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Abstract:- Artificial intelligence and machine learning is 

enhancing electric grids by offering data analysis tools 

that can be used to operate the power grid more reliably. 

However, the complex nonlinear dynamics, particularly 

when coupled with multi-scale interactions among 

Inverter-based renewable energy Resources, calls for 

effective algorithms for power system application. 

 

This paper presents affective novel algorithm to 

detect various nonlinear dynamics, which is built upon: 

the Sparse Identification of Nonlinear Dynamics method 

for nonlinear dynamics detection; and Hankel 

Alternative View of Koopman method for multi-scale 

decomposition. We show that, by an appropriate 

integration of the strengths of the two, the mixed 

algorithm not only can detect the nonlinearity, but also 

it distinguishes the nonlinearity caused by coupled 

Inverter-based resources from the more familiar ones 

caused synchronous generators. This shows that the 

proposal algorithm can be a promising application of 

artificial intelligence and machine learning for data 

measure-based analysis to support operation of power 

system with integrated renewables.  
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I. INTRODUCTION 

 

Although machine learning (ML) algorithm and 

artificial intelligent (AI) enhanced the analysis of the system 

by addressing the limitations of traditional models to 

capture the complex nonlinear dynamics of power systems, 

the integration of inverter-based energy resources (IBRs) 

with coupled muti-scale dynamics necessitate an alternative 

approach utilizing more advanced algorithms to improve 

modeling accuracy and system optimization [1-4]. In the 

conventional view, the IBRs technology will introduce 

nonlinearity into the power system, however, the 

nonlinearity introduced by the IBRs classified into the 

module-level nonlinearity thus the power system remains 

first order, i.e., linearizable [5].  The current state-of-the -art 

ML algorithm showed remarkable performance regarding 

model identifications and system analysis of linear and 

nonlinear first-order system. Increase in the penetration of 

renewable energy, specifically IBRs, in power system 

caused a shift in the nature of the system by introducing 

coupled multi-scale nonlinear dynamic. This changed 

introduced and interactive complex nonlinearity on system-

level to the grid which elevate the power system to the 

second-order system. The generic ML algorithms struggle 

to capture systems' multi-scale temporal and spatial 

complexities, further limiting their accuracy and 

effectiveness in modeling and analysis of power system 

derived by IBRs, where fast and slow dynamics capture 

localized phenomena and overall spatial patterns [5] [6].  

 

Since the introduction of SINDy algorithm in 2016 [7] 

it has seen widespread use in model identification across 

various disciplines, showing remarkable performance by 

explicitly identifying underlying governing equations 

through sparse regression techniques, which leads to 

interpretable models while effectively addressing model 

complexity [7], [8]. The SINDy algorithm has been used in 

limited number of the field of power system analysis [9-12]. 

Notably, these studies predominantly analyzed the general 

power system and relied on first-order system models, as 

exemplified by [9] in 2020 paper on power system 

applications.  

 

SINDy is a measure-based method specifically 

designed to discover governing equations or mathematical 

models from observed data. Several studies in different 

disciplines demonstrated the performance and practicality 

of SINDy in model identifications [13]. By leveraging 

compressed sensing and sparse modeling principles, SINDy 

offers robustness and the potential for generalization, 

allowing for identifying key dynamical features with 

relatively few measurements. However, it's important to 

note that SINDy can be sensitive to noise. At its core, the 

generic SINDy assumes the system as linearizable system, 

i.e., first-order nonlinear system. Therefore, generic SINDy 
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faces challenge in coupled multi-scale systems where 

multiple variables interact strongly [7], [8]. These systems 

often involve intricate relationships, and accurately 

capturing these dynamics requires disentanglement of the 

multi-scale dynamics [14]. This intricate and multifaceted 

nonlinear effects of integrating IBRs and renewables, 

manifesting as second-order nonlinearity, was not 

considered in [9-12]. 

 

HAVOK is a decomposition technique approximating 

chaotic dynamics as an intermittently forced linear system, 

combining principles from delay embedding and Koopman 

theory [14]. It leverages real-time data covariance analysis 

to uncover the underlying structures within high-

dimensional data. The method employs time-delay 

embeddings to capture latent variables and intrinsic 

measurement coordinates, rooted in the theory of Koopman 

operators [14]. By describing the evolution of observables 

as an infinite-dimensional linear process, Koopman 

operators offer an alternative perspective for analyzing 

dynamical systems without explicitly solving their 

underlying differential equations. The HAVOK method 

extends this framework by utilizing time-delay embeddings 

and intrinsic measurement coordinates, enabling the 

disentanglement of intricate couplings in multiscale 

systems.  

 

The combination of SINDy with HAVOK addresses 

the challenges posed by complex coupled multi-scale 

interactions and dynamics within system such as power 

grids integrated with intermittent IBRs. This integrated 

approach leverages SINDy to identify the underlying 

governing equations and utilizes HAVOK to exploit the 

Hankel matrix structure of the data, enabling the extraction 

of informative patterns and features that characterize the 

power grid's behavior.  

 

The contributions of our work are summarized in two 

aspects, 

 

 We present a novel mixed algorithm that can be used for 

data-based analysis. This algorithm combines the 

advantages of two powerful methods recently developed 

in the field of data science for the detection and analysis 

of complex multi-scale nonlinear dynamics in power 

systems with IBRs. 

 Through a demonstrative study showing the 

effectiveness of identifying various nonlinear dynamics 

with different characteristics, we demonstrate, in a 

broader sense, the necessity of integrating different 

AI/ML data analytics to the development of more 

effective measurement-based tools for power system 

analysis.  

 

The subsequent sections of this manuscript are 

organized as follows: Section II describe the developed 

framework of generic SINDy method and supporting 

HAVOK decomposition in power system. Section III 

demonstrates the proposed methods' performance by 

evaluating and examining the obtained outcomes. The final 

segment comprises the concluding remarks, emphasizing 

the results' significance and potential research directions for 

future studies. 

 

II. SINDY ALGORITHM AND SUPPORTING 

HAVOK DECOMPOSITION 

 

A. Developed Method based on Generic SINDy Algorithm: 

The dynamics of power system can be described by the 

following general form [15]: 

 

 
𝑑𝑣(𝑡)

𝑑𝑡
 =  𝑓(𝑣(𝑡)),                                                                     (1) 

 

Where 𝑣(𝑡)  ∈  𝑅𝑛 represents the system's voltage at 

time 𝑡 and 𝑓(𝑣(𝑡)) encompasses the dynamic constraints 

governing the system's equations, including parameters, 

time dependence, and external forcing. To determine the 

function 𝑓 from available data, a time history of the system's 

voltage, denoted as 𝑣(𝑡), is collected. The derivative of 

𝑣(𝑡), denoted as �̇�(𝑡), is directly or numerically 

approximated. The data is sampled at various time 

instances, {𝑡1, 𝑡2, . . . , 𝑡𝑚} and organized into 𝑉 and �̇� 

matrices: 

  

𝑉 =  [

|

𝑣(𝑡1),
|

|

𝑣(𝑡2)

|
, . . . ,

|

𝑣(𝑡𝑚)

|
]

𝑇

,                                           (2) 

 

�̇�  =  [

|

�̇�(𝑡1)

|
,

|

�̇�(𝑡2)

|
, . . . ,

|

�̇�(𝑡𝑚)

|
]

𝑇

.                                           (3) 

 

The next step in the approach involves defining a 

library of candidate nonlinear functions, denoted as 𝛩(𝑉), 

where 𝑉 is the data matrix that contains observed data points 

of the system voltage. These functions can include 

polynomials, trigonometric, exponentials, logarithmic 

functions, and other suitable nonlinear expressions. 

 

𝛩(𝑉) =  [1, 𝑉,  𝑉2, 𝑉3, . . . , 𝑠𝑖𝑛(𝑉), 𝑐𝑜𝑠(𝑉), . . . ].                (4) 

 

Assuming that only a few of these nonlinearities are 

active in each row of 𝑓, a sparse regression problem is 

formulated to determine the sparse vectors of coefficients, 

 

𝛯 = [

|
𝜉1

|
,

|
𝜉2

|
, . . . ,

|
𝜉𝑛

|
],                                                               (5) 

 

which indicate the active nonlinearities. 

Mathematically, this can be expressed as: 
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�̇�  =  𝛩(𝑉)𝛯.                                                                              (6) 

 

Given the voltage matrix 𝑉 and the library of candidate 

functions 𝛩(𝑉), The method formulates the sparse 

regression problem as follows: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ||�̇�  −  𝛩(𝑉)𝛯||2  +  𝜆 ||𝛯||₁                              (7) 

 

where 𝛯 is the sparse coefficients representing the 

importance or relevance of each term in the library, || ⋅ ||₂ 

denotes the L2 norm, || ⋅ ||₁ represents the L1 norm, and 𝜆 

is a regularization parameter that controls the trade-off 

between data fidelity and sparsity. The first term ensures 

that the model predictions, obtained by multiplying 𝛩(𝑉) 

with 𝛯, are close to the observed data, while the second term 

encourages a sparse solution by promoting a minimal 

number of nonzero coefficients [7].  

 

B. Adaptation of HAVOK decomposition on power system: 

Consider a record of the voltage on a single point 𝑣(𝑡), 

where we generate a delay embedding vector denoted as 

𝑉(𝑡). This vector is comprised of delayed measurements of 

𝑣(𝑡), at different time points and can be formally expressed 

as: 

 

𝑉(𝑡) =  [𝑣(𝑡), 𝑣(𝑡 −  𝜏), 𝑣(𝑡 −  2𝜏), . . . , 𝑣(𝑡 − (𝑚 − 1)𝜏)]𝑇,                (8) 

 

Where 𝜏 signifies the time delay between 

measurements and m corresponds to the embedding 

dimension.  

 

We conduct the Singular Value Decomposition (SVD) of 

the matrix 𝑉, which is constructed from the time series of a 

single measurement voltage 𝑣(𝑡) to obtain intrinsic 

measurement coordinates. The SVD of V yields the 

following decomposition: 

 

𝑉 =  𝑌𝛴𝑈∗,                                                                                (9) 

 

𝑌 and 𝑈 represent orthogonal matrices, the ∙∗ represent 

conjugate transpose, and 𝛴 is a diagonal matrix comprising 

singular values. 𝑌 columns correspond to the eigen-time-

delay coordinates, which capture the essential structure of 

the system's dynamics. The resultant linear model within the 

HAVOK method can be succinctly expressed as: 

 
𝑑

𝑑𝑡
 𝑢(𝑡) =  𝐴𝑢(𝑡) +  𝐵𝑢𝑟(𝑡),                                                (10) 

 

Where 𝑢(𝑡) signifies a vector comprising the first 𝑟 −
1 eigen-time-delay coordinates, 𝐴 denotes a matrix 

capturing the linear dynamics, and 𝐵 represents a matrix 

characterizing the coupling between the eigen-time-delay 

coordinates and the forcing term 𝑢𝑟(𝑡). In the case of 

chaotic systems, the linear model based on the first 𝑟 − 1 

terms provide a commendable approximation, while the 

forcing term encapsulates the nonlinear and chaotic 

behavior of coupled multi-scale dynamic. 

 

It has to be noted that in scenarios where the intervals 

between multi-scale dynamics' time constants are 

significantly disparate, the necessity for sampling becomes 

considerably demanding [16]. By employing burst 

sampling, the data requirements for SINDy remain 

relatively consistent, even as the temporal scales diverge 

[17]. This approach reduces the sampling rate, which proves 

advantageous when limitations exist on the number of 

samples that can be acquired due to bandwidth restrictions 

[16].  

 

III. DEMONSTRATION STUDY 

 

In this paper, conducted on an IEEE 15-bus power grid 

(depicted in Figure 1), the developed method, based on 

generic SINDy algorithm and HAVOK decomposition, was 

deployed to scrutinize voltage waveforms and uncover 

system dynamics. The algorithm's performance was 

assessed across diverse and intricate operational scenarios. 

The deliberate selection of this particular power system 

configuration serves as a foundation for showcasing 

SINDy's performance under varying conditions and 

highlights the practicality of HAVOK in tackling the 

challenges presented by complex, multi-scale dynamics. 

The evaluation of the method in the large-scale systems and 

further experimental analysis are reserved for future 

investigations.  

 

A. Test Setup: 

The system architecture consists of 15 buses, 

representing distinct nodes within the power system 

network, and these buses are interconnected through 

branches that symbolize the power transmission lines. Each 

bus has a unique set of parameters and attributes and is 

connected to neighboring buss via branches characterized 

by specific impedance, which govern the dynamics of 

power flow among the interconnected buses. Table 1 

provides a comprehensive overview of the network 

configuration and its branch parameters. 
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Fig 1: Single Line Diagram of Implemented IEEE 15 Bus Network 

 

Table 1: Implemented IEEE 15 Bus Network Configuration 

Line index From bus To bus r+xi (Ω) Node index Pload+Qload (kW+kVAR) 

1 1 2 1.53+1.778i 2 100+60 

2 2 3 1.037+1.071i 3 90+40 

3 3 4 1.224+1.428i 4 120+80 

4 4 5 1.262+1.499i 5 60+30 

5 5 9 1.176+1.335i 6 60+20 

6 6 10 1.1+0.6188i 7 200+100 

7 7 6 1.174+0.2351i 8 200+100 

8 8 7 1.174+0.74i 9 60+20 

9 9 8 1.174+ 0.74i 10 60+20 

10 10 11 1.15+ 0.065i 11 45+30 

11 11 12 1.274+1.522i 12 60+35 

12 12 13 1.274+1.522i 13 60+35 

13 13 14 1.075+1.522i 14 120+80 

14 14 15 1.075+ 1.522i 15 60+10 

 

This investigation explores a comprehensive set of 

power system conditions, encompassing both abrupt 

changes (faults) and gradual changes (load variations), in 

the context of conventional synchronous generators (SG) 

and IBRs. The study encompasses three distinct scenarios, 

representing both single- and multi-dynamic systems. The 

first scenario examines a system solely supplied by a 

synchronous generator at Bus 1 and Bus 3. The second 

scenario incorporates the integration of an IBR at Bus 3, 

sharing the load demand equally with the synchronous 

generator at Bus 1. In the third scenario, the network is 

subjected to a 100% penetration of IBRs, where the demand 

is supplied by two IBRs located at Bus 1 and Bus 3. Each 

scenario spans 10 seconds, with the synchronous generators 

and IBRs initiated at 𝑡 = 0𝑠. At 𝑡 = 3.3𝑠, a three-phase-to-

ground fault occurs at Bus 10, cleared after four cycles of 

the fundamental frequency (60 Hz). Furthermore, at 𝑡 = 7𝑠, 

an extra load is connected to Bus 14, disconnected at 𝑡 =
8𝑠. 

 

The simulation duration of 10 s and total sample count 

of 200,000 (20,000 sample per second) are determined to 

capture temporal dynamics faithfully. Furthermore, a 

polynomial library is constructed with a precise third order 

polynomial and regularization parameter (0.8).  

 

In multiscale dynamic conditions, the SINDy 

enhanced by HAVOK decomposition were applied. The 

essential parameters such as the number of samples per burst 

(1000 samples per burst), the optimal hard threshold value 

for singular values (
4

√3
) [18], and the sampling time interval 

(50 microseconds) play crucial roles in this process.   
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B. Model Identification using Generic SINDY 

 

 General Power System (SG driven): 

The results in the first scenario demonstrate SINDy's 

accuracy in estimating the system model. For the steady-

state dynamics of the power system supplied by SG, the 

sparse model adeptly replicates the dynamics observed in 

measurements. As depicted in Figure 2.a, the reconstructed 

waveform resulting from identified model closely aligns 

with the actual data collected from the power network, all 

presented per unit. Notably, the algorithm not only correctly 

identifies the terms governing the dynamics but also 

accurately determines the associated coefficients, with 

deviations well within a remarkable 0.03%.   

 

 

Continuing in this scenario, involving sudden and 

gradual changes to system parameters in transient states, the 

generic algorithm captures the system nonlinear dynamics 

and tracks changes, while experiencing a minor fluctuation 

during these transitions, resulting in slight increases in 

approximation errors. However, the results shows that the 

generic algorithm swiftly recovers its accuracy once 

changes are detected, as evident in faults and load 

variations, shown in Figure 2.b and Figure 2.c, respectively.  

 

 Power System Integrated with IBRs: 

When IBRs were introduced into the power grid, the 

performance of generic algorithm in model identification 

deteriorated since it could not distinguish the multi-scale 

nonlinear dynamics. The result obtain in this scenario 

indicates that the algorithm’s errors experience a notable 

increase.  

 

 
Fig 2: The Actual Measurement and Generic Algorithm Approximation during a) Steady State, b) Fault and c) Load Change in 

Power System Supplied by SG 

 

Looking into the detail, by comparing the voltage 

variations approximated through the generic algorithm and 

the actual measurement it is observed that the generic 

algorithm failed to distinguish the nonlinearity caused by 

fast dynamics, in coupled multi-scaled dynamics. As 

presented in Figure 3, the generic algorithm did not 

recognize the fast dynamics in the voltage. Detailed analysis 

of the approximated voltage from, shown with dash lines in 

Figure 3, indicates the inclusion of harmonic distortions in 

the final result, comparing to the voltage waveform 

approximated in previous scenario, i.e., first-order system. 

Furthermore, the phase, frequency and amplitudes of the 

approximated voltages shows deviation from cycle to cycle. 
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Fig 3: The Actual Dynamic and Generic Algorithm Approximation during Steady State in Power System Supplied by SG and 

IBRs. 

 

The investigation continued by increase of the IBR 

penetration to 100 % and the result, obtained from generic 

algorithm was subjected to the same analysis. After 

analyzing the voltage waveform approximated by generic 

algorithm in second and third scenario the error from actual 

data was calculated. The findings indicate 50 % penetration 

of IBRs in power system led to a five-fold increase in errors 

compared to scenarios with conventional SG, while 

achieving a 100% penetration of IBRs resulted in 

approximately seven times higher errors, as illustrated in 

Figure 4.  

 

 
Fig 4: The Errors between Actual Dynamic and Generic Algorithm Approximation during Steady State and Transient in Power 

System 

 

The introduction of harmonic distortion and deviation 

in voltage, frequency and phase by the generic algorithm in 

power its approximation is due to inability of recognizing 

the fast dynamics. The generic algorithm could not identify 

the second-order nonlinearity in the system, hence, translate 

it into inaccurate level of first-order nonlinearity showing 

that the presence of IBRs in the power grid introduces 

complexities or dynamics not adequately captured by 

generic algorithm. 

 

 

 

C. Model Identification using Enhanced Mixed Algorithm 

(Generic SINDy and HAVOK Decomposition): 

The second and third scenarios were repeated using the 

enhanced algorithm, using combination of generic SINDy 

and HAVOK decomposition. The voltage was 

approximated using the mixed algorithm and has been 

compared to the actual data in both scenarios. Figure 5 

present the approximated voltage and the actual 

measurement for the voltage in the third scenario (100% 

penetration of IBRs) for steady and transient states. The 

errors calculated for the second and third scenarios were 

1.14 and 1.79 times of the base error (1.14𝜖 and 1.79𝜖 

where 𝜖 is the error captured in the first scenario). 
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Fig 5: The Actual Measurement and Mixed Algorithm Approximation during a) Steady State and b) Transient  

State in Power System Supplied by IBR 

 

The results demonstrate a notable enhancement in the 

approximation of the power system with second-order 

nonlinearity. The mixed algorithm was able to recognize the 

fast dynamic within the coupled multi-dynamic systems. 

The enhanced algorithm was able to capture and follow the 

dynamic in steady state, and transient state, shown in Figure 

5.a and Figure 5.b respectively. Note that the absence of 

voltage fluctuations in the fault incident are due to the 

limitation of the IBRs in providing fault current, leading to 

fast and hardly recognizable impulses. This indicates that 

the combined method can characterize the complex 

interactions and dynamics present in the system. 

 

IV. CONCLUSION 

 

This paper presents the concept and generic 

framework of a mixed algorithm that could be used for 

measurement-based power system analysis. To address the 

challenging impact of coupled multi-scale dynamics of 

IBRs on the complex nonlinear dynamics experienced in the 

power grid, we integrate the HAVOK decomposition 

method with the powerful SINDy analytics recently 

developed in data science, along with a set of illustrative 

case studies in power system analysis. 

 

The case studies not only demonstrate the 

effectiveness of detecting various nonlinear dynamics in 

power systems but also clearly demonstrate the promising 

capability of the mixed algorithm to separate the nonlinear 

dynamics induced by coupled IBRs from those caused by 

synchronous machines. 

 

 

 

Although the effectiveness of the algorithm is 

demonstrated with case studies using a small-scale IEEE 

model, the benefits of integrating various data analytic tools 

are clearly shown from a broader perspective.  

 

Currently, we are collaborating with power and utility 

companies to develop larger-scale models and obtain real 

data from measurements to apply the mixed algorithm in 

building measurement-based tools for detecting nonlinear 

dynamics, such as sub-synchronous oscillations and 

resonance, as well as complex transient energy waves 

caused by inverter interactions.  
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