
Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2132

IJISRT24MAR2132 www.ijisrt.com 2920

Decision Making on a Software Upgrade or

Decommission with Data Mining and Machine

Learning Techniques in Information

Technology Industry

Ravikanth Kowdeed

Submitted to the Research Committee at the Swiss School of Business and Management

Abstract:- The Organizations have been investing more

in Technology and Infrastructure spends like software

upgrades, software renewals, software replacements,

platform migrations etc., apart from investment in

Business, People, and Processes. In this context, it is not

an easy task for stakeholders to decide whether to go for

a software upgrade or to replace it with another

software.

There is no unified approach or solution to

consolidate data and relationships of Information

Technology Assets, Software Upgrades, Software costs,

Software defects, Software Performance Metrics,

Security issues, IT system versions, service level

objectives etc. Due to this, the decision making of

software upgrades and software decommissioning is a

tedious process and takes more time and effort.

There is a need to build a solution that can integrate

and validate the information like software assets,

software upgrade success and failure likelihoods, cost

benefit analysis of Cloud Computing, software metrics

for fault prediction, software maintainability prediction

results, Digital Transformation readiness and other

related factors.

There is an opportunity to apply Machine Learning

techniques in defining and deriving the success

likelihoods on the following data: Systems and data

integration, software assets compatibility, operational

service level agreement breaches, quality assurance

metrics, security issues, number of open defects, number

of defect fixes, number of priority incidents, mean time

to resolve critical incidents, expected cost increase in

software maintenance, potential cost reduction with the

software or hardware replacement etc.

This Research Proposal outlines the above

mentioned to build a recommendation system aka

decision tree namely Software Upgrades or

Decommissions Life Cycle.

I. INTRODUCTION

The main objective of this research is to gather

information from the Software Engineering Life Cycle

stages and apply Pareto law on the metrics at various stage

which states - 80% of consequences come from 20% of

causes - while establishing relationship between the stages

by executing Machine learning models on this big data. This

outlines the influence of Software asset attributes, platform

compatibility, Software metrics, Software versions and

dependencies, Software defects on the Software upgradation

or software replacement need. All this data is fed into the

recommendation system proposed that helps in decision
making of upgrade or decommission of any IT system to

cater to today’s Digital Transformation needs.

The Systems Development Life Cycle, Wikipedia, is

referenced for the stages defined. The information needed

for this research across the stages is gathered from the

public web sites, software release documentation,

organization case studies and feedback surveys conducted in

the communities of practice and communities of technology

interest groups.

 Software Requirements (Business objective, System

needs, Software features, Hardware specifications, Cloud

vs non-Cloud infrastructure supported).

 Software Cost (Invest vs Operate Cost i.e., installation,

renewals, upgradation and decommission costs)

 System Asset Metadata (Software features, version

information, service level objective, end of life date).

 Software Issues (Compatibility issues with other

software and hardware, Security Vulnerabilities, Quality

defects, integration errors)

 Software Execution metrics (configurations, change
management, performance metrics and maintenance

activity insights)

https://doi.org/10.38124/ijisrt/IJISRT24MAR2132
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2132

IJISRT24MAR2132 www.ijisrt.com 2921

II. RESEARCH METHODOLOGY

A. Approach

The above-mentioned data is considered as training

data on which machine learning models are applied.

Consequently, a system upgrade or replacement

recommendation is proposed based on weightage of these

factors.

Please see Conceptual Framework section for details.

Here below are a couple of examples showing software

version, operating system, client, and server version

compatibility.

 Operating System Version, .NET Framework Version

Compatibility Information:

Fig 1 Operating System Version

 Mysqldb Library Version Dependencies with Client and Server Versions.

Fig 2 Mysqldb Library Version

https://doi.org/10.38124/ijisrt/IJISRT24MAR2132
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2132

IJISRT24MAR2132 www.ijisrt.com 2922

B. Conceptual Framework

This section reviews various factors in Software or

Hardware upgrades. The section begins by describing the

uncertainty of when to go for Software or Hardware upgrade

and when to eventually retire one or more or consolidate one

into another. Further, it has subsections representing

dimensions of all possible planning and execution

challenges. Each subsection will conclude with a hypothesis
that will be used to measure the relationship and

dependencies that influence the upgrade or decommission of

the Software and associated hardware.

 Systems Asset Documentation

Systems Asset documentation is a critical bookkeeping

activity for any Organization as they are shipped from

different vendors and so there are known issues,

compatibility gaps between the system assets available vs

needed vs used, number of resources needed vs utilized,

systems uptime vs downtime, systems idle time vs busy time
in Production and Non-Production environments of the Data

Centers. The continued monitoring involved here is manual

in nature to track what versions are being used, what are

being upgraded, what are decommissioned, which code or

configurations are obsolete, redundancy factors needed for

systems high availability, tracking system alert behavior and

patterns, backup and resiliency of system assets, tracking

defects and their resolution, and of course reviewing when

to go for upgrade or decommissioning of software or

hardware.

 Hypothesis: Asset Data Determines when System
Upgrade is Needed.

 Software and Hardware Compatibility

Software and Hardware compatibility refers to affinity

between software version and associated hardware platform.

It is measured by success rate of regular health checks

including security scans, execution time, defect resolution

turnaround time, system response time after patching or

upgrading exercise. With ever increasing demand in

software usage along with Artificial Intelligence capabilities

and Digital Transformation needs, decisions are taken at the
top level and then cascaded to the lower levels. This often

leads to improper planning of assets needed to upgrade or

decommission because there will be a need of tracking

existing issues, open defects and security risks to resolve,

tracking end of life components, replacing them with right

assets at the right time with minimum down time. So, the

level of uncertainty associated with software upgrade or

software decommission is usually high when the health of

Software and Hardware is not tracked. Hence the need to

collect data and metrics associated to assets, on a continued

basis.

 Hypothesis: Software and Hardware Systems

Compatibility Influence Systems Upgrade or Systems

Decommission.

 Collecting Metrics

Collecting metrics is an important task in the software

and hardware health check activity. The metrics such as

software issues, hardware issues, time taken for regular

patches, new issues, security findings, increase in

operational cost, increase or decrease in renewal cost,

additional upgrade cost, service level objectives w.r.t assets

performance, system components to retire etc need to be

saved at a centralized location, dependencies to be

determined and reviewed periodically.

 Hypothesis: Software and Hardware System Metrics

Help in Taking Timely Decisions in Upgrading, Retiring,

Consolidating Assets.

 Planned Cost

The cost incurred with software and hardware assets

installation and maintenance is another important aspect.

The same is used as reference against operational cost to see

if there are any deviations. The overall IT expenditure of an

organization in a given fiscal year considers this as baseline

cost.

 Hypothesis: Baselined Planned Costs Determine

Operational Cost Guidance Year on Year.

 Actual Cost

This is the accrued cost in maintenance of software and

hardware assets. The overall IT expenditure of an

organization comprises of this actual budget spent in the

fiscal year against the planned budget guidance start of the

year. The profit or loss margins of an organization depend

on this important piece of information.

 Hypothesis: Operational Costs Drive Systems Upgrades

and Systems Decommissions.

 Internal Audit

The organizations do periodic internal IT system audits

of software and hardware components nearing upgrades, end

of life, having security risks and vulnerabilities,

performance issues to name a few. This is a planning and

monitoring exercise where everyone acts according to

guidelines defined by the IT Systems head of the

department, under the supervision of the Chief Technology
Officer and Chief Information Officer. The information

tracking needs to be maintained at a certain centralized

location, so root cause analysis can take place when things

don’t go as expected. Therefore, there is a need to use

Machine Learning models to churn the system assets data

and system activity data for better decision making

considering current and future needs of IT systems.

 Hypothesis: The IT Audit Findings Drive Systems

Upgrade and Decommissioning Need.

III. RESULTS

This section is divided into four parts: 1) An overview

of the research design and the data collection. 2) detailed

information regarding the asset data. 3) The technique that

will be used to analyze the data. 4) explanation of data

privacy and ethical issues that may be associated with the

methodology.

https://doi.org/10.38124/ijisrt/IJISRT24MAR2132
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2132

IJISRT24MAR2132 www.ijisrt.com 2923

 Data Collection Requirements

This is a blueprint of what data should be collected,

and how the data will be analyzed. The design and

application of research is dependent upon many factors

including the research objective, the availability of the

required data source, the cost associated with obtaining the

required data, and the time constraints facing the researcher.

 Data Design

The data design for this research requires both

historical and current information about the organization IT

assets data. Data for the research is output of weekly

exercises on IT Systems maintenance, consolidated risk and

run time logs of a software asset version, open resource

defects, security vulnerabilities as reported in OWASP,

Open-Source Scan vulnerabilities through SNYK etc.

 Data Analysis

There are two main steps involved in data analysis.

They are data preparation, and descriptive statistics. Data

preparation will cover the data collection saved to an excel

spreadsheet on the computer. The analysis will be done with

Python libraries. After that, descriptive statistics and Factor

Analysis will be performed. Below listed data is collected as

part of this research. The actual data collected and listed can
vary, since they are exhaustive and subjective in nature,

primarily depends on the IT Systems in use, third party

vendor software catalogue, system update activities tracked

in an organization and other related data. All this data will

be integrated, and outliers to be identified to come up a with

recommendation on software upgrade or software

decommission, to validate hypotheses outlined in this

research.

Table 1 System Asset Master Data

Column Description Relation

System_asset_name Software or hardware system component name One to one with software or

hardware system

Asset_Version Version of the software or hardware system asset One to one with system asset

Asset_EOL_date This is software or hardware expiry date One to one with system asset

Supported_platform This denotes operating system, on-premises or cloud specification One to one with system asset

(*Surrogate Keys are not Defined)

Table 2 System Asset Mapping Data

Column Description Relation

System_asset_name Software or hardware system component name One to one with software or hardware system

Dependent_asset_name This denotes the dependent software, hardware, or

operating system (on-premises or cloud) specification

One to one with system asset

(*Surrogate Keys are not Defined)

Table 3 System Budget Master Data

Column Description Relation

System_version Software or hardware system component version Many to one with software or

hardware system asset

License_name Specification of license i.e., enterprise single user, multiuser, single

instance, multi instance, operating system association etc.

One to one with software or

hardware system version

Planned_cost This is software or hardware version cost when purchased, deployed One to one with software or

hardware system version

Actual_cost This is software or hardware version cost when accrued/invoiced One to one with software or

hardware system version

Operation_cost This is software or hardware version cost when accrued/invoiced year on

year or at periodic intervals as applicable

One to one with software or

hardware system version

Upgrade_cost This is software or hardware version upgrade when accrued/invoiced

year on year or at periodic intervals as applicable

One to one with software or

hardware system version

Decommission_cost This is software or hardware version decommission cost when
accrued/invoiced year on year or at periodic intervals as applicable

One to one with software or
hardware system version

(*Surrogate Keys are not Defined)

Table 4 System Activity Master Data

Column Description Relation

System_version Software or hardware system component version Many to one with software or

hardware system asset

Activity_date This is software or hardware version used Many to one with software or

hardware system version

Activity_code Activity code description like PATCH UPDATE,

RESTART/REBOOT, DOWNTIME etc.

Many to one with activity date

Activity time Time taken for the maintenance task as mentioned in the activity Many to one with activity date

https://doi.org/10.38124/ijisrt/IJISRT24MAR2132
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2132

IJISRT24MAR2132 www.ijisrt.com 2924

code

Upgraded_version Version info of the system if upgraded Many to one with activity date

Next_activity_date Next maintenance activity date of the software or hardware

version

one to one with activity date

System_asset_sla_passed 1 or 0 representing pass or failed one to one with activity date

Additional_cost_incurred Additional cost incurred if any software or hardware failures and

replaced with other recommended software or hardware entities

one to one with activity date

Known_issue_count This is collected from the system errors, warnings or defects

encountered from previous activities, or from day-to-day

operations tracker

one to one with software or

hardware version

(*Surrogate Keys are not Defined)

Table 5 System State Metrics

Column Description Relation

System_name Software or hardware system component name One to one with software or

hardware system

system_version This is software or hardware version used One to many with software or
hardware system

dep_sw_cnt Software count on which a software is dependent on One to many with software version

dep_hw_cnt Hardware count on which a software is dependent on One to many with software version

eol_hw_cnt End of life hardware count associated to software Many to one with software entity

eol_sw_cnt End of life software count associated to hardware Many to one with hardware entity

sw_eol_upg_cost_reqd This is boolean flag representing if additional cost needed to

upgrade the end-of-life software

Many to one with software entity

hw_eol_upg_cost_reqd This is boolean flag representing if additional cost needed to

upgrade the end-of-life hardware

Many to one with hardware entity

hw_maint_cost_reqd This is boolean flag representing if additional cost needed to

maintain/ operate the end-of-life hardware

Many to one with hardware entity

sw_maint_cost_reqd This is boolean flag representing if additional cost needed to

maintain/ operate the end-of-life hardware

Many to one with hardware entity

sw_defects_cnt The defects count with software version used Many to one with software version

hw_defects_cnt The defects count with hardware version used Many to one with hardware version

hw_min_sla Minimum service level agreement time in milli seconds for the

hardware availability (up and running)

One to one with hardware entity

sw_min_sla Minimum service level agreement time in milli seconds for the

software availability (up and running)

One to one with software entity

hw_upg_recommend Boolean flag to represent if hardware upgrade needed One to one with hardware entity

hw_decom_recommend Boolean flag to represent if hardware decommission is needed One to one with hardware entity

sw_upg_recommend Boolean flag to represent if software upgrade needed One to one with software entity

sw_decom_recommend Boolean flag to represent if software decommission is needed One to one with software entity

(*Surrogate Keys are not Defined)

 Data Privacy

Ethics, as used in research, refers to the expected code

of conduct or norms that governs the researcher's behavior
while doing research. In this research process, the

organizational data privacy will be protected. This research

ensures that the information collected from organizations

and software products will not be made available to

everyone but to the research community. Additionally, all

sources that will be used in this research will be duly

acknowledged.

IV. CONCLUSION

This Research proposal describes activities in the
Software Development Upgrades Decommissions Life

Cycle (SDUDLC), establishes relationships, need of data

integration to arrive at a decision making on whether

Systems need upgrade or decommissions in a timely

manner. This systematic data mapping helps in defining the

dependencies, needs, priorities, likelihoods of success and

failure in the overall process with the introduction of Data

Mining and Machine Learning techniques. The below

diagram explains the gist of this.

https://doi.org/10.38124/ijisrt/IJISRT24MAR2132
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2132

IJISRT24MAR2132 www.ijisrt.com 2925

 Proposed Process Flow Diagram of Software Upgrades or Decommissions Life Cycle:

Fig 3 Proposed Process Flow Diagram of Software Upgrades or Decommissions Life Cycle

REFERENCES

[1]. Wikipedia, Free Encyclopedia,
https://en.wikipedia.org/wiki/Systems_development_

life_cycle

[2]. Fadi Nouh, 2016. SAM Software Asset Management:

ResearchGate publication.

[3]. Rekha Bachwani. Olivier Crameri. Ricardo Bianchini

and others, 2012. Recommendation system for

software upgrades: ResearchGate publication.

[4]. Mauricio Ortiz-Ochoa, 2016. Identifying and

Prioritizing Modernization of Legacy Systems:

ResearchGate publication.

[5]. Harco Leslie Hendric Spits Warnars and 6 others,
2017. Software metrics for fault prediction using

machine learning approaches: ResearchGate

publication.

[6]. Intertech, 2022. Software feasibility study:

Intertech.com services

[7]. Investopedia, 2022. Feasibility Study Importance:

Investopedia.com feasibility-study business

essentials publication

[8]. Stefan Van Der Zijden, 2022. Gartner: Three key

tasks needed to decommission applications:

ComputerWeekly.com publication.

[9]. Ajay Kumar and Kamaldeep Kaur, 2022.
Recommendation of Regression Techniques for

Software Maintainability Prediction with Multi-

Criteria Decision-Making: ResearchGate publication.

[10]. Denis Pombriant, 2021. Do you have the right

software for your digital transformation: Harvard

Business Review.

[11]. Shahid Iqbal, Muhammad Khalid and M.N.A. Khan,

2013. A Distinctive Suite of Performance Metrics for

Software Design: ResearchGate publication

[12]. Marko Saarela, Shohreh Hosseinzadeh, Sami

Hyrynsalmi and Ville Leppänen, 2017. Measuring
Software Security from the Design of Software:

ResearchGate publication.

https://doi.org/10.38124/ijisrt/IJISRT24MAR2132
http://www.ijisrt.com/
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://www.researchgate.net/profile/Rekha-Bachwani?_sg%5B0%5D=MxOodS74facMC4Sg8tbVNdNjW8QcbuATH7RoNUg3A7JdlnLKvMP1gqosvvG2-DJwHa3Y-hI.ioFIlbpS4E1axqvmkFA6QTtxZfkwzfsumJGlq9NPTVHRFq1aCdiSjB5Aw1-vA6dTwsxy-fj4XnpSvR6jAgNHpg&_sg%5B1%5D=fMGpEL-PwS92PYpCGdXynfzxZkrlxi2BfZ33ueeGxC1Wr05RQeYyl0oaH1rXaVdI3sfRPDM.jS9jy0D4JAUnACKq8QkJ1NmN7eKL4xJYTzoExfjKdfzRL4ahJDIl-LA3-d7b-vJ6kuOBv7K09oL1D5OVYUiNzw
https://www.researchgate.net/profile/Olivier-Crameri?_sg%5B0%5D=MxOodS74facMC4Sg8tbVNdNjW8QcbuATH7RoNUg3A7JdlnLKvMP1gqosvvG2-DJwHa3Y-hI.ioFIlbpS4E1axqvmkFA6QTtxZfkwzfsumJGlq9NPTVHRFq1aCdiSjB5Aw1-vA6dTwsxy-fj4XnpSvR6jAgNHpg&_sg%5B1%5D=fMGpEL-PwS92PYpCGdXynfzxZkrlxi2BfZ33ueeGxC1Wr05RQeYyl0oaH1rXaVdI3sfRPDM.jS9jy0D4JAUnACKq8QkJ1NmN7eKL4xJYTzoExfjKdfzRL4ahJDIl-LA3-d7b-vJ6kuOBv7K09oL1D5OVYUiNzw
https://www.researchgate.net/profile/Ricardo-Bianchini?_sg%5B0%5D=MxOodS74facMC4Sg8tbVNdNjW8QcbuATH7RoNUg3A7JdlnLKvMP1gqosvvG2-DJwHa3Y-hI.ioFIlbpS4E1axqvmkFA6QTtxZfkwzfsumJGlq9NPTVHRFq1aCdiSjB5Aw1-vA6dTwsxy-fj4XnpSvR6jAgNHpg&_sg%5B1%5D=fMGpEL-PwS92PYpCGdXynfzxZkrlxi2BfZ33ueeGxC1Wr05RQeYyl0oaH1rXaVdI3sfRPDM.jS9jy0D4JAUnACKq8QkJ1NmN7eKL4xJYTzoExfjKdfzRL4ahJDIl-LA3-d7b-vJ6kuOBv7K09oL1D5OVYUiNzw
https://www.researchgate.net/profile/Mauricio-Ortiz-Ochoa?_sg%5B0%5D=Pna1R3akYXIRFxgIo8dvY-Owp4QQotHTIO2uoyvOVIJlIVqDzFP4MIXMVquiAHgJVbwgKLY.DHa_FSO1t1ekL1nKMaePggJb0VyCk7GIvINg3RQMGIj1ajpxvYKSfDtW1sQVraETifLHjOS00BeUTs0_APEnBg&_sg%5B1%5D=qibAwa30Bkrz6QZcKR7tXjH9pKy5g7ON8zLvyoZudazNhdG-F9cCzHyTjbBrlFwn13voIFk.ZOU4Z_l5Dcq4uLdTQy6Q23-OLsIGlxSRMi1Ohkl4VzNg1FDdC5wzcuTFubFY99TQMwhZw6dcwhYEG81bbVZhAg
https://www.researchgate.net/profile/Harco-Leslie-Hendric-Spits-Warnars
https://www.researchgate.net/publication/323719116_Software_metrics_for_fault_prediction_using_machine_learning_approaches_A_literature_review_with_PROMISE_repository_dataset?_iepl%5BgeneralViewId%5D=RGqBkQ12Z50lKSE9I3YFxv111ll0IDLPLcOi&_iepl%5Bcontexts%5D%5B0%5D=searchReact&_iepl%5BviewId%5D=ft6X0DPQ1ftpBpR5fJ395aOjipvotctb3uIt&_iepl%5BsearchType%5D=publication&_iepl%5Bdata%5D%5BcountLessEqual20%5D=1&_iepl%5Bdata%5D%5BinteractedWithPosition1%5D=1&_iepl%5Bdata%5D%5BwithEnrichment%5D=1&_iepl%5Bposition%5D=1&_iepl%5BrgKey%5D=PB%3A323719116&_iepl%5BtargetEntityId%5D=PB%3A323719116&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/323719116_Software_metrics_for_fault_prediction_using_machine_learning_approaches_A_literature_review_with_PROMISE_repository_dataset?_iepl%5BgeneralViewId%5D=RGqBkQ12Z50lKSE9I3YFxv111ll0IDLPLcOi&_iepl%5Bcontexts%5D%5B0%5D=searchReact&_iepl%5BviewId%5D=ft6X0DPQ1ftpBpR5fJ395aOjipvotctb3uIt&_iepl%5BsearchType%5D=publication&_iepl%5Bdata%5D%5BcountLessEqual20%5D=1&_iepl%5Bdata%5D%5BinteractedWithPosition1%5D=1&_iepl%5Bdata%5D%5BwithEnrichment%5D=1&_iepl%5Bposition%5D=1&_iepl%5BrgKey%5D=PB%3A323719116&_iepl%5BtargetEntityId%5D=PB%3A323719116&_iepl%5BinteractionType%5D=publicationTitle

	I. INTRODUCTION
	A. Approach
	B. Conceptual Framework
	 Software and Hardware Compatibility
	 Collecting Metrics
	 Planned Cost
	 Actual Cost
	 Internal Audit

	 Data Collection Requirements
	 Data Design
	 Data Analysis
	 Data Privacy
	IV. CONCLUSION
	Fig 3 Proposed Process Flow Diagram of Software Upgrades or Decommissions Life Cycle
	REFERENCES

