

0

∂x ∂y∂z                                                     (20) 

 

The external work, V, consists of the work done by the distributed lateral load, q and the in-plane compressive load Nx. It is 

as given in Equation (21). 

 

V =  q∫ ∫ w
1

0

1

0

∂x ∂y + 
Nx
2
∫ ∫ (

dw

dx
)
21

0

1

0

∂x ∂y                                                                                                     (21) 

 

If the non-dimensional coordinates R= x/a, Q = y/b and S = z/t are introduced, then the stresses from Equation (18) and strains 

from Equations (9) to (14) are both substituted into Equation (20) to obtain the internal work which is then substituted together with 

Equation (21) into Equation (19) to obtain the total potential energy. The total potential energy obtained is given by Equation (22).  

 

 𝑎𝑏D0
2𝑎4

∫ ∫ [a11 ((
∂2𝑤

∂𝑅2
)

2

+ 2𝑎
∂2𝑤

∂𝑅2
.
∂Փ𝑥
∂R

+ 𝑎2 (
∂Փ𝑥
∂R

)
2

)
1

0

1

0

+
2a12
∝2

(
∂2𝑤

∂𝑅2
.
∂2𝑤

∂𝑄2
+ 𝑎

∂2𝑤

∂𝑄2
.
∂Փ𝑥
∂R

+ 𝑎 ∝
∂2𝑤

∂𝑅2
.
∂Փ𝑦
∂Q

+ 𝑎2 ∝
∂Փ𝑥
∂R

.
∂Փ𝑦
∂Q

)

+
2a14
∝

(2
∂2𝑤

∂𝑅2
.
∂2𝑤

∂R∂Q
+ 2𝑎

∂2𝑤

∂R∂Q
.
∂Փ𝑥
∂R

+ 𝑎
∂Փ𝑥
∂Q

.
∂2𝑤

∂𝑅2
+ 𝑎2

∂Փ𝑥
∂Q

.
∂Փ𝑥
∂R

+∝ a
∂Փ𝑦
∂R

.
∂2𝑤

∂𝑅2
+∝ 𝑎2

∂Փ𝑦
∂R

.
∂Փ𝑥
∂R

)

+
a22
∝4

((
∂2𝑤

∂𝑄2
)

2

+ 2 ∝ 𝑎
∂2𝑤

∂𝑄2
.
∂Փ𝑦
∂Q

+∝2 𝑎2 (
∂Փ𝑦
∂Q

)

2

)

+
2a24
∝3

(2
∂2𝑤

∂R∂Q
.
∂2𝑤

∂𝑄2
+ 2 ∝ 𝑎

∂2𝑤

∂R∂Q
.
∂Փ𝑦
∂Q

+ 𝑎
∂Փ𝑥
∂Q

.
∂2𝑤

∂𝑄2
+∝ 𝑎2

∂Փ𝑥
∂Q

.
∂Փ𝑦
∂Q

+

∝ 𝑎
∂Փ𝑦
∂R

.
∂2𝑤

∂𝑄2
+∝2 𝑎2

∂Փ𝑦
∂R

.
∂Փ𝑦
∂Q

)+ 12a33 (
𝑎

𝑡
)
4

(
∂w

∂S
)
2

+
a44
∝2

(4(
∂2𝑤

∂R∂Q
)

2

+ 4𝑎
∂Փ𝑥
∂Q

.
∂2𝑤

∂R∂Q
+ 4 ∝ 𝑎

∂Փ𝑦
∂R

.
∂2𝑤

∂R∂Q
+ 𝑎2 (

∂Փ𝑥
∂Q

)
2

+ 2 ∝ 𝑎2
∂Փ𝑦
∂R

.
∂Փ𝑥
∂Q

+∝2 𝑎2 (
∂Փ𝑦
∂R

)

2

)

+ 12a55 (
𝑎

𝑡
)
2

(4 (
∂w

∂R
)
2

+ 4𝑎
∂w

∂R
. Փ𝑥 + 𝑎

2Փ𝑥
2
)

+
24a56
∝

(
𝑎

𝑡
)
2

(4
∂w

∂Q
.
∂w

∂R
+ 2𝑎

∂w

∂Q
.Փ𝑥 + 2 ∝ 𝑎

∂w

∂R
.Փ𝑦+ ∝ 𝑎

2Փ𝑥 .Փ𝑦)

+
12a66
∝2

(
𝑎

𝑡
)
2

(4 (
∂w

∂Q
)
2

+ 4 ∝ 𝑎
∂w

∂Q
.Փ𝑦 +∝

2 𝑎2Փ𝑦
2
)]∂R∂Q − 𝑎𝑏∫ ∫ [qw +

Nx
2𝑎2

(
dw

dR
)
2

  ]
1

0

1

0

 ∂R∂Q  (22) 
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Where ∝ =
b

a
 and D0 is given by Equation                                                                                     (23)  

 

D0 = 
E0𝑡

3

12Δ
                                                                              (23) 

 

If the total potential energy given in Equation (22) is 

minimized with respect to the rotations in the x-z and y-z 

planes, two compatibility equations are obtained. The 

compatibility equations obtained are shown on Equations 

(24) and (25). 

 
D

dՓ𝑥
= 0.  Therefore; 

 

a11 [2𝑎
∂3𝑤

∂𝑅3
+ 2𝑎2

∂2Փ𝑥
∂𝑅2

] +
2a12
∝2

[𝑎
∂3𝑤

∂R∂𝑄2
+ 𝑎2 ∝

∂2Փ𝑦
∂R∂Q

] +
2a14
∝

[3𝑎
∂3𝑤

∂𝑅2 ∂Q
+ 2𝑎2

∂2Փ𝑥
∂R∂Q

+∝ 𝑎2
∂2Փ𝑦
∂𝑅2

]

+
2a24
∝3

[𝑎
∂3𝑤

∂𝑄3
+∝ 𝑎2

∂2Փ𝑦
∂𝑄2

] +
a44
∝2

[4𝑎
∂3𝑤

∂R∂𝑄2
+ 2𝑎2

∂2Փ𝑥
∂𝑄2

+ 2 ∝ 𝑎2
∂2Փ𝑦
∂R∂Q

] + 12a55 (
𝑎

𝑡
)
2

[4𝑎
∂w

∂R
+ 2𝑎2Փ𝑥]

+
24a56
∝

(
𝑎

𝑡
)
2

[2𝑎
∂w

∂Q
+ ∝ 𝑎2Փ𝑦] = 0                                                                                                                            (24) 

 

Also,  
 
d

dՓ𝑦
= 0.  Therefore; 

 

2a12
∝2

[𝑎 ∝
∂3𝑤

∂𝑅2 ∂Q
+ 𝑎2 ∝

∂2Փ𝑥
∂R∂Q

] +
2a14
∝

[∝ 𝑎
∂3𝑤

∂𝑅3
+∝ 𝑎2

∂2Փ𝑥
∂𝑅2

] +
a22
∝4

[2 ∝ 𝑎
∂3𝑤

∂𝑄3
+ 2 ∝2 𝑎2

∂2Փ𝑦
∂𝑄2

]

+
2a24
∝3

[3 ∝ 𝑎
∂3𝑤

∂R∂𝑄2
+∝ 𝑎2

∂2Փ𝑥
∂𝑄2

+ 2 ∝2 𝑎2
∂2Փ𝑦
∂R∂Q

] +
a44
∝2

[4 ∝ 𝑎
∂3𝑤

∂𝑅2 ∂Q
+ 2 ∝ 𝑎2

∂2Փ𝑥
∂R∂Q

+ 2 ∝2 𝑎2
∂2Փ𝑦
∂𝑅2

]

+
24a56
∝

(
𝑎

𝑡
)
2

[2 ∝ 𝑎
∂w

∂R
+ ∝ 𝑎2Փ𝑥] +

12a66
∝2

(
𝑎

𝑡
)
2

[4 ∝ 𝑎
∂w

∂Q
+ 2 ∝2 𝑎2Փ𝑦] = 0                                           (25) 

 
From the set of compatibility equations given in 

Equation (24) and (25), for any of the equations to be true, the 

condition is that the expressions in the square brackets must 

be equal to zero. With this, the rotational displacements Φx 

and Φy can therefore be written as: 

 

Փ𝑥 =
n𝑅
𝑎

∂w

∂R
                                                                            (26) 

 

Փ𝑦 =
n𝑄
𝑎 ∝

.
∂w

∂Q
                                                                         (27) 

 

Where n𝑅  and n𝑄 are constants 
 

Minimizing Equation (22) with respect to the deflection, w 

produces the governing equation. That is: 

d

d𝑤
= 0.Hence,  

 

[a11 (2
∂4𝑤

∂𝑅4
+ 2𝑎

∂3Փ𝑥
∂𝑅3

)+
2a12
∝2

(2
∂4𝑤

∂𝑅2 ∂𝑄2
+ 𝑎

∂3Փ𝑥
∂R∂𝑄2

+ 𝑎 ∝
∂3Փ𝑦
∂𝑅2 ∂Q

)

+
2a14
∝

(4
∂4𝑤

∂𝑅3 ∂Q
+ 2𝑎

∂3Փ𝑥
∂𝑅2 ∂Q

+ 𝑎
∂3Փ𝑥
∂𝑅2 ∂Q

+∝ a
∂3Փ𝑦
∂𝑅3

) +
a22
∝4

(2
∂4𝑤

∂𝑄4
+ 2 ∝ 𝑎

∂3Փ𝑦
∂𝑄3

)

+
2a24
∝3

(4
∂4𝑤

∂R∂𝑄3
+ 2 ∝ 𝑎

∂3Փ𝑦
∂R∂𝑄2

+ 𝑎
∂3Փ𝑥
∂𝑄3

+∝ 𝑎
∂3Փ𝑦
∂R∂𝑄2

) + 24a33 (
𝑎

𝑡
)
4 ∂2𝑤

∂𝑆2

+
a44
∝2

(8
∂4𝑤

∂𝑅2 ∂𝑄2
+ 4𝑎

∂3Փ𝑥
∂R∂𝑄2

+ 4 ∝ 𝑎
∂3Փ𝑦
∂𝑅2 ∂Q

) + 12a55 (
𝑎

𝑡
)
2

(8
∂2𝑤

∂𝑅2
+ 4𝑎

∂Փ𝑥
∂R

)

+
24a56
∝

(
𝑎

𝑡
)
2

(4
∂2𝑤

∂R∂Q
+ 2𝑎

∂Փ𝑥
∂Q

+ 2 ∝ 𝑎
∂Փ𝑦
∂R

)+
12a66
∝2

(
𝑎

𝑡
)
2

(8
∂2𝑤

∂𝑄2
+  4 ∝ 𝑎

∂Փ𝑦
∂Q

)]

− [
2q𝑎4

D0
 +
2Nx𝑎

2

D0

∂2𝑤

∂𝑅2
  ] = 0                                                                                                                                          (28) 

 

If Equations (26) and (27) are substituted into Equation (28), it gives: 
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[a11 (2
∂4𝑤

∂𝑅4
+ 2𝑎

∂3

∂𝑅3
n𝑅
𝑎

∂w

∂R
)+

2a12
∝2

(2
∂4𝑤

∂𝑅2 ∂𝑄2
+ 𝑎

∂3

∂R∂𝑄2
n𝑅
𝑎

∂w

∂R
+ 𝑎 ∝

∂3

∂𝑅2 ∂Q

n𝑄
𝑎 ∝

.
∂w

∂Q
)

+
2a14
∝

(4
∂4𝑤

∂𝑅3 ∂Q
+ 2𝑎

∂3

∂𝑅2 ∂Q

n𝑅
𝑎

∂w

∂R
+ 𝑎

∂3

∂𝑅2 ∂Q

n𝑅
𝑎

∂w

∂R
+∝ a

∂3

∂𝑅3
n𝑄
𝑎 ∝

.
∂w

∂Q
)

+
a22
∝4

(2
∂4𝑤

∂𝑄4
+ 2 ∝ 𝑎

∂3

∂𝑄3
n𝑄
𝑎 ∝

.
∂w

∂Q
)

+
2a24
∝3

(4
∂4𝑤

∂R∂𝑄3
+ 2 ∝ 𝑎

∂3

∂R∂𝑄2
n𝑄
𝑎 ∝

.
∂w

∂Q
+ 𝑎

∂3

∂𝑄3
n𝑅
𝑎

∂w

∂R
+∝ 𝑎

∂3

∂R∂𝑄2
n𝑄
𝑎 ∝

.
∂w

∂Q
) + 24a33 (

𝑎

𝑡
)
4 ∂2𝑤

∂𝑆2

+
a44
∝2

(8
∂4𝑤

∂𝑅2 ∂𝑄2
+ 4𝑎

∂3

∂R∂𝑄2
n𝑅
𝑎

∂w

∂R
+ 4 ∝ 𝑎

∂3

∂𝑅2 ∂Q

n𝑄
𝑎 ∝

.
∂w

∂Q
) + 12a55 (

𝑎

𝑡
)
2

(8
∂2𝑤

∂𝑅2
+ 4𝑎

∂

∂R

n𝑅
𝑎

∂w

∂R
)

+
24a56
∝

(
𝑎

𝑡
)
2

(4
∂2𝑤

∂R∂Q
+ 2𝑎

∂

∂Q

n𝑅
𝑎

∂w

∂R
+ 2 ∝ 𝑎

∂

∂R

n𝑄
𝑎 ∝

.
∂w

∂Q
)+

12a66
∝2

(
𝑎

𝑡
)
2

(8
∂2𝑤

∂𝑄2
+  4 ∝ 𝑎

∂

∂Q

n𝑄
𝑎 ∝

.
∂w

∂Q
)]

− [
2q𝑎4

D0
 +
2Nx𝑎

2

D0

∂2𝑤

∂𝑅2
  ] = 0                                                                                                                                   (29) 

 
Simplifying Equation (29) gives: 

 

a11(1+ n𝑅)
∂4𝑤

∂𝑅4
+ (

(a12 + 2a44)(2 + n𝑅 + n𝑄)

∝2
)

∂4𝑤

∂𝑅2 ∂𝑄2
+
a14
∝
(4 + 3n𝑅 + n𝑄)

∂4𝑤

∂𝑅3 ∂Q
+
a22
∝4

(1 + n𝑄)
∂4𝑤

∂𝑄4

+
a24
∝3

(4 + 3n𝑄 + n𝑅)
∂4𝑤

∂R∂𝑄3
+ 12a33 (

𝑎

𝑡
)
4 ∂2𝑤

∂𝑆2
+ 24a55 (

𝑎

𝑡
)
2

(2 + n𝑅)
∂2𝑤

∂𝑅2

+
24a56
∝

(
𝑎

𝑡
)
2

(2 + n𝑅 + n𝑄)
∂2𝑤

∂R∂Q
+
24a66
∝2

(
𝑎

𝑡
)
2

(2 + n𝑄)
∂2𝑤

∂𝑄2
−
q𝑎4

D0
−
Nx𝑎

2

D0

∂2𝑤

∂𝑅2
= 0                              (30) 

 

Equation (30) can be separated for cases of pure bending and for buckling. For pure bending, when there is no in-plane load, 

Nx = 0 and Equation (30) becomes: 

 

a11(1+ n𝑅)
∂4𝑤

∂𝑅4
+ (

(a12 + 2a44)(2 + n𝑅 + n𝑄)

∝2
)

∂4𝑤

∂𝑅2 ∂𝑄2
+
a14
∝
(4 + 3n𝑅 + n𝑄)

∂4𝑤

∂𝑅3 ∂Q
+
a22
∝4

(1 + n𝑄)
∂4𝑤

∂𝑄4

+
a24
∝3

(4 + 3n𝑄 + n𝑅)
∂4𝑤

∂R∂𝑄3
+ 12a33 (

𝑎

𝑡
)
4 ∂2𝑤

∂𝑆2
+ 24a55 (

𝑎

𝑡
)
2

(2 + n𝑅)
∂2𝑤

∂𝑅2

+
24a56
∝

(
𝑎

𝑡
)
2

(2 + n𝑅 + n𝑄)
∂2𝑤

∂R∂Q
+
24a66
∝2

(
𝑎

𝑡
)
2

(2 + n𝑄)
∂2𝑤

∂𝑄2
−
q𝑎4

D0

= 0                                                        (31) 

For the case of buckling, when q = 0, Equation (30) becomes: 

a11(1+ n𝑅)
∂4𝑤

∂𝑅4
+ (

(a12 + 2a44)(2 + n𝑅 + n𝑄)

∝2
)

∂4𝑤

∂𝑅2 ∂𝑄2
+
a14
∝
(4 + 3n𝑅 + n𝑄)

∂4𝑤

∂𝑅3 ∂Q
+
a22
∝4

(1 + n𝑄)
∂4𝑤

∂𝑄4

+
a24
∝3

(4 + 3n𝑄 + n𝑅)
∂4𝑤

∂R∂𝑄3
+ 12a33 (

𝑎

𝑡
)
4 ∂2𝑤

∂𝑆2
+ 24a55 (

𝑎

𝑡
)
2

(2 + n𝑅)
∂2𝑤

∂𝑅2

+
24a56
∝

(
𝑎

𝑡
)
2

(2 + n𝑅 + n𝑄)
∂2𝑤

∂R∂Q
+
24a66
∝2

(
𝑎

𝑡
)
2

(2 + n𝑄)
∂2𝑤

∂𝑄2
−
Nx𝑎

2

D0

∂2𝑤

∂𝑅2
= 0                                           (32) 

 

Equations (31) and (32) are identical and each can be solved to obtain w. 

 
Equation (31) can be rearranged as follows: 

 

(
∂4𝑤

∂𝑅4
+
𝜉1
∝2

∂4𝑤

∂𝑅2 ∂𝑄2
+
𝜉2
∝4
∂4𝑤

∂𝑄4
−

q𝑎4

D0a11(1+ n𝑅)
) + (

𝜉3
∝

∂4𝑤

∂𝑅3 ∂Q
+
𝜉4
∝3

∂4𝑤

∂R∂𝑄3
)+ (𝜉5

∂2𝑤

∂𝑅2
+
𝜉6
∝

∂2𝑤

∂R∂Q
+
𝜉7
∝2
∂2𝑤

∂𝑄2
)+ (𝜉8

∂2𝑤

∂𝑆2
) = 0       (33) 
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Where: 

 

𝜉1 =
(a12 + 2a44)(2+ n𝑅 + n𝑄)

a11(1+ n𝑅)
                                       (34) 

 

𝜉2 =
a22(1+ n𝑄)

a11(1+ n𝑅)
                                                                 (34𝑎) 

 

𝜉3 =
a14(4+ 3n𝑅 + n𝑄)

a11(1 + n𝑅)
                                                   (34𝑏 ) 

 

𝜉4 =
a24(4+ 3n𝑄 + n𝑅)

a11(1 + n𝑅)
                                                    (34𝑐) 

 

𝜉5 =
24a55 (

𝑎
𝑡
)
2
(2 + n𝑅)

a11(1 + n𝑅)
                                               (34𝑑) 

 

𝜉6 =
24a56 (

𝑎
𝑡
)
2

(2 + n𝑅 + n𝑄)

a11(1+ n𝑅)
                                     (34𝑒) 

 

𝜉7 =
24a66 (

𝑎
𝑡
)
2

(2 + n𝑄)

a11(1+ n𝑅)
                                                (34𝑓) 

 

𝜉8 =
12a33 (

𝑎
𝑡
)
4

a11(1 + n𝑅)
                                                                 (34𝑔) 

 

For Equation (33) to hold, then the expressions in each 

bracket must be equal to zero. Therefore: 

 

∂4𝑤

∂𝑅4
+
𝜉1
∝2

∂4𝑤

∂𝑅2 ∂𝑄2
+
𝜉2
∝4
∂4𝑤

∂𝑄4
−

q𝑎4

D0a11(1+ n𝑅)
= 0     (35) 

 

𝜉3
∝

∂4𝑤

∂𝑅3 ∂Q
+
𝜉4
∝3

∂4𝑤

∂R∂𝑄3
= 0                                                 (36) 

 

𝜉5
∂2𝑤

∂𝑅2
+
𝜉6
∝

∂2𝑤

∂R∂Q
+
𝜉7
∝2
∂2𝑤

∂𝑄2
= 0                                      (37) 

 

𝜉8
∂2𝑤

∂𝑆2
 = 0                                                                               (38) 

 

The deflection of the plate, w can be expressed as a 

product of the deflections in the orthogonal directions x, y and 

z. That is: 

 

w = wx.wy.ws                                                                        (39) 

 

Equation (38) can therefore be written as: 

 

wx.wy. 𝜉8
∂2ws

∂𝑆2
 = 0                                                               (40) 

 

For non-trivial solution of Equation (40), it follows that: 

 

∂2ws

∂𝑆2
= 0                                                                                   (41) 

 

If Equation (41) is integrated once, it gives a constant. This 

is as shown on Equation (42). 
 
𝜕ws

𝜕𝑆
=  Ω1                                                                                (42) 

 
The implication of Equation (42) is that even though 

strain is zero at the mid surface, strain can be measured at 

outer fibers no matter how small. Integrating Equation (42) 

with respect to s gives: 

 

w𝑆 =  Ω0 +  Ω1S                                                                      (43) 
 

As strain is zero at middle surface, it follows that from 

Equation (42),  Ω1 = 0. Hence, Equation (43) gives: 
 

w𝑆 =  Ω0                                                                                    (44) 
 

The implication of Equation (44) is that the z component 

of deflection, ws of the plate is a constant. It is not a variable. 

  

Therefore, it cannot be differentiated with respect to any 

of the three cardinal coordinates (R, Q and S). Hence, the 

deflection, w is a function of only x and y (R and Q) only. 

 

Solving Equation (35) gives the deflection of the plate, w in the form written in Equation (45). 
 

w = [a0 + a1R+ a2
R2

2
+ a3

R3

6
+ a4

R4

24
] × [f0 + f1Q+ f2

Q2

2
+ f3

Q3

6
+ f4

Q4

24
]                                                                                 (45) 

 

Equation (45) can be written as: 

 

w = [ai][hx] × [bi] [hy]                                                  (46) 

 

In a more concise form, the deflection of the plate is 

expressed as a product of a coefficient, A and a shape 

function, h as: 

 

 

w = A h                                                                                (47) 

 

Substituting Equation (47) into Equations (26) and (27) 

would give: 

 

Փ𝑥 =
n𝑅
𝑎

d[A h]

dR
 =
An𝑅
𝑎

dℎ

dR
 =

𝐵𝑅
𝑎

dℎ

dR
                                (48) 
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Փ𝑦 =
n𝑄
𝑎 ∝

d[A h]

dQ
=   

An𝑄
𝑎 ∝

.
dℎ

dQ
 =

𝐵𝑄
𝑎 ∝

.
dℎ

dQ
                     (48a) 

 

If Equations (47), (48) and (48a) are substituted into 

Equation (22), removing terms containing dS since the 
deflection is not a function of S and simplifying gives: 

 

П = 
 𝑎𝑏D0
2𝑎4

∫ ∫ [a11(𝐴
2 + 2𝐴𝐵𝑅 + 𝐵𝑅

2)K𝑅𝑅𝑅𝑅 +
2a12
∝2

(𝐴2 + 𝐴𝐵𝑅 +𝐴𝐵𝑄 + 𝐵𝑅𝐵𝑄)K𝑅𝑅𝑄𝑄

1

0

1

0

+
2a14
∝

(2𝐴2 + 3𝐴𝐵𝑅 + 𝐵𝑅
2 +𝐴𝐵𝑄 + 𝐵𝑅𝐵𝑄)K𝑅𝑅𝑅𝑄 +

a22
∝4

(𝐴2 + 2𝐴𝐵𝑄 +𝐵𝑄
2)K𝑄𝑄𝑄𝑄

+
2a24
∝3

(2𝐴2 + 3A𝐵𝑄 +𝐴𝐵𝑅 +𝐵𝑅𝐵𝑄 + 𝐵𝑄
2)K𝑅𝑄𝑄𝑄

+
a44
∝2

(4𝐴2 + 4𝐴𝐵𝑅 + 4𝐴𝐵𝑄 +𝐵𝑅
2 + 2𝐵𝑅𝐵𝑄 +𝐵𝑄

2)K𝑅𝑅𝑄𝑄 + 12a55 (
𝑎

𝑡
)
2

(4𝐴2 + 4𝐴𝐵𝑅 +𝐵𝑅
2)KRR

+
24a56
∝

(
𝑎

𝑡
)
2

(4𝐴2 +  2𝐴𝐵𝑅 + 2𝐴𝐵𝑄 + 𝐵𝑅𝐵𝑄)KRQ +
12a66
∝2

(
𝑎

𝑡
)
2

(4𝐴2 +  4𝐴𝐵𝑄 +𝐵𝑄
2)KQQ – 

2q𝑎4A

D0
𝑘𝑞  

−
Nx𝑎

2𝐴2

D0
K𝑅𝑅] ∂R ∂Q                                                                                                                    (49) 

 

Where:                   

         

K𝑅𝑅𝑅𝑅 = ∫ ∫ (
∂2ℎ

∂𝑅2
)

21

0

1

0

dR dQ , K𝑅𝑅𝑄𝑄 = ∫ ∫ (
∂2ℎ

∂R∂Q
)

21

0

1

0

dR dQ, KRQ = ∫ ∫ (
∂2ℎ

∂R∂Q
)dR dQ,

1

0

1

0

 

 

K𝑅𝑅𝑅𝑄 = ∫ ∫ (
∂2ℎ

∂𝑅2
.
∂2ℎ

∂R∂Q
)dR dQ

1

0

1

0

,  K𝑄𝑄𝑄𝑄 = ∫ ∫ (
∂2ℎ

∂𝑄2
)

21

0

1

0

dR dQ, KQQ = ∫ ∫ (
∂h

∂Q
)
21

0

1

0

dR dQ,  

K𝑅𝑄𝑄𝑄 = ∫ ∫ (
∂2ℎ

∂R∂Q
.
∂2ℎ

∂𝑄2
)dR dQ

1

0

1

0

, KRR = ∫ ∫ (
∂ℎ

∂R
)
21

0

1

0

dR dQ,           Kq = ∫ ∫ h
1

0

1

0

dR dQ 

 
If Equation (49) is minimized with respect to BR and simplified, Equations (50) is obtained. 

 

(A11𝐾𝑅𝑅𝑅𝑅 +
2a14
∝

𝐾𝑅𝑅𝑅𝑄  +
a44
∝2

𝐾𝑅𝑅𝑄𝑄 + 12a55 (
𝑎

𝑡
)
2

KRR)𝐵𝑅  

+ (
a12
∝2

𝐾𝑅𝑅𝑄𝑄 +
a14
∝
K𝑅𝑅𝑅𝑄  +

a24
∝3
 𝐾𝑅𝑄𝑄𝑄 +

a44
∝2

K𝑅𝑅𝑄𝑄 +
12a56
∝

(
𝑎

𝑡
)
2

KRQ)𝐵𝑄  

+  (a11𝐾𝑅𝑅𝑅𝑅 + 
a12
∝2

𝐾𝑅𝑅𝑄𝑄  +
3a14
∝

𝐾𝑅𝑅𝑅𝑄  +
a24
∝3

K𝑅𝑄𝑄𝑄 +
2a44
∝2

K𝑅𝑅𝑄𝑄 + 24a55 (
𝑎

𝑡
)
2

KRR

+
24a56
∝

(
𝑎

𝑡
)
2

KRQ) 𝐴 = 0                                                                                                                                               (50) 

 

In a similar manner, if Equation (49) is minimized with respect to BQ, it gives Equations (51). 

 

(
A12
∝2

𝐾𝑅𝑅𝑄𝑄  +
a14
∝
K𝑅𝑅𝑅𝑄 +

a24
∝3

𝐾𝑅𝑄𝑄𝑄 +
a44
∝2

K𝑅𝑅𝑄𝑄 +
12a56
∝

(
𝑎

𝑡
)
2

KRQ)𝐵𝑅

+ (
a22
∝4

𝐾𝑄𝑄𝑄𝑄 +
2a24
∝3

K𝑅𝑄𝑄𝑄 +
a44
∝2

K𝑅𝑅𝑄𝑄 +
12a66
∝2

(
𝑎

𝑡
)
2

𝑘𝑄𝑄)𝐵𝑄

+ ( 
a12
∝2

𝐾𝑅𝑅𝑄𝑄 +
a14
∝
K𝑅𝑅𝑅𝑄 +

a22
∝4

𝐾𝑄𝑄𝑄𝑄 +
3a24
∝3

𝐾𝑅𝑄𝑄𝑄 +
2a44
∝2

K𝑅𝑅𝑄𝑄 +
24a56
∝

(
𝑎

𝑡
)
2

𝐾𝑅𝑄

+
24a66
∝2

(
𝑎

𝑡
)
2

KQQ)𝐴 = 0                                                                                                                                   (51)   
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If Equations (50) and (51) are solved simultaneously, it would  

 

𝐵𝑅 = TR. 𝐴                                                                          (52) 

 

𝐵𝑄 = TQ. 𝐴                                                                        (52a) 

 

 

Where: 

 

𝑇𝑅 =
(𝑗12𝑗23 − 𝑗13𝑗22)

(𝑗11𝑗22 − 𝑗12𝑗21)
                                               (53) 

 

𝑇𝑄 =
(𝑗21𝑗13 − 𝑗11𝑗23)

(𝑗11𝑗22 − 𝑗12𝑗21)
                                                (53𝑎) 

 

𝑗11  = a11𝐾𝑅𝑅𝑅𝑅 +
2a14
∝

𝐾𝑅𝑅𝑅𝑄  +
a44
∝2

𝐾𝑅𝑅𝑄𝑄 + 12a55 (
𝑎

𝑡
)
2

KRR                                                                                                      (54) 

 

𝑗12 = 𝑗21 =
a12
∝2

𝐾𝑅𝑅𝑄𝑄 +
a14
∝
K𝑅𝑅𝑅𝑄  +

a24
∝3
 𝐾𝑅𝑄𝑄𝑄 +

a44
∝2

K𝑅𝑅𝑄𝑄 +
12a56
∝

(
𝑎

𝑡
)
2

KRQ                                                                  (54a) 

 

𝑗13 = a11𝐾𝑅𝑅𝑅𝑅 + 
a12
∝2

𝐾𝑅𝑅𝑄𝑄  +
3a14
∝

𝐾𝑅𝑅𝑅𝑄  +
a24
∝3

K𝑅𝑄𝑄𝑄 +
2a44
∝2

K𝑅𝑅𝑄𝑄 + 24a55 (
𝑎

𝑡
)
2

KRR +
24a56
∝

(
𝑎

𝑡
)
2

KRQ            (54b) 

 

𝑗22 = 
a22
∝4

𝐾𝑄𝑄𝑄𝑄 +
2a24
∝3

K𝑅𝑄𝑄𝑄 +
a44
∝2

K𝑅𝑅𝑄𝑄 +
12a66
∝2

(
𝑎

𝑡
)
2

𝑘𝑄𝑄                                                                                                    (54𝑐)  

 

𝑗23 =
a12
∝2

𝐾𝑅𝑅𝑄𝑄 +
a14
∝
K𝑅𝑅𝑅𝑄 +

a22
∝4

𝐾𝑄𝑄𝑄𝑄 +
3a24
∝3

𝐾𝑅𝑄𝑄𝑄 +
2a44
∝2

K𝑅𝑅𝑄𝑄 +
24a56
∝

(
𝑎

𝑡
)
2

𝐾𝑅𝑄 +
24a66
∝2

(
𝑎

𝑡
)
2

KQQ             ( 54𝑑) 

 

Minimizing Equation (49) with respect to A gives: 

 

a11(2𝐴 + 2𝐵𝑅)K𝑅𝑅𝑅𝑅 +
2a12
∝2

(2𝐴 + 𝐵𝑅 +𝐵𝑄)K𝑅𝑅𝑄𝑄 +
2a14
∝

(4𝐴 + 3𝐵𝑅 +𝐵𝑄)K𝑅𝑅𝑅𝑄 +
a22
∝4

(2𝐴 + 2𝐵𝑄)K𝑄𝑄𝑄𝑄

+
2a24
∝3

(4𝐴 + 3𝐵𝑄 + 𝐵𝑅)K𝑅𝑄𝑄𝑄 +
a44
∝2

(8𝐴 + 4𝐵𝑅 + 4𝐵𝑄)K𝑅𝑅𝑄𝑄 + 12a55 (
𝑎

𝑡
)
2

(8𝐴 + 4𝐵𝑅)KRR

+
24a56
∝

(
𝑎

𝑡
)
2

(8𝐴 +  2𝐵𝑅 + 2𝐵𝑄)KRQ +
12a66
∝2

(
𝑎

𝑡
)
2

(8𝐴 +  4𝐵𝑄)KQQ – 
2q𝑎4

D0
𝐾𝑞  −

2𝐴Nx𝑎
2

D0
𝐾𝑅𝑅 = 0       (55) 

 
Substituting Equations (52) and (52a) into Equation (55) and simplifying gives: 

 

2𝐴a11(1+ TR)K𝑅𝑅𝑅𝑅 +
2𝐴a12
∝2

(2 + TR + TQ)K𝑅𝑅𝑄𝑄 +
2𝐴a14
∝

(4 + 3TR + TQ)K𝑅𝑅𝑅𝑄 +
2𝐴a22
∝4

(1 + TQ)K𝑄𝑄𝑄𝑄

+
2𝐴a24
∝3

(4 + 3TQ + TR)K𝑅𝑄𝑄𝑄 +
4𝐴a44
∝2

(2 + TR + TQ)K𝑅𝑅𝑄𝑄 + 48𝐴a55 (
𝑎

𝑡
)
2

(2 + TR)K𝑅𝑅

+
48𝐴a56
∝

(
𝑎

𝑡
)
2

(4 + TR + TQ)K𝑅𝑄 +
48𝐴a66
∝2

(
𝑎

𝑡
)
2

(2 + TQ)KQQ   −
2𝐴Nx𝑎

2

D0
K𝑅𝑅 = 

2q𝑎4

D0
K𝑞              (56) 

Further simplification of Equation (56) gives: 

 

A(KT −
Nx𝑎

2K𝑅𝑅
D0

) =
q𝑎4K𝑞
D0

                                                                                                                                                                   (57) 

 

Where: 
 

KT = a11(1 + TR)K𝑅𝑅𝑅𝑅 +
a12
∝2

(2 + TR + TQ)K𝑅𝑅𝑄𝑄 +
a14
∝
(4 + 3TR + TQ)K𝑅𝑅𝑅𝑄 +

a22
∝4

(1 + TQ)K𝑄𝑄𝑄𝑄

+
a24
∝3

(4 + 3TQ + TR)K𝑅𝑄𝑄𝑄 +
2a44
∝2

(2 + TR + TQ)K𝑅𝑅𝑄𝑄 + 24a55 (
𝑎

𝑡
)
2

(2 + TR)K𝑅𝑅

+
24a56
∝

(
𝑎

𝑡
)
2

(4 + TR + TQ)K𝑅𝑄 +
24a66
∝2

(
𝑎

𝑡
)
2

(2 + TQ)KQQ                                                                        (58)  
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Equation (57) can be written as shown in Equation (59) 

 

A =

q𝑎4K𝑞
D0

KT −
Nx𝑎

2K𝑅𝑅
D0

                                                            (59) 

 

For pure buckling, the denominator of Equation (59) 

becomes zero at buckling and Nx will be equal to the buckling 

load, Nc. That is: 
 

KT −
Nc𝑎

2K𝑅𝑅
D0

 = 0                                                              (60) 

 

That is: 

 

KT  =
Nc𝑎

2K𝑅𝑅
D0

                                                                      (61)  

 

Hence,  

 

Nc =  
KTD0
K𝑅𝑅 . a

2
                                                                          (62) 

 

Let the ratio of applied in-plane load to critical buckling 
load be Nr, that is, 

 

Nx = NrNc                                                                               (63) 
 

Where: Nr ranges from zero (case of no in-plane load) 

to one (when in-plane load is equal to the critical buckling 

load). That is:  

      

0 ≤ Nr ≤ 1                                                                              (64) 
 
Nx is the applied in-plane compression load. 

 

Nc is the critical buckling load. 

 

That is, from Equation (63), 

 

Nr =
Nx
Nc
                                                                                   (65) 

 

Substituting Equation (62) into Equation (63) gives: 

 

Nx = 
NrKTD0
K𝑅𝑅a

2
                                                                       (66)   

 
Substituting Equation (66) into Equation (59) would give: 

 

A =

q𝑎4K𝑞
D0

KT −
NrKTD0
K𝑅𝑅a

2 .
𝑎2K𝑅𝑅
D0

                                                (67) 

 

Simplifying Equation (67) gives: 

 

A =

q𝑎4K𝑞
D0

KT −NrKT
                                                                    (68) 

 

From Equation (68), 

 

A =

q𝑎4K𝑞
D0

KT (1 − Nr)
                                                                   (69) 

 

Equation (69) can be written as shown on Equation (70) 

 

A =
K𝑞
KT 

 
q𝑎4

D0
β                                                                        (70) 

 

Where: 

 

β  =
1

(1 − Nr)
                                                                          (71) 

 

Substituting Equation (70) into Equations (52) and (52a) 

respectively gives: 

 

𝐵𝑅 = TR.
K𝑞
KT 

 
q𝑎4

D0
β                                                                  (72) 

 

𝐵𝑄

= TQ.
K𝑞
KT 

 
q𝑎4

D0
β                                                                      (73) 

 

If Equations (70), (72) and (73) are substituted into 

Equations (47), (48) and (48a) respectively, the following 

equation are obtained: 
 

w =
K𝑞
KT 

 
q𝑎4

D0
β h                                                                      (74) 

 

Փ𝑥 = TR.
K𝑞
KT 

 
q𝑎3

D0
β
 dℎ

dR
                                                          (75) 

 

Փ𝑦 = TQ.
K𝑞
∝ KT 

 
q𝑎3

D0
β
dℎ

dQ
                                                      (76) 

 

 Expressions for Stresses and Displacements 

Substituting  x =  aR , y =  bQ , z =  tS and ∝ = b/a in Equations (8) to (13) and substituting the  
outcome into Equations (18)  gives the six stresses as shown in Equations (77) to (77e). 

 

σx =
E0
Δ
[a11

tS

𝑎
(
∂2𝑤

𝑎 ∂𝑅2
+
∂Փ𝑥
∂R

)+ a12
tS

∝ 𝑎
(

∂2𝑤

∝ 𝑎 ∂𝑄2
+
∂Փ𝑦
∂Q

) + a13
∂w

t ∂S
 + a14

tS

𝑎
(2

∂2𝑤

∝ 𝑎 ∂𝑅 ∂Q
+
∂Փ𝑥
∝ ∂𝑄

+ 
∂Փ𝑦
∂𝑅

)]                 (77) 
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σy =
E0
Δ
[a12

tS

𝑎
(
∂2𝑤

𝑎 ∂𝑅2
+
∂Փ𝑥
∂R

)+ a22
tS

∝ 𝑎
(

∂2𝑤

∝ 𝑎 ∂𝑄2
+
∂Փ𝑦
∂Q

)+ a23
∂w

t ∂S
+ a24

tS

𝑎
(2

∂2𝑤

∝ 𝑎 ∂𝑅 ∂Q
+
∂Փ𝑥
∝ ∂𝑄

+ 
∂Փ𝑦
∂𝑅

)]               (77𝑎) 

 

σz =
E0
Δ
[a13

tS

𝑎
(
∂2𝑤

𝑎 ∂𝑅2
+
∂Փ𝑥
∂R

)+ a23
tS

∝ 𝑎
(

∂2𝑤

∝ 𝑎 ∂𝑄2
+
∂Փ𝑦
∂Q

) + a33
∂w

t ∂S
+ a34

tS

𝑎
(2

∂2𝑤

∝ 𝑎 ∂𝑅 ∂Q
+
∂Փ𝑥
∝ ∂𝑄

+ 
∂Փ𝑦
∂𝑅

)]               (77b) 

 

τxy =
E0
Δ
[a14

tS

𝑎
(
∂2𝑤

𝑎 ∂𝑅2
+
∂Փ𝑥
∂R

)+ a24
tS

∝ 𝑎
(

∂2𝑤

∝ 𝑎 ∂𝑄2
+
∂Փ𝑦
∂Q

)+ a34
∂w

t ∂S
+ a44

tS

𝑎
(2

∂2𝑤

∝ 𝑎 ∂𝑅 ∂Q
+
∂Փ𝑥
∝ ∂𝑄

+ 
∂Փ𝑦
∂𝑅

)]               (77c) 

 

τxz =
E0
Δ
[a55 (2

∂w

𝑎 ∂𝑅
+ Փ𝑥) + a56 (2

∂w

∝ 𝑎 ∂𝑄
+ Փ𝑦)]                                                                                                                           (77d) 

  

τyz = 
E0
Δ
[a56 (2

∂w

𝑎 ∂𝑅
+ Փ𝑥) + a66 (2

∂w

∝ 𝑎 ∂𝑄
+ Փ𝑦)]                                                                                                                       (77e) 

 

If Equations (74), (75) and (76) are substituted into Equations (77) to (77e) bearing in mind that the derivative of w with respect 

to S is zero, and subsequently, substituting Equation (23) into the resultant equations. Then the equations for the stress parameters 

can be expressed as shown in Equations (78) to (78e). 

 

σ̅x = σx .
𝑡2

q𝑎2
= 12S [a11(1 + TR)

∂2ℎ

∂𝑅2
+
a12
∝2

(1 + TQ)
∂2ℎ

∂𝑄2
+
a14
∝
(2 + TR + TQ)

∂2ℎ

∂𝑅 ∂Q
] β
K𝑞
KT 

                                                    (78) 

 

σ̅y = σy.
𝑡2

q𝑎2
= 12S [a12(1 + TR)

∂2h

∂𝑅2
+
a22
∝2

(1 + TQ)
∂2h

∂𝑄2
+
a24
∝
(2 + TR + TQ)

∂2ℎ

∂𝑅 ∂Q
] β
K𝑞
KT 

                                                   (78𝑎) 

 

σ̅z = σz.
𝑡2

q𝑎2
= 12S [a13(1 + TR)

∂2h

∂𝑅2
+
a23
∝2

(1 + TQ)
∂2h

∂𝑄2
+
a34
∝
(2 + TR + TQ)

∂2ℎ

∂𝑅 ∂Q
] β
K𝑞
KT 

                                                   (78b) 

 

τ̅𝑥𝑦 = τxy.
𝑡2

q𝑎2
=  12S [a14(1 + TR)

∂2h

∂𝑅2
+
a24
∝2

(1 + TQ)
∂2h

∂𝑄2
+
a44
∝
(2 + TR + TQ)

∂2ℎ

∂𝑅 ∂Q
] β
K𝑞
KT 

                                              (78𝑐) 

 

τ̅𝑥𝑧 =
τxz
q
(
𝑡

𝑎
) = 12 [a55(2 + TR)

∂h

∂𝑅
+
a56
∝
( 2 + TQ)

∂h

∂𝑄
] β
K𝑞
KT 

 (
𝑎

𝑡
)
2

                                                                                                 (78d) 

 

τ̅𝑦𝑧 =
τyz

q
(
𝑡

𝑎
) = 12 [a56(2 + TR)

∂h

∂𝑅
+
a66
∝
( 2 + TQ)

∂h

∂𝑄
] β
K𝑞
KT 

 (
𝑎

𝑡
)
2

                                                                                                (78e) 

 

If Equation (23) is substituted into Equation (74) and 
simplified, it gives the out-of-plane displacement parameter, 

w̅ as: 

 

w̅ = w
E0𝑡

3

q𝑎4
= 12Δ (

K𝑞
KT 
)h                                                   (79) 

 

By substituting relevant parameters into Equation (7), 

the expression for the in-plane displacement parameter, u̅ is 

obtained as:  

 

u̅ =  u
E0𝑡

2

qa3
= 12Δ(1 + TR)𝑆

K𝑞
KT 

 dℎ

dR
                                (80) 

 
Similarly, by substituting relevant parameters into 

Equation (8), the expression for the in-plane displacement 

parameter, v̅ is obtained as:  

 

v̅ =  v
E0𝑡

2

qa3
= 12Δ(1 + TQ)

𝑆

∝

K𝑞
KT 

 
∂h

∂Q
                               (81) 

III. NUMERICAL EXAMPLE 

 

An anisotropic three-dimensional all round simply 

supported (SSSS) rectangular plate with the properties similar 

to the properties of a unidirectional graphite/epoxy material 

given by Sarvestani, Naghashpour and Heidari-Rarani 

(2015), would be analyzed. The material properties are EI = 

132 Gpa, E2 = E3=10.8 Gpa, G12 = G13 = 5.65 Gpa, G23 = 3.38 

Gpa, µ12 = µ13 = 0.24, µ23 = 0.59. The in-plane normal stresses 

(x) and (y) and the out-of-plane normal stress, z, are 

obtained at coordinate (0.5, 0.5, 0.5). The in-plane shear 

stress (τxy) is obtained at (0, 0, 0.5). The out-plane shear stress 

(τxz) is obtained (0, 0.5, 0), while the out-plane shear stress 

(τyz) is obtained at (0.5, 0, 0). The transverse displacement 
(w) is obtained at (0.5, 0.5, 0). The in-plane displacements, u 

is obtained at (0, 0.5, 0.5) while the in-plane displacements, v 

is obtained at (0.5, 0, 0.5). The shape function for the given 

plate is h = (R – 2R3 + R4) (Q – 2Q3 + Q4). 
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IV. RESULTS AND DISCUSSION 

 

The numerical values of the stresses and displacement 

parameters determined for span to thickness ratios of 5, 10, 

20 and 100 at angle of fiber orientations, θ of 0 and aspect 

ratios of 1, 1.5 and 2.0 for ratios of applied in-plane load to 

buckling load, Nr of 0, 0.25 and 0.5 are presented in Table 1, 

2 and 3. It is observed that the application of in-plane loads 

increases the stresses and displacements of the plate at any 
given value of applied lateral load. When the applied in-plane 

load is half of the buckling load, the stresses and 

displacements get doubled. It is observed that the values of 

normal stress in the x-direction (σx), transverse shear stress 

τxz and in-plane displacement u, increase with an increase in 

both the span to thickness (
𝑎

𝑡
) value and the aspect ratio. 

Also, the values normal stress in the y-direction (σy), normal 

stress in the z-direction (σz), transverse shear stress τyz and 

in-plane displacement v, decrease with an increase in both the 

span to thickness (
𝑎

𝑡
) value and the aspect ratio. For the 

lateral displacement, w the values decrease with an increase 

in the span to thickness (
𝑎

𝑡
) value but increase with an 

increase in the aspect ratio. 

 

Table 1: Numerical Values of Non-Dimensional Stresses and Displacements at Nr = 0 

 b/a  𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛔𝒛̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  𝛕𝐲𝐳̅̅ ̅̅  �̅� �̅� �̅� 

 
𝒂

𝒕
= 𝟓 

1.0 0.6751 0.1469 0.0999 -0.0698 0.4065 0.1165 0.0202 -0.0168 -0.0249 

1.5 0.8295 0.1070 0.0794 -0.0606 0.4762 0.0703 0.0248 -0.0214 -0.0219 

2.0 0.8853 0.0839 0.0669 -0.0495 0.4988 0.0485 0.0264 -0.0232 -0.0180 

 
𝒂

𝒕
= 𝟏𝟎 

1.0 0.7063 0.1269 0.0888 -0.0638 0.4206 0.1025 0.0137 -0.0179 -0.0202 

1.5 
0.8460 0.0920 0.0709 -0.0526 0.4825 0.0607 0.0166 -0.0220 -0.0168 

2.0 
0.8946 0.0739 0.0612 -0.0423 0.5020 0.0420 0.0177 -0.0235 -0.0135 

 
𝒂

𝒕
= 𝟐𝟎 

 

1.0 
0.7160 0.1208 0.0853 -0.0619 0.4249 0.0981 0.0120 -0.0182 -0.0188 

1.5 
0.8507 0.0878 0.0685 -0.0504 0.4843 0.0580 0.0146 -0.0222 -0.0153 

2.0 
0.8972 0.0711 0.0596 -0.0403 0.5029 0.0402 0.0155 -0.0236 -0.0122 

 
𝒂

𝒕
= 𝟏𝟎𝟎 

1.0 
0.7192 0.1187 0.0842 -0.0613 0.4264 0.0967 0.0115 -0.0183 -0.0183 

1.5 0.8523 0.0864 0.0677 -0.0497 0.4849 0.0571 0.0139 -0.0222 -0.0148 

2.0 0.8980 0.0703 0.0591 -0.0396 0.5032 0.0396 0.0148 -0.0236 -0.0118 

 

Table 2: Numerical Values of Non-Dimensional Stresses and Displacements at Nr = 0.25 

 b/a  𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛔𝒛̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  𝛕𝐲𝐳̅̅ ̅̅  �̅� �̅� �̅� 

 
𝒂

𝒕
= 𝟓 

1.0 
0.9002 0.1959 0.1332 -0.0931 0.5420 0.1553 0.0269 -0.0224 -0.0332 

1.5 
1.1060 0.1426 0.1059 -0.0808 0.6349 0.0937 0.0330 -0.0285 -0.0292 

2.0 
1.1804 0.1118 0.0891 -0.0661 0.6650 0.0646 0.0352 -0.0309 -0.0240 

 
𝒂

𝒕
= 𝟏𝟎 

1.0 
0.9418 0.1693 0.1184 -0.0850 0.5607 0.1366 0.0182 -0.0238 -0.0270 

1.5 
1.1281 0.1227 0.0945 -0.0702 0.6434 0.0810 0.0222 -0.0293 -0.0224 

2.0 
1.1928 0.0985 0.0815 -0.0563 0.6694 0.0560 0.0236 -0.0314 -0.0180 

 
𝒂

𝒕
= 𝟐𝟎 

 

1.0 
0.9546 0.1611 0.1138 -0.0825 0.5665 0.1308 0.0160 -0.0242 -0.0251 

1.5 
1.1343 0.1170 0.0913 -0.0672 0.6458 0.0774 0.0194 -0.0296 -0.0204 

2.0 
1.1962 0.0949 0.0795 -0.0537 0.6705 0.0536 0.0207 -0.0315 -0.0163 

 
𝒂

𝒕
= 𝟏𝟎𝟎 

1.0 
0.9590 0.1583 0.1122 -0.0817 0.5685 0.1289 0.0153 -0.0244 -0.0244 

1.5 
1.1364 0.1152 0.0903 -0.0662 0.6466 0.0762 0.0186 -0.0296 -0.0198 

2.0 
1.1973 0.0937 0.0788 -0.0528 0.6709 0.0529 0.0197 -0.0315 -0.0158 
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Table 3: Numerical values of non-dimensional stresses and displacements at Nr = 0.5 

 b/a  𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛔𝒛̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  𝛕𝐲𝐳̅̅ ̅̅  �̅� �̅� �̅� 

 

𝒂

𝒕
= 𝟓 

1.0 
1.3502 0.2938 0.1998 -0.1396 0.8130 0.2330 0.0404 -0.0336 -0.0498 

1.5 
1.6590 0.2139 0.1588 -0.1211 0.9523 0.1405 0.0495 -0.0428 -0.0438 

2.0 
1.7706 0.1677 0.1337 -0.0991 0.9975 0.0970 0.0528 -0.0463 -0.0360 

 

𝒂

𝒕
= 𝟏𝟎 

1.0 
1.4127 0.2539 0.1775 -0.1275 0.8411 0.2049 0.0273 -0.0357 -0.0405 

1.5 
1.6921 0.1840 0.1418 -0.1053 0.9651 0.1214 0.0333 -0.0440 -0.0336 

2.0 
1.7892 0.1478 0.1223 -0.0845 1.0040 0.0840 0.0354 -0.0470 -0.0270 

 

𝒂

𝒕
= 𝟐𝟎 

 

1.0 
1.4319 0.2416 0.1707 -0.1238 0.8498 0.1963 0.0240 -0.0364 -0.0376 

1.5 
1.7014 0.1755 0.1370 -0.1008 0.9687 0.1160 0.0292 -0.0444 -0.0307 

2.0 
1.7943 0.1423 0.1192 -0.0805 1.0058 0.0804 0.0310 -0.0472 -0.0245 

 

𝒂

𝒕
= 𝟏𝟎𝟎 

1.0 
1.4385 0.2374 0.1683 -0.1225 0.8527 0.1933 0.0229 -0.0366 -0.0366 

1.5 
1.7045 0.1727 0.1354 -0.0993 0.9699 0.1143 0.0279 -0.0445 -0.0297 

2.0 
1.7960 0.1405 0.1182 -0.0792 1.0064 0.0793 0.0296 -0.0473 -0.0237 

 

A. Comparison of Some Results of This Research with 

Results from Existing Literature. 

Results of the transverse shear stress, τxz  and the 

deflection w, obtained for an orthotropic rectangular plate by 

Shimpi and Patel (2006) and Reddy (1984) are compared with 

the results obtained from this study using simple percentage 
difference. In the works of Shimpi and Patel (2006) and 

Reddy (1984), the authors used parameters for aspect ratio in 

the form of a/b and h/a for thickness to span ratio, while in 

this work, the parameters for aspect ratio and span to 

thickness ratios are expressed in the form of b/a and a/t 

respectively. Hence, a/b values of 0.5, 1.0 and 2.0 used in 

their study, corresponds to b/a values of 2.0, 1.0 and 0.5 

respectively in the present study. Also, h/a values of 0.05, 0.1 

and 0.14 used in their study, correspond to a/t values of 20, 

10 and 7.14286 respectively used in this study. 

 

 Comparison of Non-Dimensional Shear Stress, 𝜏𝑥𝑧̅̅ ̅̅  of this 

Study with Previous Study on Simply Supported 

Orthotropic Rectangular Plate (Under Uniformly 

Distributed Transverse Load). 

The results of the non-dimensional transverse shear 

stress, τxz̅̅ ̅̅  parameters for simply supported orthotropic 

rectangular plate with uniformly distributed lateral load 

obtained in this study as compared with that of Shimpi and 

Patel (2006) and Reddy (1984) are presented on Table (4). It 

is observed from Table (4) that the percentage difference is 

least at (
𝑎

𝑡
) value of 7.14286 for all aspect ratios. This implies 

that the percentage difference becomes smaller with decrease 

in the span to thickness value. This shows that the different 

theories agree more in thick plate analysis than thin plate 

analysis. With the works of Shimpi and Patel (2006), the 

variation of  τxz̅̅ ̅̅  has a maximum percentage difference of 

19.49% at (
𝑎

𝑡
) value of 20 and  (

𝑏

𝑎
)  value of 1.0 while the 

least variation is observed as a percentage difference of 

2.89%  when the (
𝑎

𝑡
) value is 7.14286 and (

𝑏

𝑎
) value is 2.0. 

When compared with the works of Reddy (1984), the 

variation shows a maximum percentage difference of 19.24% 

at a span to thickness (
𝑎

𝑡
) value of 20 and aspect ratio (

𝑏

𝑎
)  of 

1.0 while the least variation is obtained as a percentage 

difference of 4.28% when the span to thickness (
𝑎

𝑡
) value is 

7.14286 and aspect ratio (
𝑏

𝑎
) is 2.0. This indicates that the 

Alternative II theory converges better with the works of 

Shimpi and Patel (2006) and the works of Reddy (1984) at 

higher values of (
𝑏

𝑎
) ratio. The comparison of the results of 

the transverse shear stress, τxz̅̅ ̅̅   obtained from this research 

with that from previous scholars is reasonable as the 

maximum percentage difference of 19.49%.  The variations 
are simply due to the different theories used by the different 

scholars. While Shimpi and Patel (2002) used a refined plate 

theory having just two variables with a third order shear 

deformation profile, Reddy (1984) used a higher order shear 

deformation theory. 
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Table 4: Comparison of Present Study Non-Dimensional Transverse Shear Stresses (τxz̅̅ ̅̅ ) of Simply Supported Orthotropic 

Rectangular Plate Under Uniformly Distributed Transverse Load With Those of Previous Scholars 

Plate dimensional 

parameters 
𝛕𝐱𝐳̅̅ ̅̅ =  

𝛕𝐱𝐳
𝒒

 

at x = 0, y = b/2, z = 0 
𝒃

𝒂
 

𝒂

𝒕
 

Present 

Study 

Shimpi and 

Patel (2006), 

(SP) 

Reddy (1984), (R) 

 

Percentage difference between 

Present study and previous works. 

(%) 

SP 

 

R 

 

2.0 

20 13.320 14.048 13.98 5.47 4.95 

10 6.651 6.9266 6.958 4.14 4.62 

7.14286 4.741 4.8782 4.944 2.89 4.28 

 

1.0 

20 9.099 10.873 10.85 19.49 19.24 

10 4.523 5.3411 5.382 18.09 18.99 

7.14286 3.207 3.7313 3.805 16.35 18.65 

𝐍𝐨𝐭𝐞:(
𝐸2
𝐸1
= 0.52500,

𝐺12
𝐸1

= 0.26293,
𝐺13
𝐸1

= 0.15991,
𝐺23
𝐸1

= 0.26681,µ12 = 0.44046,µ21 = 0.23124) 

 

 Comparison of Non-Dimensional Displacement, �̅� of this 

Study with Previous Study for Simply Supported 

Orthotropic Rectangular Plate (Under Uniformly 

Distributed Transverse Load). 

The non-dimensional displacement, w̅ of simply 

supported orthotropic rectangular plate under uniformly 

distributed lateral load as compared with the works of Shimpi 

and Patel (2006) and Reddy (1984) are presented on Table 

(5). From Table (5), it is seen that the results from this study 

vary only slightly with the works of the previous scholars. 

The values follow the same trend as the displacement 
parameters decrease with a decrease in the span to thickness 

(
𝑎

𝑡
) value. The non-dimensional displacement, w̅ obtained in 

this study has a maximum percentage difference of 7.52% at 

span to thickness (
𝑎

𝑡
) value of 20 and aspect ratio (

𝑏

𝑎
) of 2.0 

when compared with the works of Shimpi and Patel (2006),  

while its minimum percentage difference is 5.33% at (
𝑎

𝑡
) 

value of 7.14286 and (
𝑏

𝑎
) value of 1.0. When compared with 

the works of Reddy (1984), the variation in the values 

obtained from this study has a maximum percentage 

difference of 7.52% at  (
𝑎

𝑡
) value of 20 and (

𝑏

𝑎
) value of 2.0 

while its minimum percentage difference is 5.07% when the 

span to thickness (
𝑎

𝑡
) value is 7.14286 and aspect ratio (

𝑏

𝑎
) is 

1.0. Hence, the values obtained for the non-dimensional 

displacement, w̅ for an orthotropic rectangular plate are in 
much agreement with previous studies as the maximum 

percentage difference is obtained as 7.82%. The little 

variations are due to the different theories used by the 

different scholars. Therefore, the Alternative II theory is 

adequate for thick plate analysis.  

 

Table 5: Comparison of Present Study Non-Dimensional Displacement, (�̅�) of Simply Supported Orthotropic Rectangular Plate 

Under Uniformly Distributed Transverse Load With Those of Previous Scholars 

Plate dimensional 

parameters 
�̅� =  

𝐰𝐄

Δt𝒒
 

at x = a/2, y = b/2 
𝑏

𝑎
 

𝑎

𝑡
 Present Study Shimpi and 

Patel (2006), 
(SP) 

Reddy (1984), 

(R) 
 

Percentage difference between Present 

study and previous works. (%) 

SP R 

 

2.0 

20 23294.1 21542 21542 7.52 7.52 

10 1522.02 1408.5 1408.5 7.46 7.46 

7.14286 418.192 387.23 387.5 7.40 7.34 

 

1.0 

20 11037.8 10443 10450 5.39 5.33 

10 727.495 688.57 689.5 5.35 5.22 

7.14286 201.836 191.07 191.6 5.33 5.07 

 

0.5 

20 2180.48 2048.7 2051.0 6.04 5.94 

10 148.862 139.08 139.8 6.57 6.09 

7.14286 42.865 39.79 40.21 7.17 6.19 

𝐍𝐨𝐭𝐞: (
𝐸2
𝐸1
= 0.52500,

𝐺12
𝐸1

= 0.26293,
𝐺13
𝐸1

= 0.15991,
𝐺23
𝐸1

= 0.26681,µ12 = 0.44046,µ21 = 0.23124) 
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V. CONCLUSION 

 

Based on the results obtained from this study, it can be 

concluded that using the complete three-dimensional 

constitutive relations produces reasonable values for the 

normal stresses in the thickness direction of a plate. Also, 

from the comparison done with the works of previous 

scholars, it is seen that the Alternative II refined plate theory 
produced reasonable results, hence can be used in thick plate 

analysis. 
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