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Abstract:- Accurate determination of the state of charge 

is vital to optimize the performance and lifespan of 

electric vehicle batteries. Traditional methods which 

rely on battery models and direct measurements can be 

error-prone due to fluctuating operating conditions and 

battery degradation over time. Regenerative braking 

systems are crucial in electric and hybrid vehicles for 

improving energy efficiency by transforming kinetic 

energy into electrical energy during braking. However, 

force fluctuation is a challenge that can affect the 

performance and comfort of regenerative braking. It is 

known to us that electric motors and generators used in 

regenerative braking have non- linear torque 

characteristics, especially at low speeds, leading to 

inconsistent braking force. Variations in road 

conditions, such as wet or uneven surfaces, can affect 

the grip of the tires, leading to fluctuations in 

deceleration. Interactions of regenerative braking system 

with conventional friction brakes can cause force 

fluctuations, especially during the transition between the 

two systems. This study introduces an improved state of 

charge estimation technique based on force fluctuation 

and a regenerative braking system. This research 

shows that this approach significantly enhances state of 

charge accuracy compared to traditional methods, 

especially in urban driving conditions with frequent 

braking. The findings underscore the potential of using 

regenerative braking as well as force fluctuation 

condition data as a valuable input for state of charge 

estimation, ultimately leading to better battery 

management and an extended electric vehicle range. 

 

Keywords:- Electric Vehicle (EV), Regenerative Braking, 

State of Charge (SOC). 

 

 

 

 

 

 

I. INTRODUCTION 

 

The state of charge (SOC) of an electric vehicle’s (EV) 
battery is a crucial indicator of the battery’s residual 

capacity, similar to a fuel gauge in traditional vehicles. 

Ensuring precise estimation of SOC is essential for the 

efficient operation, well-being, and long-lastingness in EV 

batteries. Traditional methods for SOC estimation typically 

depend on measurements of voltage, current, and 

temperature, combined with battery models that consider 

the battery’s characteristics and behavior under various 

operating conditions. However, these conventional methods 

encounter several challenges. SOC estimation accuracy can 

be significantly impacted by factors such as battery aging, 
temperature fluctuations, and dynamic load conditions. 

Inaccurate SOC  estimation  can  lead  to  suboptimal 

battery management potentially decreasing overall battery 

performance and lifespan and affecting the driving range 

and reliability of the EV. Regenerative braking, a feature in 

modern EVs, offers a unique opportunity to enhance SOC 

estimation. During regenerative braking, electric motor 

serves as a generator, transforming kinetic energy to 

electrical energy and storing of the same in the battery. This 

process along with improving energy efficiency, also 

provides with valuable data which can be used to enhance 

SOC estimation accuracy. This paper proposes an enhanced 
SOC estimation method that incorporates regenerative 

braking information. We aim to achieve increased dynamic 

and precise evaluation of battery’s state. This research work 

explains that this approach significantly improves SOC 

estimation accuracy, particularly in urban driving conditions 

where frequent braking occurs. The incorporation of 

regenerative braking data not only enhances the reliability 

of SOC measurements but also contributes to better battery 

management strategies, ultimately extending the driving 

range and lifespan of EV batteries. In the following sections, 

we detail the methodology of our SOC estimation technique 
and present the findings & outcomes of our tests. 
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II. REGENERATIVE BRAKING SYSTEM 

 

The flowchart illustrates a control mechanism for 

regenerative braking in a single-axle electric vehicle (EV). 

Regenerative braking captures kinetic energy when slowing 

down, converting it to electric power for recharging battery. 
When the brake signal is received, the system initiates by 

determining the required ‘demand brake force’ for 

deceleration. It then decides on the optimal ‘brake force 

distribution’ between the front and rear axles to maintain 

vehicle stability. The flowchart then branches depending on 

whether regenerative braking is feasible: if the vehicle 

speed is below 5 km/h or the battery is nearly full (SOC > 

0.95), regenerative braking is bypassed, and the system 

moves to ‘close regenerative mode’. Conversely, if 

regenerative braking is possible, the system calculates the 

highest regenerative braking torque that the electric motor 

can apply to slow down the vehicle, considering system and 

battery limitations. This torque is then translated into 

peak Regenerative braking forces for the front and rear 

wheels. Depending on whether regenerative braking is 

enabled or not, the flowchart determines either zero 

regenerative braking torque in ‘close regenerative mode’ 

with a calculation of hydraulic braking forces or applies the 
previously calculated regenerative braking forces to the 

wheels. The flowchart outlines a control strategy that 

prioritizes regenerative braking when conditions allow, 

ensuring a seamless transition to traditional hydraulic 

braking when necessary. 

 

 
Fig 1. Working of Regenerative Braking System 

 

III. METRICES 

 

A. Root Mean Squared Error (RMSE): 

RMSE is a way for measuring how accurate a 

prediction model is, especially in regression issues. It’s 
basically the mean of squared differences among estimated 

and original observations, but with the square root taken at 

the end. Just like MSE, a lower RMSE is better and shows 

the predictions are on target. A higher RMSE means more 

misses from the model. Although RMSE is always non- 

negative, it has the same unit as what you’re trying to 

predict, making it easier to understand. One thing to watch 

out for with both RMSE and MSE is that they are heavily 

influenced by outliers because of the squaring involved. 

 

B. Mean Absolute Error (MAE): 
MAE is a different way to check how accurate your 

prediction model is. It simply averages the amount of 

difference between what you predicted and what actually 

happened, without considering if the prediction was too high 

or too low. A low MAE means your predictions are on 

average close to reality, signifying a good model. The 

opposite holds true for high MAE. MAE is always non- 

negative because it uses absolute values, and it shares the 

same units as what you’re trying to predict, making it easy 

to understand. An advantage of MAE over MSE and RMSE 

is that it’s less swayed by extreme mistakes since it doesn’t 
square the errors. 

 

IV. LITERATURE REVIEW 

 

In recent years, researchers have made significant 

strides in improving the accuracy of state of charge (SOC) 

estimation for electric vehicle (EV) batteries. One notable 

approach involves the use of a Random Forest (RF) 

model, which has demonstrated superior performance in 

real-world conditions. This model leverages machine 

learning to establish robust correlations between various 
input parameters and SOC values. The RF model has shown 

exceptional accuracy and reliability across diverse driving 

scenarios, outperforming other models in rigorous testing. 

For instance, in k-fold cross-validation, the RF model 

achieved lower mean absolute error (MAE) and root 

mean squared error (RMSE) compared to the 
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Extreme Learning Machine (ELM) model [1]. Another 
innovative method for online SOC estimation utilizes 

vector-type recursive least squares (VRLS). This approach 

identifies ECM characteristics that change at different 

rates by employing multiple forgetting factors. The 

VRLS algorithm has demonstrated high estimation 

accuracy and significant resilience to disturbances in 

various testing scenarios [2]. Researchers have also 

explored the combination of neural networks and Kalman 

filtering for dynamic SOC estimation. One study 

developed a NN-EKF model that incorporates Extended 

Kalman Filter (EKF) estimations into a neural network. 
This approach was tested on different battery types and 

showed promising results, particularly when incorporating 

temperature data [3]. The application of EKF has been 

further refined in a physics-based model for lithium polymer 

batteries. This method, which employs a simulated 

annealing technique for parameter determination, has shown 

reduced errors for both continuous and pulsed currents 

compared to the battery model alone [4]. A structured 

approach combining model uncertainty considerations with 

a joint EKF has been proposed to simplify observer tuning. 

This method adjusts EKF equations to accommodate 

cross-correlated disturbances and introduces a forgetting 
factor, resulting in a single-parameter tuning process 

regardless of battery model complexity [5].Digital twin 

models have also been explored for parameter identification 

and SOC estimation. One such model uses an EKF with 

a state-space model of an EV battery, enabling monitoring 

of both current and historical SOC values [6]. Researchers 

have also focused on addressing parametric uncertainty and 

measurement noise in SOC estimation. One study 

developed an observer based on Kalman Filter Theory, 

demonstrating accurate SOC estimation while highlighting 

the trade-off between estimation accuracy and 
convergence speed [7]. An enhanced Kalman filter using 

an approximation of a micro-macroscopic lithium-ion 

battery model has been proposed to make solid 

concentration estimation more practical [8].To address 

battery model inaccuracy, researchers have developed a 

Model Error estimate Observer (MEO) based on Kalman 

Filter theory This approach disentangles the  

combined KF method into parallel components for 

SOC and model error estimation, showing improved 

performance under various dynamic loading profiles [9]. 

Finally, researchers have explored the application of 

continuous discrete Kalman filter (CDKF) and 
extended Kalman filter (EKF) techniques for recursive SOC 

estimation in battery electric vehicles (BEVs). This 

approach uses a first- order RC model to simulate battery 

dynamics and an Adaptive Sliding Mode Observer (ASMO) 

for parameter identification [10]. These advancements in 

SOC estimation techniques demonstrate the ongoing efforts 

to improve the accuracy and reliability of battery 

management systems in electric vehicles, contributing to the 

overall enhancement of EV technology and performance. 

 

 
 

 

 

V. MACHINE LEARNING ALGORITHMS 

APPLIED IN OUR STUDY 

 

A. Linear Regression: 

Linear regression is a key method in machine learning 

for predicting continuous values based on one or more 

independent variables. It determines the best-fit straight line 

via. data points, representing the linear association between 

the unconstrained variables and the constrained variable. 

This line’s equation serves as a guide for making 

predictions. Once this equation is determined, its accuracy 

can be assessed employing benchmarks such as R-squared 
and Mean Squared Error (MSE). 

 

B. K-Nearest Neighbors: 

K-Nearest Neighbors (KNN) is a popular, 

straightforward algorithm used in machine learning in both 

tasks of classification and regression. It works by measuring 

the distances among new data point with all existing data 

points. K-Nearest Neighbors (KNN) determines the labels of 

the nearest neighbors. The fresh data point adopts the most 

common label among the nearest neighbors of it. For 

example, if most neighbors are classified as “cats,” the new 

point is likely classified as “cats” too. K-Nearest Neighbors 
(KNN) computes the average values of its nearest neighbors. 

This average value is then used as the predicted value 

for the new data point in regression tasks. Linear 

regression is a key technique in machine learning for 

predicting continuous values based on one or more 

independent variables. It determines the best-fit straight line 

via. data points, representing linear association among the 

unconstrained variables and the constrained variable. This 

line’s equation serves as a guide for making predictions. 

Once this equation is determined, its accuracy can be 

assessed by benchmarks like R- squared and mean-squared 
error (MSE). 

 

C. Decision Tree: 

It is a fundamental machine-learning tool which 

employs hierarchical, tree-like structure for making forecast. 

It operates in supervised learning scenarios, where it learns 

from labeled data to classify new instances. The algorithm 

constructs the tree by iteratively dividing the data into tinier 

subsets based on the highest important characteristic at every 

node. This division continues until each leaf node contains 

predominantly one category, ensuring homogeneity. 

Decision trees are versa- tile and applicable to both 
classification and regression tasks. Excessively intricate 

decision trees can result in a phenomenon known as over 

fitting. This occurs when the model becomes too 

specialized to the specific patterns and nuances of the 

training dataset. While such a model may demonstrate 

excellent performance on the data it was trained on, it often 

struggles to generalize effectively when presented with 

new, unseen information. This lack of generalization ability 

limits the model's practical usefulness in real-world 

applications where it must handle novel data points. 

Techniques like pruning are used to mitigate this issue.  
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VI. OVERVIEW OF THE APPROACH 
 

This research estimates the state of charge (SOC) of 

an electric vehicle (EV) battery employing machine learning 

Techniques such as decision trees, K-Nearest Neighbors 

(KNN), and linear regression. The trait of the training data 

determines the effectiveness of this technique. Noise, 

irrelevant information, and errors are to be encountered 

inevitably. So, these are considered at the time of tutoring 

and evaluating phases. So influence of these can be 

diminished as they are also to be accounted for. The 

research utilizes an actual dataset from 70 trips driven in a 
BMW i3 EV that has a 60 Ah battery pack installed. This 

information was gathered via the car’s OBD port at a rate 

of one hertz (Hz) comes from sensors installed in the car. 

There may be missing values in the dataset due to 

measurement errors or other issues, necessitating thorough 

preprocessing to clean the data. The dataset contains two 

SOC attributes: one that the car manufacturer estimates and 

another displayed to the user. This research selects 

producer’s estimated SOC as the goal attribute for 

instruction and assessment. The models, aim to faithfully 

reproduce the manufacturer’s estimations and use them as 

an authenticated source in the EV sphere. Input variables for 
the models include measured voltage, current, battery pack 

temperature, ambient temperature, regenerated braking 

system, motor torque, and elevation. To assure precise SOC 

estimation, extensive data preparation addresses missing 

values and remove noise or inconsistencies. Using actual 

data of BMW i3, alongside Decision Tree, K-Nearest 

Neighbors (KNN), and Linear Regression, and diverse data 

attributes, it is anticipated to provide resilient SOC 

forecasts, advancing battery state estimation in EVs. 

Including ambient temperature, regenerated braking system, 

motor torque, and elevation as an input variable was a 
deliberate decision, recognizing its critical impact on the 

productivity of lithium-ion batteries that are used in EVs. 

Temperature significantly affects battery capacity, 

charge/discharge rates, along with overall health. Since 

temperature variations are common in real-world EV 

applications, accounting for ambient temperature helps 

create a robust SOC estimation model adaptable to different 

climates and conditions. This choice enhances the precision 

and dependency of SOC evaluation, reflecting practical 

considerations in EV operations where ambient temperature, 

regenerated braking system, motor torque, and elevation are 

easily measurable. Overall, incorporating ambient 
temperature into the model acknowledges its significant 

influence on battery performance and its role in improving 

SOC estimation. 

 

VII. APPROACH 

 

A. Dataset 

This research aims to estimate the battery of electric 

vehicle (EV) and its state of charge (SOC) employing 

machine learning methods such as decision trees, K-Nearest 

Neighbors (KNN), and linear regression. The traits of the 
training data determines the effectiveness of this technique. 

Noise, irrelevant information, and errors are to be 

encountered inevitably. So, these are considered at the time 

of tutoring and assessing phases. So the influence of these 
can be diminished, as they are also to be accounted for. The 

research utilizes an original dataset from 70 journeys made 

by one BMW i3 EV equipped with 60 Ah battery pack. The 

data, collected at a 1 Hz rate through the vehicle’s OBD 

port, comes from sensors installed in the car this 

research utilizes a dataset from a BMW i3 electric vehicle, 

which may contain missing values due to various factors, 

requiring thorough preprocessing. The study focuses on the 

manufacturer's estimated State of Charge (SOC) as the 

target variable, aiming to replicate and validate these 

estimations within the EV domain. Input variables for the 
models encompass measured voltage, current, battery pack 

temperature, ambient temperature, regenerated braking 

system, motor torque, and elevation. The inclusion of these 

variables, particularly ambient temperature, regenerated 

braking system, motor torque, and elevation, is a strategic 

choice acknowledging their significant impact on lithium-

ion battery performance in EVs. Extensive data 

preprocessing will address missing values and remove 

inconsistencies to ensure accurate SOC estimation. The 

research employs Decision Tree, K-Nearest Neighbors 

(KNN), and Linear Regression models with varying data 

characteristics to generate robust SOC predictions. By 
incorporating real-world data and considering critical factors 

like ambient temperature, which affects battery capacity, 

charge/discharge rates, and overall health, the study aims to 

develop a model adaptable to diverse climatic conditions 

and reflective of practical EV operations. This approach is 

expected to advance battery state estimation in EVs, 

enhancing the accuracy and reliability of SOC predictions in 

electric mobility applications.  

 

B. Data Pre-processing and Feature Extraction: 

This phase includes refining and organizing the data to 
prepare it for integration into the machine learning model. 

Tasks may include eliminating irrelevant data, 

standardizing. Data formats, and identifying key features 

from the dataset. Features represent the specific attributes of 

the data that the model will utilize for making predictions. 

 

C. Training: 

This is the phase where the machine learning model 

learns from the facts in hand. The preprocessed data is 

divided into two subsets: a tutoring set and an evaluation set. 

The tutoring set is employed to practice the model, while 

the evaluation set assesses the model’s productive output. 
The diagram depicts teaching for three distinct models: 

linear regression, decision tree regression, and K-Nearest 

Neighbors (KNN) regression. Each model employs a unique 

algorithm to glean insights from the data. 

 

D. K-Fold Cross Validation: 

This technique evaluates the performance of a machine 

learning algorithm by partitioning the training dataset into a 

specified number of equal segments, often referred to as 

folds. In each iteration, the model is trained using all but one 

of these segments, with the excluded segment serving as the 
validation set. This process is repeated until each segment 

has been used exactly once for validation. By cycling 

through all possible combinations, this method provides a 
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robust assessment of how well the model can adapt to and 
perform on previously unseen data. This approach offers a 

comprehensive evaluation of the model's ability to 

generalize, helping to identify potential over fitting or under 

fitting issues and ensuring that the model's performance is 

consistent across different subsets of the data. 

 

E. Test Data: 
This dataset has been employed to evaluate the 

productivity of the trained model. The model is not trained 

using this data, and it has not been exposed to this dataset 

previously. The effectiveness of the technique is measured 

based on its capability for making precise estimations on 

the evaluation data. 

 

 
Fig. 2. Workflow of the Proposed Scheme 

 

F. Making Predictions: 

After being trained, the model is capable of 

generating predictions on new data. In the diagram, each  

of  the  three  trained  models  generates This is the 

initial set of data gathered for training the model, sourced 
from various origins and potentially requiring pre- 

processing before utilization. Predictions on the test data. 

 

VIII. RESULTS 

 

This experiment aimed to evaluate the importance of a 

precise state of charge (SOC) estimate in maximizing the 

lifespan and performance of electric vehicle (EV) battery 

systems. Google Colab was used to conduct all of the 

study’s results on an equipped PC with a 2.40 GHz quad- 

core Intel Core i5 processor, 7th Generation, and 8 GB of 

RAM. Using actual data of a BMW i3 EV, this study 
provided models for decision trees (DT), K-Nearest 

Neighbors (KNN) s, and linear regression (LR) to reliably 

predict state of charge (SOC) in EV batteries. During 

thorough k-fold cross-validation analyzing, the model 

achieved a Root Mean Square Error (RMSE) of 5.0850 and 

Mean Absolute Error (MAE) of 4.1217. This illustrates the 

competitive precision and accuracy of the method. 

 

Table 1. Performance Metrics of the Approach for SOC 

Estimation 

Parameter LR KNN DT 

MAE 4.1316 4.1217 4.1278 

RMSE 5.0850 5.5692 5.8272 

MAX. VAL. 22.9245 23.9296 23.0758 

STD. DEV. 5.8028 5.8745 5.8448 

 

 

IX. CONCLUSION 

 

The SoC estimation approach has significant practical 

implications for the electric vehicle industries. By 

enhancing the precision of EV range forecast and overall 
battery health, it the potential to completely transform 

battery management. Examine in the real world electric 

vehicle applications, the machine learning model’s precision 

and resilience suggest considerable advantage for maximum 

battery consumption and prolonging battery life span this 

development helps sector archives and its objective 

increasing sustainability and electric mobility. 

 

X. FUTURE SCOPE 

 

This work can be further improved in the future by 

incorporating feature selection approaches, examine a wider 
range of input parameters, and investigating various input 

output configurations suited to particular driving scenarios. 

Through these initiatives, the deep learning approach’s 

accuracy and usefulness in real-world electric vehicle 

scenarios could be substantially enhanced. To sum up the 

suggested SoC estimate approach offers a strong answer to 

important problems with EV battery management 

Opportunities for further include incorporating feature 

selection techniques, adjusting input-output relationship for 

different setting sand investigating others factor. 
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