Result Retrofitting for RCC Structure

¹P. V. Kapure; ²Siddhesh Dalvi; ³Chaitanya; ⁴Sangram Shinde ¹Professor, ^{1,2,3,4}Department of Civil Engineering AISSMS Poly Technich Pune, India

Abstract:- The Research Paper States That How to determine Weather The Structures Needs Retrofitting And Which Technique Is Suitable For Which Type Of Structure The Primary Idea Thought For Improving Strength Of The Strength Of The Structure Is Stated On The Following Points.

- Strengths of Structure
- Quality of Concrete
- Type of Structure

Retrofitting methods are Suggested, to Improves the Seismic Force Resistance Capacity of Different Components of the Building.

Keywords:- Sesmic Forces, Strength, Quality.

I. INTRODUCTION

In the part of north India many of the structures face seismic forces due to which structures are affected. Approximately 100 out of 70 building structures are nonengineered and constructed of loadbearing structures. Evan a small sesmic activity can affect the structure due to seismic impact. Due to this many people losses their life The earthquake occurred on 6th November 2023 which had a powerful magnitude of 5.6 felt massive Termos in Delhi NCR. TheRichter scale hit a magnitude of 5.6 in Nepal region but affected many region in India. Many of the structures got damaged in north India region. From this scenario we get to know that the structures constructed should be deigned for earth quake. Now a days may of the structures in city are constructed to resist earthquake using building code IS:1893: 2002. But in rural areas this practice is not followed so many issues. Practically it is impossible to demolishand reconstruct so it is necessary to follow earth quake resistant practice.

Our aim is to state that weather the structure needs to use retrofitting techniques.

II. METHEDOLOGY

A. Visual Inspection

The structure was observed by us on each side. The type of cracks were observed. Many other defects were also observed.

B. Rebound Hammer Test.

It is a Compression test carried by nondestructive method.

Coloumn Compressive Test Result						
Coloumm No	Puzzel No	Grade of concrete	Age of Concrete In Years	Compresive Strenght in N/mm ²	AVG Compresive Strenght in N/mm ²	
C1	1	M30	35	35		
	2	M30	35	33	24	
	3	M30	35	34	34	
C2	1	M30	35	38		
	2	M30	35	32	25	
	3	M30	35	35	35	
C3	1	M30	35	35		
	2	M30	35	35	24.22	
	3	M30	35	33	34.33	
C4	1	M30	35	30		
	2	M30	35	31	21.66	
	3	M30	35	34	31.66	
C5	1	M30	35	36		
	2	M30	35	38	27.92	
	3	M30	35	39.5	57.83	
C6	1	M30	35	29		

 Table 1: Rebound Hammer Test Readings

Volume 9, Issue 3, March – 2024

ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology https://doi.org/10.38124/ijisrt/IJISRT24MAR1147

	2	M30	35	30.2	
	3	M30	35	32	30.4
C7	1	M30	35	31	
	2	M30	35	29	21.66
	3	M30	35	35	31.66
C8	1	M30	35	35	
	2	M30	35	35	25.22
	3	M30	35	36	33.33

Fig 1: Photos while Testing on Structure with Rebound Hammer

Fig 2: Our Project Guide While Testing on Structure with Rebound Hammer

A. Ultra Sonic Pulse Velocoty Test

Ultrasonic pulse velocity test is a non destructive test which is performed to determine the quality of concrete.

Fig 3: Direct Method Testing

Fig. 4: Readings on Ultrasonic Pulse Velocity Meter

Fig 5: Indirect Method

Table 2: Ultrasonic Pulse	Velocity Readings
---------------------------	-------------------

Ultrasonic Pulse Velocity Test					
Location	Pulse Velocity(km/s)	Concrete Quality			
C1	4.55	Excellent			
C2	4.22	Good			
C3	3.95	Good			
C4	4.64	Excellent			
C5	3.89	Good			
C6	3.76	Good			
C7	4.55	Excellent			
C8	4.64	Excellent			

III. RESULT

- From the visual we state that the cracks are minorand are not on the surface which are acceptable.
- From the nondestructive Compressive test we state that the compressive strength of the concrete is acceptable.
- From the above ultrasonic pulse velocity test westate that the overall quality of concrete is good.

IV. CONCLUSION

From the test carried on the concrete structure we state that the structure is in acceptable condition and any type of retrofitting is not need on the structure.

ACKNOWLEDGEMENT

We thank to our HOD. Mr.S.G.Anturkar, our project guide Prof. P.V.Kapure, our incharge of maintainance lab Prof. K.D.Waghmare and all our faculty members and my friends for supporting us in our project.

REFERENCES

- [1]. Agarwal P, shrikhandeM. "earth quake resistant design of structure" PHI,New Delhi,2006
- [2]. Strengthening and repair of reinforced concrete coloumns by jacketing: State-of-the-art review
- [3]. https://ijirsrt.com/methods -of-retrofitting-for-rccstructure.