
Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 148

Temperature Call Alert to Prevent Child Death from
Heatstroke in Smart Car using IoT

Srija Ghattamaneni1; Nesreen Alsbou2

University of Central Oklahoma

Abstract:- According to a study conducted by the

National Health Service (NHS), 937 children died of

heatstroke in the United States between 1998 and January

2023. Shockingly, out of these 937 deaths, 493 occurred

due to parents forgetting to take their children out of cars.

To prevent such tragic incidents from occurring, this

paper proposes a simple system, "Temperature Call

Alert”. The system operates by utilizing multiple sensors

to collect and analyze data regarding the temperature

inside a car. This data is then sent to a cloud platform for
storage and processing. If the system detects a higher-

than-normal temperature inside the car, it automatically

sends an alert call to the parent's mobile number with a

message. This alert call can help the parent to take

necessary actions to prevent their child's life from being

lost due to heatstroke. To implement the temperature call

alert system, we used an IFTTT webhook with an IoT

cloud. This allows us to give a call alert to the authorized

mobile number whenever the system detects a potentially

dangerous situation. With the help of this system, we can

reduce the risk of heatstroke deaths caused by parents

forgetting their children in cars.

Keywords:- Iot, Child Safety, Heatstroke, Arduino MKR1000,

Sensors, Arduino Iot Cloud, IFTTT, Alert Message.

I. INTRODUCTION

Heatstroke is a grove concern for children who are left

in hot cars, as it can lead to death if not treated immediately .

To address this issue, we propose an IoT system that uses a

wifi- compatible device with multiple sensors to prevent

heatstroke deaths in smart cars. Our research indicates that

the majority of heatstroke cases occur during summer, with

intermediate numbers in spring and fall, and the fewest cases

in winter. Heat-related illness can occur within an average of

20 minutes, with an average heat rate of 40 °C/h. If left

untreated, heatstroke could develop within 105 minutes, with

an average heat rate of 4.8 °C/h. Without medical

intervention, death could occur within 125 minutes.

Therefore, sending a temperature alert to the driver's mobile

number can help them take necessary action in a timely
manner and prevent any loss of life.

Several papers have discussed the detection of human

life in different situations. For instance, in one study [2],

Author used multi sensor wearable for child safety, A

wristband needs to be carried, based on the SMS and location

they can trace. Another author [3] proposed an IoT system

using Raspberry Pi with sensors. Another author [4] used

Infrared Sensors to detect the heatstroke and send an SMS.

Our proposed system employs a microcontroller -

Arduino MKR1000 - along with sensors such as vibration,

motion, FSR, Temperature, and Actuators such as Buzzer, and

an LED. The system collects the car's interior sensor data and

analyzes it using Arduino IoT cloud technology.

Additionally, we have used the IFTTT webhook to receive a

real-time call alerts in case of temperature fluctuations. This
approach provides an effective and cost-efficient means of

sending temperature alerts to the driver's mobile device. Our

proposed system aims to enhance the safety and well-being

of children in smart cars and prevent potential tragedies.

Fig 1: Proposed System Architecture

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 149

The proposed system has three stages to send real-time

temperature alert call. First stage involves the installation of

sensors inside the car to collect the kid and driver data inside

the car. Second stage includes a microcontroller- Arduino

MKR1000 to receive data from the sensors and then sends it

to the Arduino IoT cloud for storing and analysis. Third stage

of the system involves the integration of IFTTT web

application, which is used to to trigger an call alert to the

driver if the temperature inside the car reaches a certain level.

By implementing these three stages, this system helps us to

reduce the child death rate due to heat stores in smart car.

II. COMPONENTS AND SOFTWARE

A. Sensors

 SW 420 Vibration Sensor:

This vibration sensor has 3 pin (VCC, DO, GND)

which is a is a high sensitivity non-directional vibration

sensor with an potentiometer which controls the sensitivity of

this sensor.Specifications are, voltage is 3.3V - 5V. Here, we

are using this sensor to check the car engine status - on/off.

Fig 2: SW 420 Vibration Sensor

 PIR Motion Sensor V1.2:

This PIR motion sensor v1.2 has 4 pins (D1, NC, VCC,

GND) which allows to sense motion, usually human
movement in its range. Specifications of this sensor are,

Voltage is 3v-5v, measuring range is 0.1m - 6m, default

detecting distance is 3m, wavelength is 7-14um, detecting

angle is 120 degrees and the holding time is 1-25s. Here we

are using this PIR motion sensor, to sense the Kid in the back

seat of car and to detect the driver in driver seat.

Fig 3: PIR Motion Sensor V1.2

 Force Sensing Resistor

This sensor has 2 pins and it gives a value when a

pressure is applied. Output is totally depended on the area on

sensors’s surface when force is applied. Specifications of this

FSR are, Voltage is 3.3V/5V, Force sensitivity range - 0.2N

- 20N, Analog output - 0 to 650. Here we are using to to check

the kid and driver press on seats.

Fig 4: Force Sensing Resistor

 Temperature Sensor V1.2

This temperature sensor v1.2 has 4 pins (SIG, NC, VCC,

GND) which has a in-built thermistor which detects the

temperature.The resistance of a thermistor will increase when

the temperature decreases. Specifications of this sensor are,

Voltage is 3.3 ~ 5V, Zero power resistance is 100 KΩ,

Resistance Tolerance is ±1%, Operating temperature range -

40~ +125 ℃ and Nominal B-Constant 4250 ~ 4299K. Here

we are using this temperature sensor to detect the temperature

inside car.

Fig 5: Temperature Sensor V1.2

B. Actuators

 Buzzer

This buzzer v1.2 has 4 pin (GND, VCC, NC, SIG) has

a piezo buzzer as the main component. This can be connected

to digital output and will emit a tone when there is output.

Specifications are, voltage is 3.3V - 5V, and sound output is

>= 85dB and resonant frequency is 2300+300 or -300HZ.

Here we are using this buzzer inside the car to ring when there

is fluctuations in temperature with a kid motion and no driver.

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 150

Fig 6: Buzzer

 LED

Light emitting diode is a semiconductor device that

emits light when current flows through it. Here we are using

these led’s to represent the detection of kid and Driver.

Fig 7: LED

C. Micro Controller - Arduino MKR1000

This Arduino MKR1000 is based on Atmel SAMD21

microcontroller which features built-in Wi-Fi which makes it

easy to connect to Internet and communicate with other

devices. This has 14 digital input/output pins, 6 analog inputs

and communication interfaces (SPI, I2C and UART). This

can be connected using USB cable or with an Li-Po battery

and this supports 3.3V- 5V. This is compatible with Arduino

IoT cloud technology.

Fig 8: Micro Controller - Arduino MKR1000

D. Arduino IoT Cloud

Arduino IoT cloud is a cloud-based service that allows

users to connect their devices to the internet and manage them

remotely. It provides a platform for collecting and analyzing

data from connected devices, creating custom dashboards,

and setting up alerts and notifications. With the Arduino IoT

cloud, it is easy to monitor and control devices from

anywhere with an internet connection. For our proposed

system, we have utilized the Arduino IoT cloud to collect and

analyze data from the Arduino MKR1000 board and provide

real-time monitoring and alerts for temperature fluctuations.

Fig 9: Arduino IoT Cloud

E. IFTTT Web Application

IFTTT (If This Then That) is a web-based service that

allows users to create automated workflows between different

web applications and services. With IFTTT, users can create

custom applets that connect different web services, allowing

for automated actions based on triggers. IFTTT can be used

to integrate different devices and services and create custom

triggers and actions such as calling, messaging, and e-

mailing. This makes it easier to manage and control IoT

devices and create more advanced and efficient automation
workflows.

Overall, the importance of IFTTT lies in its ability to

simplify and automate complex workflows, saving time and

effort for users and enabling new levels of productivity and

efficiency.

Fig 10: IFTTT Web Application

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 151

Q

Fig 11: Flowchart

This flowchart explains about the proposed system,

from data collection to real-time alerts. The system collects

data from the sensors installed in the car and then transmitted

to the cloud for analysis. Based on the analysis, the system

detects the child's presence and the temperature status inside

the car. If there is no driver inside the car and the child's

temperature exceeds a certain threshold, an alert is sent to

driver mobile number using IFTTT webhook and applets. The

system's workflow is designed to be efficient and

reliable,ensuring the safety and well-being of children in

smart cars.

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 152

Fig 12: Schematic Diagram

Table 1: Circuit Pin Connections

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 153

 Setting up the Circuit System in Car Setup

We arranged a vibration sensor beside the car steering

to check car engine status either ON/OFF. To check the

driver, a motion sensor at the driver leg space, FSR (pressure)

sensor on the driver seat. To check the child, motion sensor

on the back of driver seat, child FSR (pressure) sensor on the

child seat, Temperature, buzzer and led’s are placed in-

between of driver and child seat. Based on the conditions, if

there is no driver and a child is inside the car with higher

temperature then a buzzer will the ringed with an led light.

Fig 13: Circuit System in Car Setup

 Sending and Storing the Sensor Data

By using MKR1000 and Arduino IoT cloud, we have set

the MKR device, wifi network, and the things(sensors) in the

cloud website. Here, things represents a physical device

which is connected inside the car to send and receive data. In

order to get the sensor data, we need to add the the sensor data

in variables which manages data associated with a Thing.

These can be modified through the Cloud platform or through

an API. Then we will associate the microcontroller (MKR)

with cloud along with network.It’s better to choose a personal

network instead on a public network.

Fig 14: Sensor Data

Once we are done with setting up the devices, an auto
generator code appeared on the sketch tab. Based on our

proposed system and expected output, we have modified the

code with necessary conditions and loops and then upload the
code in the cloud. Here is our code,

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 154

Arduino IoT Cloud code for ‘Temperature call alert’
/*
Sketch generated by the Arduino IoT Cloud Thing

"Untitled"
h t t p s : / / c r e a t e . a r d u i n o . c c / c l o u d / t h i n g

s / a04510bc-8c0a-4011-a843-66f6cb4a9221

Arduino IoT Cloud Variables description
The following variables are automatically generated

and updated when changes are made to the Thing

float temperature_inside_car; int
alert_message;
int car_on_off_vibration; int
driver_pressure;
int kid_pressure;
CloudLocation location;
bool alert_Led;
bool buzzer;
bool car_on_off_led; bool
driver_detected_led;
bool driver_motion_yes_no; bool
kid_detected_led;

Variables which are marked as READ/WRITE in
the Cloud Thing will also have functions

which are called when their values are changed from
the Dashboard.

These functions are generated with the Thing and
added at the end of this sketch.
*/

#include "thingProperties.h"
//vibration sensor

int vibrationsensorpin = 4; //digital pin 2 to vibration
sensor
int vibrationsensorvalue = 0; //variable to store vib value
int car_ledpin = 5; //blue /digital pin 3 to
vibration
//kid motion sensor

int kidmotionsensorpin = 2; //digital pin 4 to
motion sensor

int kidmotionsensorvalue = 0; //variable to
store mot value
//pressure sensor
int kidpressuresensorpin = A1; //analog pin
1

int kidpressuresensorvalue = 0;
 //var
iable to store pressure sensor data
//kid detection led pin

int kid_detected_led_pin = 3; //green / kid
detected signal
//Driver motion sensor

int drivermotionsensorpin = 7;
 //digit
al pin 7 to driver motion sensor

int drivermotionsensorvalue = 0;
 //var
iable to store motionsensor value
//Driver pressure sensor

int driverpressuresensorpin = A5;
 //ana
log 2 to driver pressure

int driverpressuresensorvalue = 0; //
variable to srore pressure value
//driver detected led pin

int driver_detected_led_pin = 9; //yellow
//temeprature sensor
const int B = 4275; // B value of the
thermistor const int R0 = 10000; // R0 = 100k

const int pinTempSensor = A0; // Grove -
Temperature Sensor connect to A0
float temperature;
//Buzzer
const int buzzerPin = 1 ;
//final led
int alert_led=8; //red
int driver;
nt child;
void setup() {

/ Initialize serial and wait for port to open:
Serial.begin(9600);
pinMode(vibrationsensorpin,INPUT);
pinMode(car_ledpin,OUTPUT);
pinMode(kidmotionsensorpin,INPUT);
//pinMode(kidpressuresensorpin, INPUT);
pinMode(kid_detected_led_pin,OUTPUT);
pinMode(drivermotionsensorpin, INPUT);
//pinMode(driverpressuresensorpin,INPUT);
pinMode(driver_detected_led_pin,OUTPUT);
pinMode(buzzerPin,OUTPUT);
pinMode(alert_led, OUTPUT);

// This delay gives the chance to wait for a Serial
Monitor without blocking if none is found
delay(1500);
// Defined in thingProperties.h
initProperties();

// Connect to Arduino IoT Cloud
ArduinoCloud.begin(ArduinoIoTPreferredConnection);
/*

The following function allows you to obtain
more information

related to the state of network and IoT
Cloud connection and errors
the higher number the more granular information you’ll
get.
The default is 0 (only errors). Maximum
is 4
*/
setDebugMessageLevel(2);
ArduinoCloud.printDebugInfo();
}
void loop()
{ ArduinoCloud.update();
// Your code here
/*
//reading vibration sensor data
vibrationsensorvalue = digitalRead(vibrationsensorpin);
//printing vibration values
Serial.print("vibration: ");
Serial.print(vibrationsensorvalue);
*/
//
long measurement =TP_init(); //vibration pin
delay(50);
Serial.print("Vibration = ");
Serial.println(measurement);
vibrationsensorvalue= measurement;

if (vibrationsensorvalue > 200)
{ digitalWrite(car_ledpin, HIGH);

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 155

car_on_off_led=car_ledpin;
delay(1000);
}
else
{ digitalWrite(car_ledpin, LOW);
}
//
//reading kid motion sensor data
kidmotionsensorvalue = digitalRead(kidmotionsensorpin);

//printing motion values Serial.print(",
kidmotion:");
Serial.println(kidmotionsensorvalue);
//kid pressure sensor data

k i d p r e s s u r e s e n s o r v a l u
e

= analogRead(kidpressuresensorpin);
Serial.print("kid pressure = ");
Serial.print(kidpressuresensorvalue);
kid_pressure=kidpressuresensorvalue;
//kid detected led
if (kidmotionsensorvalue=1 && kidpressuresensorvalue
> 3)
{
digitalWrite(kid_detected_led_pin, HIGH);
child=1;
kid_detected_led=kid_detected_led_pin;
delay(100); }

else{
digitalWrite(kid_detected_led_pin, LOW);
child=0;
kid_detected_led=kid_detected_led_pin;
delay(100);
}
//Driver motion values

d r i v e r m o t i o n s e n s o r v a l u
e

= digitalRead(drivermotionsensorpin);
//printing motion values
Serial.print(", Driver motion:");
Serial.println(drivermotionsensorvalue);
//Driver pressure sensor data

d r i v e r p r e s s u r e s e n s o r v a l u e
= analogRead(driverpressuresensorpin);

Serial.print("driver pressure = ");
Serial.println(driverpressuresensorvalue);
driver_pressure=driverpressuresensorvalue;
//Driver detected led

i f (d r i v e r m o t i o n s e n s o r v a l u e = = 1 &
& driverpressuresensorvalue > 20)
{
Serial.println(", Driver present:"); driver=1;
digitalWrite(driver_detected_led_pin, HIGH);
driver_detected_led=driver_detected_led_pin;
delay(100);
}
else{
Serial.println(", Driver NOT present:");
driver=0; digitalWrite(driver_detected_led_pin,
LOW); delay(100);
}
//temperature sensor
int a = analogRead(pinTempSensor);
float R = 1023.0 / a - 1.0;

R = R0 * R;
//float temp;

temperature = 1.0 / (log(R / R0) / B + 1 /
298.15) - 273.15;
Serial.print("temperature = ");
Serial.println(temperature);
temperature_inside_car=temperature;
delay(2000);
//Buzzer
if (temperature > 25 && child == 1 && driver == 0)
{

Serial.println("Child Present in car with HIGH
temperature ");
alert_message=1;

buzzer=HIGH;
digitalWrite(buzzerPin, HIGH);
delay(1000);
digitalWrite(buzzerPin, LOW);
digitalWrite(alert_led, HIGH);
alert_Led = alert_led;
delay(1000);
}

else
{
alert_message=0; buzzer=LOW;
digitalWrite(alert_led, LOW);
alert_Led=alert_led;
}
Serial.print("alert message: "); Serial.println(alert_message);
}

long TP_init(){ delay(10);
long measurement=pulseIn (vibrationsensorpin,

HIGH); //wait for the pin to get HIGH and returns
measurement
return measurement;
}
/*

Since CarOnOffVibration is READ_WRITE
variable, onCarOnOffVibrationChange() is

executed every time a new value is received from IoT
Cloud.
*/
void onCarOnOffVibrationChange() {

// Add your code here to act upon
CarOnOffVibration change
}
/*

Since KidMotionYesNo is READ_WRITE variable,
onKidMotionYesNoChange() is

executed every time a new value is received from IoT
Cloud.
*/
void onKidMotionYesNoChange() {

// Add your code here to act upon
KidMotionYesNo change
}
/*

Since KidHeartbeatYesNo is READ_WRITE
variable, onKidHeartbeatYesNoChange() is

executed every time a new value is received from IoT
Cloud.
*/
void onKidHeartbeatYesNoChange() {

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 156

// Add your code here to act upon KidHeartbeatYesNo
change
}
/*

Since KidPressure is READ_WRITE variable,
onKidPressureChange() is

executed every time a new value is received from IoT
Cloud.
*/
void onKidPressureChange() {
// Add your code here to act upon KidPressure change
}
/*

Since DriverMotionYesNo is READ_WRITE
variable, onDriverMotionYesNoChange() is

executed every time a new value is received from
IoT Cloud.
*/
void onDriverMotionYesNoChange() {

// Add your code here to act upon
DriverMotionYesNo change
}

/*Since DriverPressure is READ_WRITE variable,
onDriverPressureChange() is

executed every time a new value is received from
IoT Cloud.
*/
void onDriverPressureChange() {
// Add your code here to act upon DriverPressure change
}
/*

Since DriverHeartbeatYesNo is READ_WRITE
variable, onDriverHeartbeatYesNoChange() is

executed every time a new value is received from
IoT Cloud.
*/
void onDriverHeartbeatYesNoChange() {

// Add your code here to act upon
DriverHeartbeatYesNo change
}

/*Since AlertMessage is READ_WRITE variable,
onAlertMessageChange() is

executed every time a new value is received from
IoT Cloud.
*/
void onAlertMessageChange() {
// Add your code here to act upon AlertMessage change
}

/*Since TemperatureInsideCar is READ_WRITE
variable, onTemperatureInsideCarChange() is

executed every time a new value is received from
IoT Cloud.
*/
void onTemperatureInsideCarChange() {

// Add your code here to act upon
TemperatureInsideCar change
}

/ * S i n c e B u z z e r i s R EAD _ W R I T E v a r i a b l
e , onBuzzerChange() is

executed every time a new value is received from
IoT Cloud.
*/
void onBuzzerChange() {
// Add your code here to act upon Buzzer change
}

/*Since KidMotionLed is READ_WRITE variable,
onKidMotionLedChange() is

executed every time a new value is received from
IoT Cloud.
*/
void onKidMotionLedChange() {
// Add your code here to act upon KidMotionLed change
}

/*Since KidDetectedLed is READ_WRITE variable,
onKidDetectedLedChange() is

executed every time a new value is received from IoT
Cloud.
*/
void onKidDetectedLedChange() {

// Add your code here to act upon KidDetectedLed
change
}

/*Since DriverMotionLed is READ_WRITE variable,
onDriverMotionLedChange() is

executed every time a new value is received from IoT
Cloud.
*/
void onDriverMotionLedChange() {

// Add your code here to act upon
DriverMotionLed change
}

/*Since DriverDetectedLed is READ_WRITE variable,
onDriverDetectedLedChange() is

executed every time a new value is received from IoT
Cloud.
*/
void onDriverDetectedLedChange() {

// Add your code here to act upon
DriverDetectedLed change
}

/* Since TemperatureHigherLed is READ_WRITE
variable, onTemperatureHigherLedChange() is executed
every time a new value is received from IoT Cloud.
*/
void onTemperatureHigherLedChange() {

// Add your code here to act upon
TemperatureHigherLed change
}
/*

Since CarOnOffLed is READ_WRITE variable,
onCarOnOffLedChange() is

executed every time a new value is received from IoT
Cloud.
*/
void onCarOnOffLedChange() {
// Add your code here to act upon CarOnOffLed change
}
/*

S i n c e Al e r t L e d i s R EAD _ W R I T E v a r i a b l e ,
onAlertLedChange() is

executed every time a new value is received from IoT
Cloud.
*/
void onAlertLedChange() {

// Add your code here to act upon AlertLed change

After updating code, we have verified and save the code

on cloud. Later, uploaded the code (sketch) and then check

the serial monitor for the output.

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 157

Fig 15: Cloud

Now, we have created the dashboard to view the connected devices in real time monitoring. While creating the dashboard with

necessary things, we have linked the respective variable which we created earlier while setting the variables in things.

Fig 15: Dashboard

We have created an Applet by choosing the web request (call) option which is a pro feature of IFTTT and then updated the
events and trigger along with the message.

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 158

Fig 16: Applet

executed every time a new value is received from IoT

Cloud.
*/
void onLocationChange() {
// Add your code here to act upon Location change

}

Now, we need add the event name in the json key and

copy that webhook url and paste that webhook link at the

thing in Arduino cloud.Then a json event has been triggered

and will get a call with the event name, date & time, and

message.

III. RESULTS

While there is a child detection with our driver and

temperature is too high inside car, able to get a temperature

alert to the registered(driver) mobile number.

Fig 17: Mobile

 Simulation

‘NODE-RED’ is one of the simulator tool which can be

connected to our IoT projects. This flows to monitor,

simulated production line, machine speed using MQTT and

UMH data model. To create a flow and choose the nodes

accordingly and set the filter node to ‘block unless value

changes’. To configure, choose switch mode which will

check the value of messages which we have configured and

passed through the function node. Now, we need to connect

the nodes. Configured the mqtt- in node with the service name

of hivemq ‘testLocation/

DefaultProductionLine/Status/S’ateCurrent’. For mqtt-out

node we need to select the broker with

‘ia/factoryinsight/Aachen/ testAsset/State’. Our flow will

be mqtt-in → json (json key) →Function → mqtt-out. As

we are connecting this this to our Arduino, no need to write a

new code, it will be using the same code.

Fig 18: Simulation

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

Volume 9, Issue 6, June – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUN177

IJISRT24JUN177 www.ijisrt.com 159

IV. CONCLUSION

Numerous existing systems and prototypes have been

developed to mitigate the occurrence of child heatstroke

deaths, with several products available in the market. Based

on my research work, most of the authors tried SMS option

but not call service. So, our project aims to achieve this goal

through a smartphone-based system with calling option not

by SMS. By connecting our microcontroller to the cloud and

retrieving data with minimal sensors. And we can run the

system using any smartphone, which most people already

possess.

REFERENCES

[1]. Please refer to this manual for Arduino cloud and

IFTTT process.

[2]. Fatangare, M., Nimbalkar, A., Chite, G., Narkhede, A.,
& Khilnani, A. (2020). An Efficient Temperature

Monitoring using Raspberry Pi. 2020 International

Conference on Inventive Computation Technologies

(ICICT). doi:10.1109/ icict48043.2020.9112376.

[3]. Chowdhury, U., Chowdhury, P., Paul, S., Sen, A.,

Sarkar, P. P., Basak, S., & Bhattacharya, A. (2019).

Multi-sensor Wearable for Child Safety. 2019 IEEE

10th Annual Ubiquitous Computing, Electronics &

Mobile Communication C o n f e r e n c e (U E M C

O N) . d o i : 1 0 . 1 1 0 9 /

uemcon47517.2019.8992950

[4]. Bhaskaran Venugopal, R., & Dudhe, R. (2021). IoT

Based Advanced Heat Stroke Alarm System. 2021

International Conference on Computational

Intelligence and K n o w l e d g e E c o n o m y (I C C I

K E) . d o i : 1 0 . 11 0 9 /

iccike51210.2021.941072610.1109/
ICCIKE51210.2021.9410726

[5]. Shi, D., Lu, J., Wang, J., Li, L., Liu, K., & Pan, M.

(2020). No One Left Behind: Avoid Hot Car Deaths

via WiFi Detection. ICC 2020 - 2020 IEEE

International Conference on Communications (ICC).

doi:10.1109/icc40277.2020.9148648

[6]. Xu, Q., Wang, B., Zhang, F., Regani, D. S., Wang, F.,

& Liu, K. J. R. (2020). Wireless AI in Smart Car: How

Smart a Car Can Be? IEEE Access, 1 – 1 . doi:

10 . 1109 /access.2020.297853

[7]. Moutaz Saleh., Fareeda Charkie., Rola Al-Hamad.,

Fatma Almisned. Designing a Smart Alarm System to

Prevent Child Heatstroke in Vehicles. 2022

International Conference on Smart Systems and

Power Management (IC2SPM) doi : 10.1109/

IC2SPM56638.2022.9988856

[8]. Barrera, J. P. S., Sandoval, G. M., Ortiz, G. C.,
Gonzalez, R. N., & Aguilar, E. R. (2014). A Multi-

agent System to Avoid Heatstroke in Young Children

Left in Baby Car Seats inside Vehicles. 2014

International Conference on Computational

Science and Computational Intelligence.

doi:10.1109/csci.2014.129

[9]. R. Lusso., M.Jensen., E. Walters., Ranger ., K.

Alexander., AUTOMOBILE SAFETY - CHILD

SEAT ENTRAPMENT AND M E C H A T R O N I

C WA R N I N G S Y S T E M . d o i :

10.3182/20070820-3-US-2918.00040

https://doi.org/10.38124/ijisrt/IJISRT24JUN177
http://www.ijisrt.com/

