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Abstract:- For example, 𝐺 is a connected graph and 𝑊 is 

a subset of the set of points 𝑉 on 𝐺. Set 𝑊 is called the 

determining set on 𝐺 if every point on 𝐺 has different 

representations towards 𝑊. A determining set with a 

minimum number of members is called a minimum 

determining set or the basis of 𝐺 and the cardinality of 

the minimum determinant set represents the metric 

dimension of the graph 𝐺. And denoted by dim(𝐺).  

 

This paper discusses the metric dimensions of 

modified hourglass graphs 𝑚𝐻𝑔𝑛 constructed from a 

complete graph 𝐾1 with graphs 𝐶𝑛. Based on the results 

of the discussion, it was found that dim (𝑚𝐻𝑔𝑛) with 𝑚 ≥ 

3 and 3 ≤ 𝑛 ≤ 5 is 2𝑚. 
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I. INTRODUCTION 
 

Graph theory is a branch of mathematics that was first 

introduced by Leonhard Euler in 1736. He solved the 

problem of the Konigsberg bridge in Russia in his work 

“Solutio problematis ad geometrian situs pertinentis”. In 

this problem, Euler wanted to try to prove that he crossed 

seven bridges connecting four lands in one pass [1], He 

described this problem by making the four land masses into 

a point and the seven bridges connecting them into a side. 
This was the forerunner to the birth of the concept of graph 

theory.  

 

Graph 𝐺 is defined as a non-empty and finite set 𝑉(𝐺) 

with its members called points as well 𝐸(𝐺) is a (possibly 

empty) edge set whose members consist of unordered pairs 

of two distinct points that are elements 𝑉(𝐺) which are called 

sides/lines. In graph theory, there are various concepts, one 

of which is Metric Dimensions. Metric dimensions were first 
introduced by Slater in 1975, and then separately by Harary 

and Melter in 1976 [2]. For example, 𝑉(𝐺) is a set of points 

on a graph 𝐺, The distance between two points is denoted by 

𝑑(𝑢, 𝑣) is the length of the shortest path from 𝑢 to 𝑣. For 

ordered sets 𝑊 = {𝑤1, 𝑤2, 𝑤3, …, 𝑤𝑘} of connected graph 

points 𝐺 and point 𝑣 ∈ 𝑉(𝐺), the representation of 𝑣 

concerning 𝑊 is a 𝑘-vector (pair of 𝑘-tuples) 𝑟(𝑣|𝑊) = (𝑑(𝑣, 

𝑤1), 𝑑(𝑣, 𝑤2), …, 𝑑(𝑣, 𝑤𝑘)). Jika 𝑟(𝑣|𝑊) for each point 𝑣 ∈ 

𝑉(𝐺) different, then 𝑊 is called the differentiating set of 

𝑉(𝐺). The set of distinctions with minimum cardinality is 

called the minimum distinction set (metric basis), and the 

cardinality of the metric basis is called the metric dimension 

and is denoted by 𝑑𝑖𝑚(𝐺) [3,8,9,10,12].  

 

Research on metric dimensions has been carried out by 
many previous researchers, for example, research on metric 

dimensions in general graphs was carried out by Klein, D.J., 

Yi, E (2012) who researched the comparison of the metric 

dimensions of a graph with new graph forms, Kousar, I. et al 

(2010) researched graphs that have the same metric 

dimensions, and Glen G Chappel is a researcher who has an 

important role in the development of metric dimensions 

specifically, especially for research on the metric dimensions 

of special graphs. In graph theory, there are many special 

types of graphs, including path graphs, cycle graphs, 

complete graphs, bipartite graphs, and star graphs. As in 
mathematics in general, in graph theory, there are also 

operations between two graphs. Operations on graphs use the 

same terms as operations on algebra, including, 

combination, addition, and multiplication, furthermore, there 

are also corona and amalgamation operations on a graph.  

 

The hourglass graph which is denoted by (𝐻𝑔𝑛) is a 

new type of graph introduced by Syamsuddin in his research 

"Multipartite Ramsey Number Measures for Trajectory 

Graphs Versus Hourglass Graphs." The hourglass graph 𝐻𝑔𝑛 

is the graph resulting from the operation of adding graph 𝐾1 

with graph 2𝐶𝑛 (𝑘1 + 2𝐶𝑛). However, here the researchers 

modified the hourglass graph by adding m-copies of 𝐶𝑛. 

Because this graph is new, researchers are interested in 

conducting research related to the metric dimensions of the 

modified Hourglass graph. 

 

II. LITERATURE REVIEW 

 
Below we will provide several supporting theories that 

have been implemented by several researchers in the field of 

graph theory. 

 

A. Dasar-Dasar Graf 

 

 Definition 

A graph is a pair of sets (𝑉, 𝐸), where 𝑉 is a discrete set 

whose members are called points, while 𝐸 is a pair of 

members of 𝑉 which are called edges. [4]  
 

Based on definition 2.1.1, the set 𝑉 is called the vertex 

set and 𝐸 is called the edge set. Sometimes some people call 

points as vertices and sides as points, arcs, edges, or lines. 

Mathematically, Definition 2.1.1 can be written as follows: 

Graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) with   

 
𝑉(𝐺) = {𝑢: 𝑢 𝑑𝑖𝑠𝑒𝑏𝑢𝑡 𝑡𝑖𝑡𝑖𝑘} and 𝐸(𝐺) = {(𝑢, 𝑣):𝑢, 𝑣 ∈ 

𝑉(𝐺)} with (𝑢, 𝑣) is called a side, but in this discussion, the 

side (𝑢, 𝑣) will be written as 𝑢𝑣.   
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 Definition 

The cardinality of a set is the number of elements in 

that set, cardinality is usually denoted by "|  |".    

 

The order of graph 𝐺 is the number of elements of 𝑉(𝐺) 

and is denoted by 𝑝(𝐺) while the size is the number of edges 

in graph 𝐺 and is denoted by 𝑞(𝐺).  So if 𝑝(𝐺) is the order of 

graph 𝐺 and 𝑞(𝐺) is its size, then 𝑝(𝐺) = |𝑉(𝐺)| and 𝑞(𝐺) = 

|𝐸(𝐺)|.  

 

Definition 2.1.3 The degree of a point 𝑣𝑖 in a graph 𝐺, 

denoted by “𝑑(𝑣𝑖)”, is the number of edges associated with 

point 𝑣𝑖 or 𝑑(𝑣𝑖) = |𝑁𝐺(𝑣𝑖)|.  

 

 Example: Suppose a graph G with 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 

𝑣4, 𝑣5} and  𝐸(𝐺) = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} with 𝑒1 = 𝑣1𝑣5, 

𝑒2 = 𝑣2𝑣5, 𝑒3 = 𝑣1𝑣4, 𝑒4 = 𝑣2𝑣3,  𝑒5 = 𝑣4𝑣5.    

 

 
Picture 1: Graph G 

 

From Figure 2.1.1 above, it can be seen that there are 

four points of degree two, namely 𝑣1, 𝑣2, 𝑣3, 𝑣4, and one 

point of degree four, namely 𝑣5, and the graph above has 

order 𝑝(𝐺) = 5 and size 𝑞(𝐺 ) = 6.  
 

 Definition 

A path graph is a graph consisting of a sequence of 

vertices and edges 𝑣1, 𝑒1, 𝑣2, 𝑒2, … , 𝑒𝑛−1, 𝑣𝑛 with 𝑒𝑖 = 

𝑣𝑖𝑣𝑖+1, 𝑖 = 1,2, … , 𝑛 − 1 and denoted by 𝑃𝑛.   

  

The following will show the trajectory graph in Figure 

2 below:  

 

 
Picture 2: Trajectory Graph 

 

Picture 2 above is an example of a trajectory graph 𝑃2, 

𝑃3, 𝑃4. 

  

 Definition  

Cycle graph with 𝑛 vertices and 𝑛 edges where 𝑛 ≥ 3 

and denoted by 𝐶𝑛 is a graph with a set of points 𝑉(𝐶𝑛) = 

𝑉(𝑃𝑛) and set of edges 𝐸(𝐶𝑛) = 𝐸(𝑃𝑛) ∪ {𝑣𝑛𝑣1}. Next, we will 
show several examples of cycle graphs below:  

 

 
Picture 3: Cycle Graph 

 

From the three images above you can see several cycle 

graphs  𝐶3, 𝐶4, 𝐶5.  

 

A graph G is said to be a connected graph if for every 

two points 𝑢 and 𝑣 there is always a path containing points 

𝑢 and 𝑣. Based on this understanding, a cycle graph is a 

connected graph. 

 

 Definition   

Graph 𝐺 is said to be a complete graph if every two 

vertices on graph 𝐺 are adjacent. The complete graph with 𝑛 

points is denoted 𝐾𝑛.  

 
A complete graph has a special characteristic, namely 

that it has the same degree. A graph where every vertex has 

the same degree is called a regular graph. If the degree of the 

regular graph is 𝑟, denoted 𝑟 − 𝑟𝑒𝑔𝑢𝑙𝑒𝑟, then the complete 

graph 𝐾𝑛 = (𝑛 − 1) − 𝑟𝑒𝑔𝑢𝑙𝑒𝑟, because every vertex in the 

graph 𝐾𝑛 is sequenced jat 𝑛 − 1. [4]. Below is a complete 

graph image: 

 

 
Picture 4: Complete Graph 

 

 Definition 

Distance from point 𝑢 to point 𝑣 on graph 𝐺 is denoted 

by 𝑑(𝑢, 𝑣) is the length of the shortest path from 𝑢 to 𝑣, 𝑑(𝑢, 

𝑣) ≥ 0 for all pairs of vertices 𝑢, 𝑣 in the graph 𝐺 and 𝑑(𝑢, 𝑣) 

= 0 if and only if 𝑢 = 𝑣. If there is no path from 𝑢 to 𝑣, then 

𝑑(𝑢, 𝑣) = ∞. [5, 8,9,10]  
 

 Definition 

Hourglass graph (𝐻𝑔𝑛,𝑟) is the sum graph between the 

complete grapequation the combination of two cycle graphs 

with 𝑛 vertices on one cycle and 𝑟 vertices on the other cycle. 

If 𝑛 = 𝑟 then it is an hourglass graph 𝐻𝑔𝑛,𝑟 can be said to be 

a balanced hourglass graph, and is denoted by 𝐻𝑔𝑛. [6]  
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Below we will show a representation of two examples 

of hourglass graphs, namely 𝐻𝑔5,6 and 𝐻𝑔5:   

  

The following figure 2.1.5 is an illustration of the 

hourglass graph and the complete graph.  

 

 
Picture 5: Graph 𝐻𝑔5,6  and Graph 𝐻𝑔5 

 

From Figure 5 above the graph, points are complete 𝐾1 

on an hourglass graph 𝐻𝑔𝑛,𝑟 as the center point. Centre point 

𝐻𝑔𝑛,𝑟 degree 𝑛 + 𝑟, n on point 𝐶𝑛 degree 3 and 𝑟 on 𝐶𝑟 also 

has degree 3. If 𝑛 = 𝑟 the hourglass graph is called balanced 

and is denoted by 𝐻𝑔𝑛.   

 

 

 

 

 

 

 Next, we will define the graph 𝐻𝑔𝑛 in mathematical form 

as follows:  

 

 𝑉(𝐻𝑔𝑛) = {𝑥𝑖𝑗, 𝑦|1 ≤ 𝑖 ≤ 2, 0 ≤ 𝑗 ≤ 𝑛 − 1},  

 𝐸(𝐻𝑔𝑛) = {𝑥𝑖𝑗𝑦, 𝑥𝑖𝑗𝑥𝑖(𝑗+1) 𝑚𝑜𝑑 𝑛|1 ≤ 𝑖 ≤ 2,0 ≤ 𝑗 ≤ 𝑛 − 

1}  

 

B. Metric Bases and Dimensions  

The following will explain the definition of basis and 
metric dimensions in graphs:  

 

 Definition 

Suppose G is a connected graph and there is an ordered 

set  𝑊 = {𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛} ⊆ 𝑉(𝐺), representation of 

points 𝒗 ∈ 𝑽(𝑮) concerning 𝑊 is an ordered pair of k-tuples, 

i.e  𝑟(𝑣|𝑊) = (𝑑(𝑣, 𝑤1), 𝑑(𝑣, 𝑤2), …, 𝑑(𝑣, 𝑤𝑛)).  

 

 Definition  

A set 𝑊 is called a determining set if for every two 

points 𝑥, 𝑦 ∈ 𝑉(𝐺) different ones fulfill 𝑟(𝑥|𝑊) ≠ 𝑟(𝑦|𝑊). [7, 

11, 12]  

 

 Definition 

The set of determinants that has the minimum 

cardinality is called the minimum separated set.. [7]   

 

 Definition 

The basis of a graph 𝐺 is the minimum determinant set 

of 𝐺.[7,8,9,10, 11,12]. 

   

 Definition 

The metric dimension of the graph 𝐺 is the number of 

cardinalities of the minimum determinant set (basis) and is 

denoted 𝐝𝐢𝐦 (𝑮). [7,11]  

 

Suppose selected 𝑊2 = {v1, v4} the representation of 

each point on the graph 𝐺 concerning 𝑊2  is  

 

Table 1: Table of Representation of Each Point on the Graph 𝐺 Against the Set 𝑊 with |𝑊| < |𝑊2|

𝑟(𝑣1|𝑊2) = (0,2) 𝑟(𝑣2|𝑊2) = (1,2) 𝑟(𝑣3|𝑊2) = (2,1) 

𝑟(𝑣4|𝑊2) = (2,0) 

𝑟(𝑣5|𝑊2) = (1,1) 

(𝑣3|𝑊2) = (2,1) 

 

 

Because there is no equal representation, it can be 

concluded that 𝑊2 is the set of determinants in the graph 𝐺. 

Next, we will investigate whether 𝑊2 is the basis of the graph 

𝐺, by calculating the representation of any element point 

𝑉(𝐺) that has a cardinality less than 𝑊2. As stated in the 

following table: 

 

 Example: For example, 𝐺 is a graph with a set of points 

𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and 𝐸(𝐺) = {𝑣1𝑣2, 𝑣1𝑣5, 𝑣5𝑣4, 

𝑣5𝑣3, 𝑣3𝑣4}. The shape of the graph 𝐺 can be seen in the 

following image:  

 

 
Picture 6: Graph 𝐺 
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Suppose selected 𝑊1 = {𝑣1, 𝑣3}, representation of each 

point on the graph G against 𝑊1 is :  

 

𝑟(𝑣1|𝑊1) = (0,2) 𝑟(𝑣2|𝑊1) = (1,1) 𝑟(𝑣3|𝑊3) = (2,0) 

𝑟(𝑣4|𝑊1) = (2,1) 

𝑟(𝑣5|𝑊1) = (1,1) 

(𝑣3|𝑊3) = (2,0) 

 

 

Because there is the same representation, namely 

𝑟(𝑣2|𝑊1) = 𝑟{𝑣5|𝑊1) = (1,1). so  𝑊1 is not a determining set 

in the graph 𝐺. 

  

 
 

From Table 2.2.1, it can be seen that all subsets of 𝑉(𝐺) 

which has a number of members less than |𝑊2| is not a 

determining set because every point in the graph 𝐺 has the 

same representation of 𝑊. So 𝑊2 is the minimum 

determinant set. So that 𝑊2 = {𝑣1, 𝑣4} is the basis of the 

graph 𝐺, and dim 𝐺 = 2.    

 

 Theorem 2.2.1 Let 𝐺 be a connected graph with order 𝑛 

, so dim(𝐺) = 1 if and only if 𝐺 = 𝑃𝑛.  

 Theorem 2.2.2 If 𝐶𝑛 is a cycle graph with 𝑛 vertices and 

𝑛 , so  dim (𝐶𝑛) = 2  

 Proof: For example, 𝑣1, 𝑣2, 𝑣3, …, 𝑣𝑛 are the points on 

the cycle with 𝑛  on the graph 𝐺.  

For cycles with odd n. For example 𝑊 = {𝑢𝑛−1, 𝑢𝑛} we 

will prove that 𝑊 is the determining set. Representation 

of each point on a graph 𝐶𝑛 concerning 𝑆 is  

 

𝑟(𝑣1|𝑊) = (2,1) 

𝑟(𝑣2|𝑊) = (3,2) 

𝑟(𝑣3|𝑊) = (4,3) 

 

𝑟 (𝑣𝑛−1
2

 
|𝑊) = (

𝑛 − 1

2
,
𝑛 − 3

2
) 

𝑟 (𝑣𝑛−1
2

 
|𝑊) = (

𝑛 − 1

2
 ,

𝑛 − 1

2
) 

𝑟 (𝑣𝑛+1
2

 
|𝑊) = (

𝑛 − 3

2
 ,

𝑛 − 1

2
) 

𝑟 (𝑣𝑛+3
2

 
|𝑊) = (

𝑛 − 5

2
,
𝑛 − 3

2
) 

⋮ 
𝑟(𝑣𝑛−2|𝑊) = (1,2) 

𝑟(𝑣𝑛−1|𝑊) = (0,1) 

𝑟(𝑣𝑛|𝑊) = (1,0) 
 

because for every 𝑢, 𝑣 ∈ 𝑉(𝐶𝑛), 𝑢 ≠ 𝑣 applies 𝑟(𝑢|𝑊) ≠ 

𝑟(𝑣|𝑊), so  𝑊 = {𝑣𝑛−1, 𝑣𝑛) is the determining set.  Next it 

will be proven that 𝑊 = {𝑣𝑛−1, 𝑣𝑛) is the set of determinants 

with minimum cardinality. Because graph 𝐶𝑛 is a cycle 

graph, by Theorem 2.2.1, then 𝑑𝑖𝑚(𝐶𝑛) ≠ 1, so that there is 

no set of determinants with cardinality less than 2. Therefore,  

|𝑊| = 2 is a set of determinants with minimum cardinality, so 

that 𝑑𝑖𝑚(𝐶𝑛) = 2 for odd 𝑛.  

 

For a cycle with even n, for example 𝑊 = {𝑣(𝑛−1), 𝑣𝑛}. 

It will be proven that 𝑊 is a determining set. Representation 

of each point on the graph 𝐶𝑛 with respect to 𝑊 is  

 

𝑟(𝑣1|𝑊) = (2,1) 

𝑟(𝑣2|𝑊) = (3,2) 

𝑟(𝑣3|𝑊) = (4,3) 

 

𝑟 (𝑣𝑛−1
2

 
|𝑊) = (

𝑛

2
 ,

𝑛 − 2

2
) 

𝑟 (𝑣𝑛
2

 
|𝑊) = (

𝑛 − 2

2
,
𝑛

2
) 

𝑟 (𝑣𝑛+2
2

 
|𝑊) = (

𝑛 − 4

2
 
𝑛 − 2

2
) 

𝑟 (𝑣𝑛+3
2

 
|𝑊) = (

𝑛 − 5

2
,
𝑛 − 3

2
) 

⋮ 
𝑟(𝑣𝑛−2|𝑊) = (1,2) 

𝑟(𝑣𝑛−1|𝑊) = (0,1) 

𝑟(𝑣𝑛|𝑊) = (1,0) 

 

because for every 𝑢, 𝑣 ∈ 𝑉(𝐶𝑛) 𝑢 ≠ 𝑣 , applies 𝑟

,  

 

so 𝑊 = {𝑣𝑛−1, 𝑣𝑛) is the determining set.   

 

Next it will be proven that 𝑊 = {𝑣𝑛−1, 𝑣𝑛) is the set of 

determinants with minimum cardinality. Because graph 𝐶𝑛 is 

a cycle graph, by Theorem 2.2.1, then 𝑑𝑖𝑚 , so that 

there is no set of determinants with cardinality less than 2. 

Therefore,  |𝑊| = 2 is a set of determinants with minimum 

cardinality, so that 𝑑𝑖𝑚(𝐶𝑛) = 2 for 𝑛 is even.  

 

Based on I and II, it is proven that the graph is cyclical 

(𝐶𝑛) with n odd and n even then dim(𝐶𝑛) = 2.   
 

III. RESULT 

 

In this section, the research results and evidence will be 

discussed. Previously we would define a modified hourglass 

graph as follows. 

 

A. Modified Hourglass Graph  

Hourglass graph 𝐻𝑔𝑛 is the graph resulting from the 

graph add operation 𝑘1 with 2𝐶𝑛 , so (𝑘1 + 2𝐶𝑛). The graph is 

a development of the hourglass graph 𝐻𝑔𝑛 what is meant is 

increase 𝐶𝑛 as much as m-coffee, that is (𝑘1 + 𝑚𝐶𝑛), For 𝑚
 𝑑𝑎𝑛 𝑛 . Next, graph (𝑘1 + 𝑚𝐶𝑛) denoted by 𝑚𝐻𝑔𝑛. 

Formally, the set of vertices and the set of edges of an 

hourglass graph are as follows. 𝑉(𝑚𝐻𝑔𝑛) = {𝑥𝑖,𝑗, 𝑦|𝑖 = 1,2,3, 

… , 𝑚; 𝑗 = 1,2,3, … , 𝑛}.  

 

𝐸(𝑚𝐻𝑔𝑛) = {𝑥𝑖,𝑗𝑦|𝑖 = 1,2,3, … , 𝑚;𝑗 = 1,2,3, … , 𝑛}  

{𝑥𝑖,1𝑥𝑖,𝑛, 𝑥𝑖,𝑗𝑥𝑖,𝑗+1|𝑖 = 1,2,3, … , 𝑚; 𝑗 , … , 𝑛 − 1}.  

Here's an example  
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Picture 7: 𝑚𝐻𝑔3 

 

Based on the definition of a set of points and a set of 

graph edges 𝑚𝐻𝑔𝑛 This results in several properties related 

to the distance of each point on the graph 𝑚𝐻𝑔𝑛 for 𝑖, 𝑘 = 

1,2,3, … , 𝑚, and 𝑗, 𝑙 = 1,2,3, … , 𝑛, that is: 

  

 𝑑(𝑥𝑖,𝑗, 𝑦) = 1  

 𝑑(𝑥𝑖,𝑗 , 𝑦𝑘,𝑖) =  {
0  𝑖 = 𝑘, 𝑗 = 𝑙
1 𝑖 = 𝑘, 𝑙 − 𝑗 + 1
2 𝑖  ≠   𝑘

 

 

B. Modified Hourglass Graph Metric Dimensions  

In this section, several properties related to the gram 

meter dimension of the hourglass are given. 

 

 Lemma 1.  

If 𝑊 ⊆ 𝑉(𝑚𝐻𝑔3) is a set of determinants, then  |𝑊| > 

2𝑚 − 1.  

 

 Proof:  

Suppose 𝑊 is a set of determinants with |𝑊| ≤ 2𝑚 − 1. 

Then there is a bar that has two different points, for example, 

𝑥 and 𝑦, such that 𝑥, 𝑦 ∉ 𝑊. Because the distance between 

points on the same blade is one, and the distance between 

points on one blade and another blade is two, then points 𝑥 

and 𝑦 have the same representation of 𝑊. Thus it is a 

contradiction that 𝑊 is a set of determinants. So that |𝑊| > 

2𝑚 − 1.  

 

Next will be shown for the case |𝑊| ≤ 2𝑚 − 1  as 

follows:  

 

I. Only contains one point on one bar contained in the 

set 𝑊  

 

For example 𝑊 = {𝑥13, 𝑥22, 𝑥23, … , 𝑥𝑚2, 𝑥𝑚3}.  It will 

be proven that 𝑊 is a determining set.  

 

𝑟(𝑥11|𝑊) = (1,2,2,… ,2,2), 

𝑟(𝑥12|𝑊) = (1,2,2,… ,2,2). 

 

It is clear that if one bar contains only one point at 𝑊 

then there will be two points that have the same 

representation. 

There are no points contained on one bar in the set 𝑊. 

For example 𝑊 = {𝑥21, 𝑥22, 𝑥23, … , 𝑥𝑚2, 𝑥𝑚3}.  It will be 

proven that 𝑊 is a determining set. 

 

𝑟(𝑥11|𝑊) = (2,2,2, … ,2,2), 

𝑟(𝑥12|𝑊) = (2,2,2,… ,2,2), 

𝑟(𝑥13|𝑊) = (2,2,2,… ,2,2). 

 

It can be seen that there are 3 points that have the same 

representation, namely points contained in the same bar. So 

it can be concluded from cases I and II that a bar must 

contain at least 2 points in the differentiator set 𝑊. 

 

 Lemma 2.  

If 𝑤𝑖, 𝑤𝑗 ∈ 𝑊, 𝑊 ⊆ 𝑉(𝑚𝐻𝑔𝑛) and 𝑖 ≠ 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 

5 so  𝑟(𝑤𝑖|𝑊) ≠ 𝑟(𝑤𝑗|𝑊).  

 

 Proof:  

For example 𝑊 = {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5} and 𝑤𝑖, 𝑤𝑗 ∈ 𝑊 

So representation  𝑤𝑖 and 𝑤𝑗 with respect to 𝑊 i.e. 

𝑟(𝑤𝑖 |𝑊) = ( … , 𝑥⏟
𝑖

 , … , 0⏟
𝑗

, . .. ) will be 0 for (𝑑(𝑤𝑗, 𝑤𝑗)) and 

not 0 for (𝑑(𝑤𝑖, 𝑤𝑗),  𝑟(𝑤𝑗 |𝑊) = ( … , 𝑥⏟
𝑖

 , … , 0⏟
𝑗

, . .. ) will be 

0 for (𝑑(𝑤𝑖, 𝑤𝑖)) and not 0 for  (𝑑(𝑤𝑖, 𝑤𝑗).  

 

So it's proven 𝑟(𝑤𝑖|𝑊) ≠ 𝑟(𝑤𝑗|𝑊) for 𝑖 ≠ 𝑗.  
 

 Theorem 1.  

Modified hourglass graph metric dimensions (𝑚𝐻𝑔𝑛), 

for 𝑚 ≥ 3 and 3 ≤ 𝑛 ≤ 5 is 2𝑚.  

 

 Proof 

In this proof the following three cases will be reviewed:  

 

 Case 1: 𝑛 = 3  

 

 
Picture 8: 𝑚𝐻𝑔3 

 

Based on Lemma 1 we obtain dim(𝑚𝐻𝑔3) > 2𝑚 − 1 or 

dim(𝑚𝐻𝑔3) ≥ 2𝑚. To prove dim(𝑚𝐻𝑔3) ≤ 2𝑚 then we will 

look for the differentiating set 𝑊 with cardinality |𝑊| = 2𝑚. 

 

For example 𝑊 = {𝑥12, 𝑥13, 𝑥22, 𝑥23, … , 𝑥𝑚2, 𝑥𝑚3}.  It 

will be proven that 𝑊 is a determining set. 
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𝑟(𝑥11|𝑊) = (1,1,2,2,…,2,2), 

𝑟(𝑥12|𝑊) = (0,1,2,2,…,2,2), 

𝑟(𝑥13|𝑊) = (1,0,2,2,…,2,2), 

𝑟(𝑥21|𝑊) = (2,2,1,1,…,2,2), 

𝑟(𝑥22|𝑊) = (2,2,0,1, …,2,2), 

𝑟(𝑥23|𝑊) = (2,2,1,0, …,2,2), 

⋮ 
𝑟(𝑥𝑚1|𝑊) =(2,2,2,2,…,1,1), 

𝑟(𝑥𝑚3|𝑊) = (2,2,2,2,…,1,0), 

𝑟(𝑦|𝑊) = (1,1,1,1, … ,1,1). 

 

Because based on Lemma 2 the representation of each 

point is different, then 𝑊 is a set of determinants at 𝑚𝐻𝑔3. 

Because |𝑊| = 2𝑚 so dim(𝑚𝐻𝐺3)  ≤  2𝑚.      (1)  

 

Based on Lemma 1 and equation (1) we obtain 

dim(𝑚𝐻𝑔3) = 2𝑚.  

  

 Case 2, for 𝑛 = 4 

    

 
Picture 9: 𝑚𝐻𝑔4 

   

For example 𝑊 = {𝑥12, 𝑥13, 𝑥22, 𝑥23, … , 𝑥𝑚2, 𝑥𝑚3} It 

will be shown that 𝑊 is the determinant set. Representation 

of each point on 𝑚𝐻𝑔4 with respect to 𝑊 is 

 

𝑟(𝑥11|𝑊) = (1,2,2,2, … ,2,2), 

𝑟(𝑥12|𝑊) = (0,1,2,2, … ,2,2), 

𝑟(𝑥13|𝑊) = (1,0,2,2, … ,2,2), 

𝑟(𝑥14|𝑊) = (2,1,2,2, … ,2,2), 

𝑟(𝑥21|𝑊) = (2,2,1,2, … ,2,2), 

𝑟(𝑥22|𝑊) = (2,2,0,1, … ,2,2), 

𝑟(𝑥23|𝑊) = (2,2,1,0, … ,2,2), 

𝑟(𝑥24|𝑊) = (2,2,2,1, … ,2,2), 

⋮ 
𝑟(𝑥𝑚1|𝑊) = (2,2,2,2, … ,1,2), 

𝑟(𝑥𝑚2|𝑊) = (2,2,2,2, … ,0,1), 

𝑟(𝑥𝑚3|𝑊) =(2,2,2,2,…,1,0), 

𝑟(𝑥𝑚4|𝑊) = (2,2,2,2, … ,2,1), 

𝑟(𝑦|𝑊) = (1,1,1,1, … ,1,1). 
 

Because for every point 𝑢, 𝑣 ∈ 𝑉(𝑚𝐻𝑔4) for 𝑢 ≠ 𝑣 or 

based on Lemma 2, then 𝑊 = {𝑥12, 𝑥13, 𝑥22, 𝑥23, … , 𝑥𝑚2, 

𝑥𝑚3} is the determining set. Next we will show that 𝑊 is the 

minimum determinant set. Example 𝑊 = 𝑋 with 𝑋 = {𝑥𝑖2, 

𝑥𝑖3|1 ≤ 𝑖 ≤ 𝑚} so |𝑋| = 2𝑚. Note that the members of 𝑋 are 

𝑚 pairs of points each drawn from 𝑉(𝐶4
𝑖). Based on the 

condition of distance between points, it is known that the 

distance between each point located on one blade and the 

point on the other blade is the same. Thus, because dim(𝐶4
𝑖) 

= 2 (Theorem 2.1) then if you only take one point 

(arbitrarily) member in 𝑉(𝐶4
𝑖) to load in 𝑊 call 𝑥𝑖𝑗 ∈ 𝑉(𝐶4

𝑖) 

for each 𝑖 and 𝑗 with 1 ≤ 𝑗 ≤ 4, then there must be at least two 

other points, namely 𝑥𝑖(𝑗+1 𝑚𝑜𝑑 4) dan 𝑥𝑖(𝑗+3 𝑚𝑜𝑑 4) has the same 

representation as 𝑊. Therefore members 𝑋 ⊂ 𝑊 cannot be 

reduced or |𝑋| ≤ 2𝑚. Then it can be concluded that 𝑊 with 

cardinality |𝑊| = |𝑋| = 2𝑚 is the minimum determinant set 

then for the case 𝑛 = 4 is obtained dim(𝑚𝐻𝑔4) = 2𝑚.  

  

Kasus 3, untuk 𝑛 = 5  
 

 
Picture 10: 𝑚𝐻𝑔5 

 

For example 𝑊 = {𝑥12, 𝑥14, 𝑥21, 𝑥24, … , 𝑥𝑚2, 𝑥𝑚4}, It 

will be shown that 𝑊 is the determinant set. Representation 

of each point on 𝑚𝐻𝑔5 with respect to 𝑊 is 
 

𝑟(𝑥11|𝑊) =(1,2,2,2, … ,2,2), 

𝑟(𝑥12|𝑊) = (0,2,2,2, … ,2,2), 

𝑟(𝑥13|𝑊) = (1,1,2,2, … ,2,2), 

𝑟(𝑥14|𝑊) = (2,0,2,2, … ,2,2), 

𝑟(𝑥15|𝑊) = (2,1,2,2, … ,2,2), 

𝑟(𝑥21|𝑊) = (2,2,1,2, … ,2,2), 

𝑟(𝑥22|𝑊) = (2,2,0,2, … ,2,2), 

𝑟(𝑥23|𝑊) = (2,2,1,1, … ,2,2), 

𝑟(𝑥24|𝑊) = (2,2,2,0, … ,2,2), 

𝑟(𝑥21|𝑊) = (2,2,2,1, … ,2,2), 

⋮ 
𝑟(𝑥𝑚1|𝑊) = (2,2,2,2, … ,1,2), 

𝑟(𝑥𝑚2|𝑊) = (2,2,2,2, … ,0,2), 

𝑟(𝑥𝑚3|𝑊) = (2,2,2,2, … ,1,1), 

𝑟(𝑥𝑚4|𝑊) = (2,2,2,2, … ,2,0), 

𝑟(𝑥𝑚5|𝑊) = (2,2,2,2, … ,2,1), 

𝑟(𝑦|𝑊) = (1,1,1,1, … ,1,1). 

 

Because based on lemma 2 𝑊 is a determining set. 

Next, it will be proven that 𝑊 = {𝑥12, 𝑥14, 𝑥21, 𝑥24, … , 𝑥𝑚2, 

𝑥𝑚4} is the minimum determinant set. For example 𝑊 = 𝑋, 

with 𝑋 = {𝑥𝑖2, 𝑥𝑖4|1 ≤ 𝑖 ≤ 𝑚}. So |𝑋| = 2𝑚.  
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Note that the members of 𝑋 are 𝑚 pairs of points each 

drawn from 𝑉(𝐶5
𝑖).  Based on the condition of distance 

between points, it is known that the distance between each 

point located on one blade and the point on the other blade 

is the same. Thus, because dim(𝐶5
𝑖) = 2. (Theorem 2.1) then 

if you only take one point (arbitrarily) member 𝑉(𝐶5
𝑖) to load 

di 𝑊, call 𝑥𝑖𝑗 ∈ 𝑉(𝐶5
𝑖) for a 𝑖 and 𝑗 with 1 ≤ 𝑗 ≤ 5 then there 

must be at least two other points that have the same 

representation of 𝑊. Therefore, 𝑋 ⊂ 𝑊 cannot be reduced or 

|𝑋| ≥ 2𝑚. So for the case 𝑛 = 5, we obtain dim(𝑚𝐻𝑔5) = 2𝑚.  

 

Based on the description of the three previous cases, it 

is proven that dim(𝑚𝐻𝑔𝑛) = 2𝑚 for 3 ≤ 𝑛 ≤ 5.   

 

IV. CONCLUSION 
 

From the description above, this research can be 

concluded that. Based on cases 1 to case 3, it is known that 

the metric dimensions of the hourglass are modified (𝑚𝐻𝑔𝑛) 

= 2𝑚.   
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