
Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2946

The Idea of an Integration Interface for

Model-based Software Development's

Processor-in-the-Loop (PiL) Simulation

Ganesh Kale1

Professional Engineer Embedded

Expleogroup

Berlin, Germany

Gregor Roering2

Professional Engineer System

Expleogroup

Cologne, Germany

Abstract:- Model-based design (MBD) has become a

cornerstone in the development of embedded software,

particularly in the automotive industry. Processor-in-the-

Loop (PiL) simulation bridges the gap between virtual

simulation environments and real hardware, enabling

early verification and validation of control algorithms

running on target processors. The design and

implementation of toolchain is required for target specific

code generation, compilation, and execution. Developing a

toolchain specifically for the target architecture is crucial

to preventing errors and ensuring smooth production.

The configuration and designing of toolchain are one time

effort of all Simulink model which want to be test on

board.

This research investigates the importance of PiL for

embedded systems in the automobile area. It describes the

construction of a toolchain that integrates PiL simulation

with Simulink, a popular MBD tool. The paper discusses

the unique integration of TRACE32, a debugger and code

analysis tool, with Simulink for testing programmes on

Infineon devices.

TPT makes use of graphical test models that are

easy to understand and have the capacity to automate

complex closed loop tests in real time. It was Daimler

Software Technology Research that initially developed

TPT. Nowadays, vendors and automakers employ it in

their development projects for production vehicles.

Keywords:- PiL; MBD;Embedded; TPT; Software

Development; Automotive.

I. INTRODUCTION

The field of systems engineering unites several

techniques and strategies for the creation of intricate systems.

The diversity of the system's constituents is often the cause of

a system's complexity. For instance, the intricacy of a

product service system (PSS) results from the simultaneous

development of services and the integrated assessment of

product characteristics and functionalities in the immediate

context of the services they are utilized in. On the other hand,

coordinating the efforts of many specialized areas, including

software, electronics, and mechanics, is challenging when it
comes to mechatronic systems. The difficult coordination

between several development strands or task areas within a

development project is the cause of the complexity in both

situations. [1]

The proliferation of complex automotive capabilities,

along with high safety and performance standards,

emphasizes the importance of sophisticated development

processes. Model-Based Design (MBD) has emerged as a key

method in this area, providing a formal framework for

building, modelling, and evaluating automotive embedded

systems. Despite the benefits of MBD, the shift from
simulated models to actual hardware presents hurdles,

notably in guaranteeing system authenticity. Compiler

optimizations and hardware limits might cause

inconsistencies, demanding creative ways to improve the

integration of simulation and physical implementation. In this

context, an integrated interface for Processor-in-the-Loop

(PiL) simulation appears as a possible solution to these

issues. [2]

II. MBD ACCORDING TO ISO26262

The International Electrotechnical Commission (IEC)

and ISO (the International Organization for Standardization)

work closely together. A 2011 formal publication of ISO

26262 specifications marked the evolution of IEC 61508, the

general functional safety standard for E/E systems, into a

specification. Adopting ISO 26262 contributes to ensuring

that safety of automotive components is taken into account

from the outset of development. It offers a thorough

framework for handling safety during every stage of an

automobile component's lifecycle, from initial risk

assessment to ultimate decommissioning. By following ISO

26262, automotive manufacturers can ensure that their
suppliers are meeting safety standards, preventing costly

issues that might arise during production or after sale.[8] The

standard considers the trend of increasing integration of

hardware and software in automotive electronic systems. It

acknowledges that hardware and software must be evaluated

in tandem to attain the highest level of safety and offers

comprehensive guidelines for the concurrent development

and testing of both. This guarantees that every component of

the system is taken into account and tested as a whole,

encouraging a more complete and rigorous approach to

functional safety. The development of highly integrated
systems in the automotive industry typically requires proof of

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2947

conformity to ISO 26262, the international standard for

functional safety of motor vehicles. ISO 26262 classifies the

various functions within the vehicle into safety requirement

levels (Automotive Safety Integrity Levels (ASIL) from A to

D, with ASIL-D being the highest level and entailing the

most stringent requirements. [9] [10]

III. PROCESSOR IN THE LOOP (PIL)

Processor-in-the-Loop Testing (or PIL Testing) means

that the code to be tested is built using a cross compiler and

executed on the target processor. Smaller pieces of software

(such as a unit) can be built separately and executed on the

target using a Processor-in-the-Loop environment (PiL). To

do this, an evaluation board is linked to the host PC (for

example, via USB), and the PC controls the board's test

execution. A PIL test not only exhibits the right functional

behaviour, but it also shows that the tested function executes

quickly enough on the target CPU and that the stack can
manage the load.[4]

Fig 1 Interaction of PC and Processor

Processor-in-the-Loop (PiL) testing is the process of

evaluating and verifying embedded software on the processor

that will ultimately be used in the Electronic Control Unit

(ECU). Typically, the algorithms and functions are created in

a development environment on a PC, using either model-
based or direct C or C++ programming. For instance, this may

be a model from ASCET, TargetLink, Simulink, or ASCET-

DEVELOPER. For the processor that will eventually be

utilised in the vehicle's ECU, the generated C/C++ code has to

be created using a unique "cross" compiler. To determine if

the built code is also compatible with the target CPU, PiL

tests are run. Typically, the PiL test control algorithms are run

on an evaluation board. Occasionally, PiL testing are carried

out using the actual ECU. In contrast to Software-in-Loop

(SiL) testing, both versions make use of the actual processor

found in the controller rather than the PC. The benefit of using

the target processor is that compiler problems may be found.

In PiL tests, "in-the-loop" refers to the integration of the

controller into the simulation or testing environment.[11]

IV. DEVELOPMENT OF TOOLCHAIN

FOR PIL TESTING

We are using TRACE32 Tricore Debugger to connect

our hardware to computer. To make communication between

Simulink and Trace32 debugger we need to develop a tool

chain that helps us to generate code from Simulink model

and generate that integrates the cross compiler in order to

create a flashable file directly from Simulink. [12]

Fig 2 Steps API Communication [15]

We have several .m files for different compiler

toolchains. In our project, we are using Tasking VX toolset. In

the below figure, we have customized a toolchain according to

our board specific requirements. [13]

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2948

Fig 3 Toolchain .m File Function

 Assembler:

In the domain of computer architecture, assemblers play

a critical role in translating human-readable assembly

language instructions into machine-executable object code.

This process involves the conversion of mnemonics, which

represent operations and addressing modes, along with their

associated syntax, into their corresponding numerical

equivalents. The resulting object code typically comprises an

operation code (opcode) responsible for specifying the

instruction to be executed, along with additional control bits

and relevant data. Assemblers further contribute by resolving

symbolic names assigned to memory locations and other

entities within the program. Additionally, they possess the

capability to evaluate constant expressions, streamlining the

programming process. A key advantage of assemblers lies in

their extensive utilization of symbolic references. This

approach significantly reduces the time required for manual

calculations and address updates whenever program

modifications are necessary. Furthermore, the inclusion of

macro facilities within most assemblers allows for textual

substitution. This functionality proves valuable in generating

frequently used, short instruction sequences directly within

the program, eliminating the need for separate subroutine

calls. [15] [16]

Fig 4 Customize Assembler

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2949

An application that transfers computer code written in one programming language (the source language) into another (the

target language) is called a compiler. Programmes that convert source code from a high-level programming language (such as

assembly, object, or machine code) to a low-level programming language (such as machine, assembly, or object code) in order to

produce an executable programme are typically referred to as compilers. [16]

Fig 5 Customization of C Compiler [19]

To register custom toolchain, we must make changes in rtwTargetInfo.m file to show our custom toolchain in Simulink

configuration parameters. This file is provided by Lauterbach and helps to add custom toolchains.

Fig 6 Toolchain

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2950

 After Successfully Registering Toolchain, it will Reflect in the Configuration Parameters as Below.

Fig 7 Selection of Toolchain in Simulink

 The Connection of Debugger from Lauterbach with PC and Target Hardware is Shown in Figure

Fig 8 Connection of Debugger, PC and Processor [18]

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2951

V. ROLE OF TRACE32_TC387QP_STARTUP.CMM FILE

In TRACE32, a .cmm file, which stands for "Command Module," is a script file that contains a series of TRACE32 debugger

commands written in the TRACE32 script language. These script files play a crucial role in automating and streamlining various

debugging and analysis tasks.[14]

Fig 9 Trace32_Tc387qp_Startup.Cmm Script

The tracе32_sеttings.m file is a configuration file used in MATLAB and Simulink when working with the TRACE32 XIL

(Processor-in-the-Loop) target connectivity. This file defines settings and parameters that specify how Simulink interacts with the

TRACE32 debugger when conducting PiL testing. It's a critical part of setting up and configuring the PiL environment for testing

and debugging embedded software on real or emulated hardware with TRACE32. [14]

Fig 10 Trace32_Settings.m Script

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2952

This script helps to execute t32mtc.exe file which is executable product of Trace32 for tricore boards. User also add startup

script file name that user already configure. In cfg.T32.Config, specifying the exact file path for simulinktemplate.config.t32 is

optional. Alternatively, leaving it empty prompts the script to dynamically acquire the configuration file from the MATLAB setup

path. These settings help to automatically trigger trace32 application which is suitable for tricore board.

VI. TRACE32 CONFIGURATION FILE FOR TRACE32 INTEGRATION IN SIMULINK

Lauterbach has provided simulinktemplate.config.32 file to adapt communication between trace32 debugger and Simulink. In
below figure, we have different alternatives to select attached trace32 debugger.

Fig 11 Alternative to Select Debugger Attachment

Fig 12 Communication Port to TRACE32

TRACE32 XIL is a fully integrated Simulink plug-in for processor-in-the-loop simulations using the MATLAB rtiostream

API for PIL Target Connectivity. The generated code may be cross compiled, deployed, run, and debugged on a custom target.

During simulation, PRACTICE callbacks and stack profiling via code instrumentation are supported. The TRACE32 XIL plug-in's

navigation functions allow us to swiftly transition between model components and the appropriate parts of C/C++ and object code.

[14]

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2953

VII. INTEGRATION OF TOOLCHAIN WITH SIMULINK EXAMPLE

 A Counter is a Digital or Electronic Device used to Count Occurrences or Events.

Fig 13 Up Counter Subsystem

Fig 14 Output of Model

The Model configuration parameter settings for PiL simulation are as follows: The solver is always used as fixed step solver

because of the real time application. The below figure shows the selection of hardware implementation.

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2954

Fig 15 Selection of Hardware Implementation

In code generation, selection of toolchain that is developed for PiL simulation i.e. TRACE32 XIL TASKING VX-toolset for

TriCore|gmake| makefile. An explanation how the toolchain is developed can be found in the above section. This toolchain helps to

generate all required files for board specific code generation process.

Fig 16 Selection of Toolchain and Embedded Coder

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2955

 Run PiL Simulation in Simulink:

The selection of simulation mode is as follows in figure.

When model run in PiL simulation mode, it will generate code

out of model automatically with the help of embedded coder

as per configuration. The toolchain helps to generate code and

trigger Lauterbach debugger for Tricore simulation.

The model run in PiL simulation mode and then it

automatically triggers TRACE32 PowerView for TriCore.

The .elf file is automatically loaded to actual hardware with

help of Trace32 debugger and it is showing under AREA

section.

Fig 17 Automatically Loading elf File

The confirmation for checking loaded elf file is checking the functions in Symbol view. The below figure shows the function

automatically loaded in TRACE32.

Fig 18 Symbol Functions

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2956

 Breakpoints:

In the context of software development and debugging, a

"breakpoint" is a marker or instruction set by a developer

within the source code of a program. Breakpoints are used to

pause the execution of a program at a specific line or location

in the code, allowing the developer to inspect the program's

state, variables, and behavior at that point. Breakpoints are a

crucial tool for debugging and troubleshooting software.

Fig 19 Setting Breakpoint On Chip

The developer can set breakpoint to functions or code according to requirements or checking main function. When the
developer sets a breakpoint at a particular location it is highlighted in Break List window of TRACE32. Due to this highlight,

TRACE32 gives message Stopped at breakpoint instead of running.[14]

Fig 20 Highlighting Breakpoint

There may be several instances of code generated by a

single Simulink block in the source code. Therefore, if you set

Breakpoint to C/C++, more than one breakpoint is set. For

some Simulink blocks, code is run.

VIII. PIL TESTING WITH TPT TESTING

PLATFORM

PikeTec TPT (Time Partition Testing) testing software is
designed for software installation testing. It supports various

tests like Model-in-the-loop (MiL), Software-in-the-loop

(SiL), Processor-in-the-loop (PiL), Hardware-in-the-loop

(HiL) Examine. TPT allows testing of ECU software and

embedded control systems at various stages of development.

It provides facilities for easy and flexible testing, whether

simple module testing or complex system testing. TPT also

supports security standards such as ISO 26262 and provides

test case design/generation, test execution, analysis and

reporting capabilities.

Especially for PiL testing, TPT enables embedded

software to be tested in the PiL environment. It supports

testing activities such as test case design, test execution, and

PiL environment-specific analysis.

The figure below illustrates the platform configuration of

Lauterbach in the TPT software. The TPT environment calls

the executable file of TRACE32 to execute test cases on real

hardware. The crucial configuration details include specifying
the path of the TRACE32 executable file in the T32

executable file section. The path of .exe file should be

provided in T32 executable file portion. The communication

between TPT and TRACE32 relies on a host and port

configuration. In this integration, the local host is used, and

the default port is set to 20000. This standard port serves as

the communication bridge between TPT and TRACE32,

ensuring a robust and reliable connection. [23]

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2957

Fig 21 Platform Configuration

 Advantages of Integrating TRACE32 and TPT:

 Real Hardware Testing:

The integration allows for the execution of test cases

directly on real hardware, providing a more accurate

representation of the system's behavior.

 Comprehensive Scenario Testing:

Users can define and execute complex testing scenarios

by leveraging the features of both TPT and TRACE32.

 Efficient Debugging:

The integration facilitates efficient debugging through

the TRACE32 environment, enhancing the identification and

resolution of issues during testing. [23]

IX. CONCLUSION

In conclusion, the development of a comprehensive and

robust Toolchain for Processor-in-the-Loop (PiL) testing,

integrating MATLAB/Simulink, Lauterbach, and various

other essential components, is an imperative achievement.

This master’s thesis has addressed a critical need within the

domain of embedded system testing, and its implications are

significant for both academia and industry. It has been

meticulously designed, implemented, and tested to cater to the

specific requirements of PiL testing, a crucial step in ensuring

the safety and reliability of software in safety-critical systems.
The incorporation of MATLAB scripts, Simulink models, and

C language laments into a cohesive framework has the

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2002

IJISRT24MAR2002 www.ijisrt.com 2958

potential to greatly enhance the efficiency and effectiveness of

PiL testing.

The developed toolchain, which includes the generation

of ELF files for the hardware and the flashing of these files

into a real Electronic Control Unit (ECU), has proved to be

vital for conducting realistic and reliable testing scenarios.

The PiL approach enables the simulation of the embedded
system in a realistic environment, allowing for early detection

and resolution of potential issues during the development

process. By integrating Simulink with the Lauterbach

debugger, the thesis has demonstrated a powerful method of

monitoring and debugging the embedded system in real-time.

The debugger’s capabilities, such as real-time trace and

breakpoints, have provided valuable insights into the system’s

behavior, aiding in identifying and analyzing potential errors

or performance bottlenecks.

Furthermore, the versatility of this toolchain is evident in
its potential for integration with other testing software, such as

TPT from Piketеc. This adaptability еxtеnds the toolchain's

utility beyond the immediate scope of this master’s thesis,

making it an asset for a broad range of testing scenarios and

environments. The toolchain's exemplary compatibility and

collaborative capabilities underscore its potential to

significantly elevate testing and validation processes within

organizations.

REFERENCES

[1]. Systems Engineering: Principles and Practice" by
Alexander Kossiakoff, William N. Sweet, Sam

Seymour, and Steven M. Biemer

https://books.google.de/books?id=MRZoj0yAm9oC&

printsec=frontcover&redir_esc=y#v=onepage&q&f=f

alse

[2]. "Model-Based Engineering for Complex Electronic

Systems" by Peter Wilson

[3]. JTAG Interface Training JTAG Interface

(https://www.lauterbach.com/)

[4]. BTC Embedded System Processor-in-the-Loop (PIL) -

Testing (https://www.btc-embedded.com/) , 2023
[5]. Lauterbach Product and Expertise TRACE32

Debugger | Lauterbach 2023

[6]. System Engineering What is Systems Engineering?

https://www.incose.org/about-systems-

engineering/what-is-systems-engineering

[7]. Modelling Integrated Product Development Processes

ProcessModel– (gfse.de), 1999

[8]. ISO 26262 ISO 26262-1:2011 - Road vehicles —

Functional safety — Part 1: Vocabulary

[9]. MBD according to ISO 26262 ISO 26262 Support in

MATLAB and Simulink - Automotive Standards -

MATLAB & Simulink (https://de.mathworks.com/)
[10]. ASIL Level What is ASIL (Automotive Safety

Integrity Level)? – Overview | Synopsys Automotive

[11]. "A Real-Time Testing System Based on the Model-in-

the-Loop and Processor-in-the-Loop Techniques" by

Zeyad T. Almashhadany and Ahmad S

[12]. PiL Testing https://www.plexim.com/sites/default/

files/flyers/flyer_pil_a4.pdf

https://de.mathworks.com/solutions/automotive/standa

rds/iso-26262.html

[13]. Integration of Pil Simulation

https://repo.lauterbach.com/design_of_a_flexible_inte

gration_interface_for_pil_tests.pdf (lauterbach.com)

T. Erkkinen and M. Conrad. Verification, Validation,
and Test with Model-Based Design. SAE Technical

Paper. 2008.

[14]. Integration of TRACE32 for Simulink

https://www2.lauterbach.com/pdf/int_simulink.pdf

[15]. https://de.mathworks.com/help/ecoder/ug/create-pil-

target-connectivity-configuration.html

[16]. C language toolchain Embedded System Build

Process https://microcontrollerslab.com/embedded-

systems-build-process-using-gnu-toolchain/

[17]. Assembly Language for x86 Processors" by Kip R.

Irvine
https://broman.dev/download/Assembly%20Language

%20for%20x86%20Processors%207th%20Edition.pdf

[18]. PiL Target Connectivity https://de.mathworks.com/

help/ecoder/ug/create-pil-target-connectivity-

configuration.html

[19]. Tasking Compiler https://www.infineon.com/cms/

en/tools/aurix-tools/Compilers/TASKING/

[20]. TRACE32 Installation Guide

https://www2.lauterbach.com/pdf/installation.pdf

[21]. TRACE Trace Tutorial (https://www.lauterbach.com/

)

[22]. Model Based Testing for real time embedded system
automotive https://d-nb.info/993865100/34

[23]. TPT Testing https://piketec.com/tpt/

https://doi.org/10.38124/ijisrt/IJISRT24MAR2002
http://www.ijisrt.com/
https://books.google.de/books?id=MRZoj0yAm9oC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
https://books.google.de/books?id=MRZoj0yAm9oC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
https://books.google.de/books?id=MRZoj0yAm9oC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
https://www.lauterbach.com/
https://www.btc-embedded.com/
https://www.incose.org/about-systems-engineering/what-is-systems-engineering
https://www.incose.org/about-systems-engineering/what-is-systems-engineering
https://de.mathworks.com/
https://www.plexim.com/sites/default/%20files/flyers/flyer_pil_a4.pdf
https://www.plexim.com/sites/default/%20files/flyers/flyer_pil_a4.pdf
https://de.mathworks.com/solutions/automotive/standards/iso-26262.html
https://de.mathworks.com/solutions/automotive/standards/iso-26262.html
https://www2.lauterbach.com/pdf/int_simulink.pdf
https://de.mathworks.com/help/ecoder/ug/create-pil-target-connectivity-configuration.html
https://de.mathworks.com/help/ecoder/ug/create-pil-target-connectivity-configuration.html
https://microcontrollerslab.com/embedded-systems-build-process-using-gnu-toolchain/
https://microcontrollerslab.com/embedded-systems-build-process-using-gnu-toolchain/
https://broman.dev/download/Assembly%20Language%20for%20x86%20Processors%207th%20Edition.pdf
https://broman.dev/download/Assembly%20Language%20for%20x86%20Processors%207th%20Edition.pdf
https://de.mathworks.com/%20help/ecoder/ug/create-pil-target-connectivity-configuration.html
https://de.mathworks.com/%20help/ecoder/ug/create-pil-target-connectivity-configuration.html
https://de.mathworks.com/%20help/ecoder/ug/create-pil-target-connectivity-configuration.html
https://www.infineon.com/cms/%20en/tools/aurix-tools/Compilers/TASKING/
https://www.infineon.com/cms/%20en/tools/aurix-tools/Compilers/TASKING/
https://www2.lauterbach.com/pdf/installation.pdf
https://www.lauterbach.com/
https://d-nb.info/993865100/34
https://piketec.com/tpt/

	I. INTRODUCTION
	II. MBD ACCORDING TO ISO26262
	III. PROCESSOR IN THE LOOP (PIL)
	IV. DEVELOPMENT OF TOOLCHAIN
	FOR PIL TESTING
	V. ROLE OF TRACE32_TC387QP_STARTUP.CMM FILE
	VI. TRACE32 CONFIGURATION FILE FOR TRACE32 INTEGRATION IN SIMULINK
	VII. INTEGRATION OF TOOLCHAIN WITH SIMULINK EXAMPLE
	VIII. PIL TESTING WITH TPT TESTING PLATFORM
	IX. CONCLUSION
	REFERENCES

