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Abstract:- Metamorphic malware poses a significant 

threat to conventional signature-based malware detection 

since its signature is mutable. Multiple copies can be 

created from metamorphic malware. As such, signature-

based malware detection is impractical and ineffective. 

Thus, research in recent years has focused on applying 

machine learning-based approaches to malware 

detection. Profile Hidden Markov Model is a probabilistic 

model that uses multiple sequence alignments and a 

position-based scoring system. An enhanced Profile 

Hidden Markov Model was constructed with the 

following modifications: n-gram analysis to determine the 

best length of n-gram for the dataset, setting frequency 

threshold to determine which n-gram opcodes will be 

included in the malware detection, and adding consensus 

sequences to multiple sequence alignments. 1000 malware 

executables files and 40 benign executable files were 

utilized in the study. Results show that n-gram analysis 

and adding consensus sequence help increase malware 

detection accuracy. Moreover, setting the frequency 

threshold based on the average TF-IDF of n-gram 

opcodes gives the best accuracy in most malware families 

than just by getting the top 36 most occurring n-grams, as 

done in previous studies. 
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I. INTRODUCTION 

 

Metamorphic malware is an emerging threat to 

traditional signature-based malware detection. With its 

ability to self-modify the code without changing the 

semantics, it is more difficult for signature-based malware 

detection to identify the malware as its signature changes as 

they modify. Moreover, it is also possible for metamorphic 
malware to mutate by creating multiple copies of the same 

malware with different signatures. Thus, many variants 

created from a single metamorphic malware make signature-

based malware detection impractical and ineffective [1]. Due 

to technology continuously expanding over time, malware 

evolves to have the ability to modify itself as it propagates. 

Metamorphic malware rewrites its code using various 

obfuscation techniques to alter the malware's code. Dead code 

insertion is an obfuscation technique where block/s of code 

or whitespaces are inserted without changing the code’s 

functionality. Another technique is variable renaming which 
refers to changing the name of a variable in the source code. 

The third technique is instruction reordering, where the 

declaration of variables is swapped. Function reordering has 

a similar implementation to instruction reordering. However, 

functions are arranged differently in various permutations and 
combinations. Lastly, instruction substitution is another 

simple technique where the instruction operators are changed. 

These abovementioned obfuscation techniques are effective 

in modifying the code but not removing the original 

functionality of the malware. Furthermore, it is also possible 

for metamorphic malware to create multiple variants of the 

same malware using a specific obfuscation technique [2]. As 

a result, machine learning-based malware detection systems 

have been utilized and investigated in past years.  

 

Machine learning-based malware analysis and detection 
are being practiced by anti-malware companies. A particular 

malware file can be disassembled, and relevant information 

about the malware can be retrieved, such as opcode and API 

call sequences. This relevant information can be used to train 

a machine learning model, such as decision trees and neural 

networks. After training the model with the data gathered, the 

model will be applied to testing data, and the model will be 

able to conclude predictions on which file is malware or 

benign. Many machine-learning techniques are used in 

malware analysis, like Random Forest, Support-Vector 

Machine, and Neural Network [3]. Another machine learning 

technique used in malware detection is the Hidden Markov 
Model.  

 

The Hidden Markov model (HMM) is a statistical model 

that was first proposed by Baum L.E. and uses a Markov 

process that contains hidden and unknown parameters. This 

model uses the observed parameters to identify the hidden 

parameters. These parameters are then used for further 

analysis [4]. The model consists of an emission probability 

matrix, transition probability matrix, and initial probability 

distribution. The emission probability matrix shows the 

probability of an observation being generated in a hidden 
state. The transition probability matrix indicates the 

probability of each state moving to another state. 

Furthermore, the initial probability distribution indicates the 

probability that the Markov chain will start in a given 

observation. 

 

Profile Hidden Markov Model (PHMM) is another 

variant of the standard HMM. PHMM is a probabilistic model 

that captures the diversity of biological sequences. HMMs 

and PHMMs differ significantly because the latter explicitly 

utilize the positional information in the observation 
sequences, while standard HMMs cannot do so. In contrast to 

conventional HMMs, PHMMs accommodate null transitions, 

which are essential to align sequences with insertions and 
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deletions. These differences are evident in DNA. PHMM can 

be applied to metamorphic malware because they are similar 

to DNA. [5]. Multiple sequence alignments are utilized to 

create the PHMM, and the position-based scoring system 

helps detect if a specific sequence is similar to the model [6]. 

To better understand how PHMM is built with MSA, an 

example of MSA from sequences using the four bases of 

DNA is in Fig. 1. 
 

 
Fig 1: Sample MSA of DNA Sequences 

 

In the initial stages of constructing a PHMM, 

identifying match and insert states in the MSA is being done. 

It is a general rule of thumb to use those columns with at least 

50% of the characters are symbols, and this column is called 

match states. On the other hand, those with no symbols or 

with gaps are called insert states. The match states in  Fig. 1 

are columns 1, 2, and 6. 

 

The emission probability for column 1 is then calculated 

in (1). 
 

𝑒𝑀1(𝐴)  =  4/4(𝐴) 

𝑒𝑀1(𝐶) =  0/4(𝐶) 

𝑒𝑀1(𝐺) = 0/4(𝐺) 

𝑒𝑀1(𝑇) =  0/4(𝑇) 

 

Most of the emission probabilities are zero, which 

should be changed because the model should be adaptable. 
The "Add-one rule" is a straightforward formula that requires 

us to add 1 to the numerator and the total number of 

alphabetic symbols to the denominator.  

 

The results of the emission probabilities with the add-

one rule applied are in Table I. The general formula that can 

be used to calculate the emission probabilities is in (2).

 

 

𝑒𝑁(𝑘)  =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑘 𝑖𝑛 𝑆𝑡𝑎𝑡𝑒 𝑁

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑦𝑚𝑏𝑜𝑙𝑠 𝑖𝑛 𝑆𝑡𝑎𝑡𝑒 𝑁
                  (2) 

 

Since a symbol can be emitted in more than one way, 

match or insert, the Emission Probabilities matrix (E) of 
PHMM differs slightly from the Symbol Transition 

Probability matrix (B) in HMM. 

The transition probabilities are then calculated, and the 

general equation used to do so is in (3). 

 

𝑎𝑚𝑛  =  
𝑁𝑜.  𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑚 𝑡𝑜 𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑚 𝑡𝑜 𝐴𝑛𝑦 𝑆𝑡𝑎𝑡𝑒
         (3) 

 

Table 1: Emission Probabilities of MSA with the Add-One Rule Applied 

Matches Inserts 

𝑒𝑀1(A) = 4+1 / 4+4 = 5/8 

𝑒𝑀1(C) = 4+1 / 4+4 = 1/8 

𝑒𝑀1(G) = 4+1 / 4+4 = 1/8 

𝑒𝑀1(T) = 4+1 / 4+4 = 1/8 

𝑒𝐼1(A) = 0+1 / 0+4 = 1/4 

𝑒𝐼1(C) = 0+1 / 0+4 = 1/4 

𝑒𝐼1(G) = 0+1 / 0+4 = 1/4 

𝑒𝐼1(T) = 0+1 / 0+4 = 1/4 

𝑒𝑀2(A) = 0+1 / 5+4 = 1/9 

𝑒𝑀2(C) = 3+1 / 5+4 = 4/9 

𝑒𝑀2(G) = 2+1 / 5+4 = 3/9 

𝑒𝑀2(T) = 0+1 / 5+4 = 1/9 

𝑒𝐼2(A) = 2+1 / 5+4 = 3/9 

𝑒𝐼2(C) = 0+1 / 5+4 = 1/9 

𝑒𝐼2(G) = 1+1 / 5+4 = 2/9 

𝑒𝐼2(T) = 2+1 / 5+4  =  3/9 

𝑒𝑀3(A) = 0+1 / 4+4 = 1/8 

𝑒𝑀3(C) = 0+1 / 4+4 = 1/8 

𝑒𝑀3(G) = 4+1 / 4+4 = 5/8 

𝑒𝑀3(T) = 0+1 / 4+4 = 1/8 

𝑒𝐼3(A) = 0+1 / 0+4  =  1/4 

𝑒𝐼3(C) = 0+1 / 0+4  =  1/4 

𝑒𝐼3(G) = 0+1 / 0+4  = 1/4 

𝑒𝐼3(T) = 0+1 / 0+4  =  1/4 

 

 
 

 

 

 

 

 

 

(1) 
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Table 2: Transition Probabilities of MSA with the Add-One Rule Applied 

Beginning/ 

Matches 

Inserts Deletes 

𝑎𝐵𝑀1 = 5/8 

𝑎𝐵𝐼1 = 1/8 

𝑎𝐵𝐷1 = 2/8 

𝑎𝐼0𝑀1 = 1/3 

𝑎𝐼0𝐼0 = 1/3 

𝑎𝐼0𝐷1 = 1/3 

 

𝑎𝑀1𝑀2 = 5/7  
𝑎𝑀1𝐼1 = 1/7  
𝑎𝑀1𝐷2 = 1/7  

𝑎𝐼1𝑀2 = 1/3  
𝑎𝐼1𝐼2 = 1/3  
𝑎𝐼1𝐷2 = 1/3  

𝑎𝐷1𝑀2 = 2/4  
𝑎𝐷1𝐼1 = 1/4  
𝑎𝐷1𝐷2 = 1/4 

𝑎𝑀2𝑀3 = 2/8  
𝑎𝑀2𝐼2 = 4/8  
𝑎𝑀2𝐷3 = 2/8  

𝑎𝐼2𝑀3 = 4/8 

𝑎𝐼2𝐼2 = 3/8 

𝑎𝐼2𝐷3 = 1/8 

𝑎𝐷2𝑀3 = 2/8 

𝑎𝐷2𝐼2 = 2/8 

𝑎𝐷2𝐷3 = 2/8 

𝑎𝑀3𝐸 = 5/6 

𝑎𝑀3𝐼3 = 1/6 

𝑎𝐼3𝐸 = 1/2 

𝑎𝐼3𝐼3 = 1/2 

𝑎𝐷3𝐸 = 2/3 

𝑎𝐷3𝐼3 = 1/3 

 

II. METHODS 

 
A. Dataset 

The dataset consists of 800 malware files and 200 

benign files. The malware files are from different malware 

families: Locker, Mediyes, Winwebsec, Zbot, and 

Zeroaccess. These malware files are extracted from 

VirusTotal, VirusShare, and Malicia Project. On the other 

hand, the benign files are legitimate software applications. 

These are collected from download.cnet.com. These files are 

divided into training and testing datasets. Specifically, 80% 

are for training, while the remaining 20% are for testing. For 

training datasets, 160 malware files per family are utilized. 
Consequently, 40 malware files per family and 40 benign 

files are used in testing. 

 

B. Pre-Processing 

The malware files were disassembled using Ida Pro. Ida 

Pro is a well-known disassembler and debugger software 

used in reverse engineering. The proponents wrote a Python 

script to disassemble the files in batches rather than doing it 

per file. Malware and benign executable files were fed into 

the application, and the outputs were the executable files' 

assembly code in .ASM file format. 

 
The proponents utilized Visual Studio Code in writing 

the code for the study. Visual Studio Code is an open-source 

code editor developed by Microsoft, and it supports a wide 

range of features such as syntax highlighting, Git integration, 

IntelliSense, and code refactoring [7]. Opcodes are extracted 

from the assembly files and created n-grams from these 

opcodes. In natural language processing, an n-gram refers to 

a consecutive sequence of n elements extracted from a 

sequence. The elements are typically words, but they can also 

be phonemes, characters, or other linguistic units [8]. The n-

gram length ranging from one to three are utilized in the 
study, called unigram, bigram, and trigram. TF-IDF is 

computed for each n-gram in each file. TF-IDF means 

frequency-inverse document frequency, and it is a metric 

employed in information retrieval (IR) and machine learning 

to assess the relevance of textual representations, such as 

characters, words, phrases, and lemmas, in a corpus of 

documents [9]. After collecting all the TF-IDF scores, these 

n-gram opcodes are sorted by their scores. Different TF-IDF 

thresholds were implemented in the study, such as the 

average TF-IDF, 5%, and 10%. These thresholds were the 

basis on which n-gram opcodes were included in the training 
of the model. The proponents also filtered out the 36 most 

occurring n-gram opcodes, as done in previous studies [2], 

[10], [11]. The n-gram opcodes with TF-IDF greater than or 

equal to the threshold were converted to alphanumeric and 

special characters and saved into a JSON file. These 

characters are going to be utilized to create multiple sequence 

alignments. Multiple Sequence Alignment (MSA) is the 

alignment of multiple sequences with similar lengths. By 

analyzing the resulting alignment, one can deduce homology 

and explore the evolutionary relationships among the 

sequences. [12]. 
 

C. Training a Profile Hidden Markov Model 

The proponents utilized a C++ library, namely SPOA, 

through its Python binding named pyspoa, where multiple 

sequence alignments are generated using a partial order 

alignment algorithm [13]. The package can generate only one 

consensus sequence. For this reason, the proponents wrote a 

Python implementation that generates multiple consensus 

sequences depending on the MSA. Malware behaves the 

same way as biological viruses. For that reason, methods 

utilized to eradicate biological viruses are also being used in 

malware [14]. An example of this is the consensus sequences. 
A consensus sequence is a sequence that represents a group 

of sequences shared by two biological entities that can be 

extracted from multiple sequence alignments. Many 

scientific studies have already utilized consensus sequences. 

They said that in bioinformatics, the consensus sequences 

determine variants of sequences in a group [15]. This is 

important because it overcomes the diversity of sequences 

and will most likely represent the valuable sequences [16]. 

Generating multiple consensus sequences is important 

because two or more characters may have the same quantity 

in a column of MSA. Therefore, two or more sequences could 
represent the structure of the MSA. The MSA is saved as an 

array, and the residue list in a JSON file. A residue list is a 

list or array of all the characters used to convert n-gram 

opcode sequences to alphanumeric and special characters. 

 

The generated MSA will be the input of the Profile 

HMM builder, together with the residue list. The proponents 

created the Profile HMM builder with the help of an open-

sourced GitHub repository named Bioinformatics by 

https://doi.org/10.38124/ijisrt/IJISRT24MAR2052
http://www.ijisrt.com/


Volume 9, Issue 3, March – 2024                                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                  https://doi.org/10.38124/ijisrt/IJISRT24MAR2052 

 

 

IJISRT24MAR2052                                                            www.ijisrt.com                                                                        3001 

Armaghan Sarvar. The PHMM is trained using the Baum-

Welch learning algorithm and saved as a JSON file. The 

JSON file contains the transition probability matrix and 

emission probability matrix. 

 

D. Testing 

Forward Algorithm is a dynamic programming 

algorithm used to score a sequence against the Profile Hidden 
Markov Model and to determine how well the sequence 

matches the model. It calculates the degree of similarity 

between the sequence and the model, a higher score indicates 

a greater likelihood of the sequence belonging to the malware 

family. This algorithm solves the first problem in HMM, 

which is determining the likelihood of a sequence that 

matches the model [17].  

 

The log-likelihood value for each sequence from the 

testing dataset is compared to the threshold value, the 

minimum log-likelihood of the training dataset, obtained 
during the training phase. The benign software is also tested, 

and their log-likelihood against the PHMM of malware 

families is collected. 

 

E. Performance Metrics 

The performance metrics utilized in the study are 

accuracy and the false positive rate. The formula for accuracy 

is in (4). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                            (4) 

 

where TP or True Positives refers to the instances the 

model predicts the sample as malware when it is a malware; 

TN or True Negatives is when the sample is found to be not 

malware, and it is not a malware; FP or False Positives is 
when the model predicts that a sample is a malware when it 

is not, and FN or False Negatives is when the model 

determines a sample is not a malware when it is a malware.  

 

On the other hand, the formula for the false positive rate 

is in (5). 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                             (5) 

 

where FP is False Positives and TN is True Negatives. 

This rate is when benign samples are incorrectly predicted as 

malware. 

 

 

 

 

 

 

 

III. RESULTS AND DISCUSSION 

 

This chapter discusses the results obtained from the 

methods and experiments conducted within the paper. The 

evaluation metrics used to show the effectiveness of the 

model are accuracy and false positive rate. 

 

Table III shows the model's effectiveness in classifying 
Zbot malware files. These results show that increasing the n-

gram length improves the accuracy of malware detection and 

lowers the false-positive rate. Results also show that 

increasing the number of n-gram opcodes improves malware 

detection accuracy. Adding of consensus sequence improves 

the accuracy of malware detection. However, this is only 

evident in the approach where the top 5% is used as a 

threshold.  

 

The proponents also used the Zeroaccess malware 

family to train and test the enhanced model. The results can 
be found in Table IV. The n-gram length of 1 and 2 have 

given an accuracy of 100% and a false positive rate of 0%. 

Additionally, when  more filtered n-gram opcodes are utilized 

when creating MSA, it has been shown to have an accuracy 

of 100% and a false positive rate of 0%. 

 

Moreover, Table V shows the effectiveness of the 

improved model in detecting Winwebsec malware files. The 

results also show that increasing the length of n-gram 

improves malware detection accuracy and lowers the false-

positive rate. In addition, results show that involving more 

filtered n-gram opcodes in constructing MSA improves 
malware detection accuracy. Nevertheless, adding consensus 

sequences when creating MSA does not affect the accuracy 

and false positive rate. Only the approach when the average 

is utilized as a threshold has shown that adding consensus 

sequences slightly improves the model's accuracy. 

 

Another malware family has been used in the training 

and testing of the dataset: the Locker malware family. The 

results of the proposed model where Locker malware files are 

utilized can be found in Table VI. In this malware family, it 

is not observed that the increasing length of n-grams affects 
the model’s performance. Instead, using only an n-gram 

length of 1 has provided significant accuracy and a false 

positive rate of 0. Nonetheless, when the accuracy fell to 

74.58% and with a 15% false positive rate, because of the 

addition of the consensus sequences, this low accuracy was 

increased to 80% and lowered the false positive rate to 4.17%. 

 

Lastly, Table VII shows the results of the improved 

approach in detecting Mediyes malware files. The proponents 

obtained a higher accuracy and low false positive rate when 

more filtered n-gram opcodes were utilized when creating 

MSA.  
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Table 3: Test Results of the Proposed Approach for Classifying Zbot 

N-gram Type Threshold Filtered N-grams Consensus Sequences Accuracy FPR 

Unigram Top 36 36 - 97.08% 3.33% 

Bigram Top 36 36 - 99.58% 0 

Trigram Top 36 36 - 100% 0 

Unigram Top 36 36 Added 97.08% 3.33% 

Bigram Top 36 36 Added 99.58% 0 

Trigram Top 36 36 Added 100% 0 

Unigram >= Average 12 - 99.17% 0 

Bigram >= Average 76, 72, and 73 - 100% 0 

Unigram >= Average 12 Added 99.17% 0 

Bigram >= Average 76, 72, and 73 Added 100% 0 

Unigram Top 5% 5 - 88.33% 19.17% 

Bigram Top 5% 57 - 99.17% 0 

Unigram Top 5% 5 Added 89.17% 17.5% 

Bigram Top 5% 57 Added 99.17% 0 

Unigram Top 10% 10 - 96.67% 0 

Bigram Top 10% 92 - 100% 0 

Unigram Top 10% 10 Added 96.67% 0 

 

Table 4: Test Results of the Proposed Approach for Classifying Zeroaccess. 

N-gram Type Threshold Filtered N-grams Consensus Sequences Accuracy FPR 

Unigram Top 36 36 - 97.92% 0 

Bigram Top 36 36 - 99.17% 0 

Trigram Top 36 36 - 91.67% 15.83% 

Unigram Top 36 36 Added 97.92% 0 

Bigram Top 36 36 Added 99.17% 0 

Trigram Top 36 36 Added 91.67% 15.83% 

Unigram >= Average 16 - 99.17% 0 

Bigram >= Average 92 - 100% 0 

 

Table 5: Test Results of the Proposed Approach for Classifying Winwebsec 

N-gram Type Threshold Filtered N-grams Consensus Sequences Accuracy FPR 

Unigram Top 36 36 - 99.58% 0 

Bigram Top 36 36 - 100% 0 

Trigram Top 36 36 - 100% 0 

Unigram Top 36 36 Added 99.58% 0 

Bigram Top 36 36 Added 100% 0 

Trigram Top 36 36 Added 100% 0 

Unigram >= Average 17 - 97.08% 0 

Bigram >= Average 92 - 100% 0 

Unigram >= Average 17 Added 97.5% 0 

Bigram >= Average 92 Added 100% 0 

Unigram Top 10% 11 - 97.5% 1.67% 

Unigram Top 10% 11 Added 97.5% 1.67% 

 

Table 6: Test Results of the Proposed Approach for Classifying Locker 

N-gram Type Threshold Filtered N-grams Consensus Sequences Accuracy FPR 

Unigram Top 36 36 - 99.58% 0 

Bigram Top 36 36 - 98.33% 0 

Trigram Top 36 36 - 74.58% 15% 

Unigram Top 36 36 Added 99.58% 0 

Bigram Top 36 36 Added 98.75% 0 

Trigram Top 36 36 Added 80% 4.17% 

Unigram >= Average 18 - 97.08% 0 

Bigram >= Average 92 - 95% 0 

Unigram >= Average 18 Added 97.92% 0 

Bigram >= Average 92 Added 95% 0 
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Trigram >= Average 92 - 97.5% 0 

Trigram >= Average 92 Added 97.5% 0 

 

Table 7: Test Results of the Proposed Approach for Classifying Mediyes  

N-gram Type Threshold Filtered N-grams Consensus Sequences Accuracy FPR 

Unigram Top 36 36 - 97.92% 0 

Bigram Top 36 36 - 99.17% 0 

Trigram Top 36 36 - 91.67% 15.83% 

Unigram Top 36 36 Added 97.92% 0 

Bigram Top 36 36 Added 99.17% 0 

Trigram Top 36 36 Added 91.67% 15.83% 

Unigram >= Average 16 - 99.17% 0 

Bigram >= Average 92 - 100% 0 

Unigram >= Average 16 Added 99.17% 0 

Bigram >= Average 92 Added 99.17% 0 

Trigram >= Average 92 - 100% 0 

Trigram >= Average 92 Added 99.17% 0 

 

IV. CONCLUSION 

 

This paper proposed an enhanced Profile Hidden 

Markov Model (PHMM) was constructed with the following 

modifications: n-gram analysis to determine the best length 

of n-gram for the dataset, setting frequency threshold to 
determine which n-gram opcodes are going to be included in 

the malware detection, and adding consensus sequences to 

multiple sequence alignments of each malware family. The 

experiment showed that n-gram analysis and adding 

consensus sequences help increase malware detection 

accuracy. Additionally, setting the frequency threshold that 

will involve more n-gram opcodes to take part in malware 

detection gives better accuracy in most of the malware 

families than just getting only the top 36 most occurring n-

gram opcodes, which has been done in previous studies. 

 

For future work, the authors suggest creating an 
enhanced Profile Hidden Markov Model (PHMM) for other 

malware families. Next, comparing PHMM from an MSA 

made by partial-order alignment to the one made by 

progressive alignment may also help. Then, finding or 

constructing an MSA builder that allows extended characters 

can be good. For this research, a C++ library named SPOA 

has been used, which only allows up to 92 characters 

(uppercase letters, lowercase letters, and special characters). 

Finally, setting different gap thresholds when constructing 

PHMM in a given MSA may be experimented with to 

determine what will perform best. In this research, the 
standard gap threshold, which is 50% of the column in MSA 

has been used, but there are some cases in which increasing 

it up to 60% to 80% is needed, or else the PHMM cannot be 

built. 

 

 

 

 

 

 

 

 

 

REFERENCES 

 

[1]. Campion, M., Dalla Preda, M., & Giacobazzi, R. 

(2021). Learning metamorphic malware signatures 

from samples. Journal of Computer Virology and 

Hacking Techniques, 17(3), 167-183. 
[2]. Wadhwani, A. (2019). JavaScript Metamorphic 

Malware Detection Using Machine Learning 

Techniques. https://doi.org/10.31979/etd.8rtn-buzk 

[3]. Andreopoulos, W. B. (2021). Malware Detection with 

Sequence-Based Machine Learning and Deep 

Learning. In Springer eBooks (pp. 53–70). 

https://doi.org/10.1007/978-3-030-62582-5_2 

[4]. Lan, Y., Zhou, D., Zhang, H., & Lai, S. (2017). 

Development of early warning models. In Early 

warning for infectious disease outbreak (pp. 35-7. 

Academic Press. 

[5]. Attaluri, S. (2007). Detecting Metamorphic Virusis 
with Metamorphic Viruses. Department of Computer 

Science, San Jose State University, 

http://www.cs.sjsu.edu/faculty/stamp/students/Srilath

a_cs298Report.pdf 

[6]. Oliveira, L. G., & Gruber, A. (2021). Rational Design 

of Profile Hidden Markov Models for Viral 

Classification and Discovery. In Exon Publications 

eBooks (pp. 151–170). 

https://doi.org/10.36255/exonpublications.bioinforma

tics.2021.ch9 

[7]. Heller, M. (2022, July 8). What is Visual Studio Code? 
Microsoft’s extensible code editor. InfoWorld. 

https://www.infoworld.com/article/3666488/what-is-

visual-studio-code-microsofts-extensible-code-

editor.html 

[8]. Aghammadzada, E. (n.d.). N-Grams NLP | Data 

Science and Machine Learning. Kaggle. 

https://www.kaggle.com/discussions/getting-

started/186392 

[9]. Anirudha Simha, Principle Associate Software 

Engineer, Kai Chatbot Team. (2021). Understanding 

TF-IDF for Machine Learning. Capital One. 
https://www.capitalone.com/tech/machine-

learning/understanding-tf-idf/ 

https://doi.org/10.38124/ijisrt/IJISRT24MAR2052
http://www.ijisrt.com/
https://doi.org/10.31979/etd.8rtn-buzk


Volume 9, Issue 3, March – 2024                                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                  https://doi.org/10.38124/ijisrt/IJISRT24MAR2052 

 

 

IJISRT24MAR2052                                                            www.ijisrt.com                                                                        3004 

[10]. Ali, M., Hamid, M., Jasser, J., Lerman, J., Shetty, S., 

& Di Troia, F. (2022). Profile Hidden Markov Model 

Malware Detection and API Call Obfuscation. 

https://doi.org/10.5220/0011005800003120 

[11]. Alipour, A., & Ansari, E. (2020a). An advanced 

profile hidden Markov model for malware detection. 

Intelligent Data Analysis, 24(4), 759–778. 

https://doi.org/10.3233/ida-194639 
[12]. Embl-Ebi. (n.d.). Bioinformatics Tools for Multiple 

Sequence Alignment < EMBL-EBI. 

https://www.ebi.ac.uk/Tools/msa/ 

[13]. Vaser, R., Sović, I., Nagarajan, N., & Šikić, M. (2017). 

Fast and accurate de novo genome assembly from long 

uncorrected reads. Genome Research, 27(5), 737–746. 

https://doi.org/10.1101/gr.214270.116 

[14]. Kostadimas, D., Kastampolidou, K., and Andronikos, 

T. (2021). Correlation of biological and computer 

viruses through evolutionary game theory. arXiv 

(Cornell University). 
https://doi.org/10.48550/arxiv.2108.00508 

[15]. Vaschetto, L. (2022, December 20). The Significance 

of Consensus Sequences in Bioinformatics. News-

Medical.net. 

https://www.azolifesciences.com/article/The-

Significance-of-Consensus-Sequences-in-

Bioinformatics.aspx# 

[16]. Mohabati, R., Rezaei, R., Mohajel, N., Mm, R., 

Azadmanesh, K., and Roohvand, F. (2020). 

Optimizing Consensus Generation Algorithms for 

Highly Variable Amino Acid Sequence Clusters. 

bioRxiv (Cold Spring Harbor Laboratory). 
https://doi.org/10.1101/2020.11.08.373092 

[17]. Jurafsky, D. & Martin, J. (2023). Hidden Markov 

Models [PDF file]. Stanford University Speech and 

Language Processing: 

https://web.stanford.edu/~jurafsky/slp3/ 

https://doi.org/10.38124/ijisrt/IJISRT24MAR2052
http://www.ijisrt.com/
https://web.stanford.edu/~jurafsky/slp3/

