Response of Intze Tank against Static and Earthquake Loads Using Staad Pro

'Arisepalli Aravind; ${ }^{1}$ B.Tarun Kumar; ${ }^{1}$ J. Jaswanth Kumar; ${ }^{1}$ K.Vijendra Babu; ${ }^{2}$ K. Venkateswara Rao, M.Tech (Ph.D), ${ }^{1}$ B. Tech students; ${ }^{2}$ Associate Professor, Department of Civil Engineering, Seshadri Rao Gudlavalleru Engineering College, Gudlavalleru, Krishna District, Andhra Pradesh

Abstract

Water tanks are the largest utility structures in both public and industrial purposes. This project aims to analyze the response of an intze tank structure subjected to both static and earthquake loads using STAAD Pro software. Intze tanks are commonly used for water storage and distribution in various industries and municipalities. Understanding their structural behavior under different loading conditions is crucial for ensuring their stability and safety. The water tanks are the long life structures. Based on the studies India is the 60% is prone to earthquakes. But many of the structures are designed using the wind force as a lateral load but sometimes the seismic force also leads to collapse of a structure. By the consideration of combination of loads of live load, dead load and wind load or seismic load by using the code of practice IS 875 (part-v). So in this project we manually design a intze tank of 1000000 liters capacity using the codes of IS 456-2000, IS 3370 and will be statically checked using the code of practice of IS 875 part-v and IS 1893 part-II (2016). After the comparison of the manual design, these design parameters will be applied in STAAD Pro software and comparison will be done with manual design and software design.

Keywords:- Intze Water Tank, STAAD Pro, Seismic Load And I.S Codes Etc.

I. INTRODUCTION

A. General

Generally The Tanks Are Designed to Store the Liquids like Water, Oil, Petroleum etc. Tanks are mainly classified by the material used for the construction is R.C.C tanks and steel tanks. The steel tanks construction is very costly compared to reinforced cement concrete tanks. The cement concrete tanks construction is economical and its maintenance cost is low compared to steel tanks. In the construction of R.C.C tanks the richer mix usage made water tight. The richer mix means which have the mix proportion of not less than M_{20}.

In some cases for water tightening the water proof materials are also used for construction of tanks. For reduction shrinkage loss in water tanks construction use the cement content ranging from $330 \mathrm{Kg} / \mathrm{m}^{3}$ to $530 \mathrm{Kg} / \mathrm{m}^{3}$. and for attaining good strength in structure usage of steel is recommended higher than Fe 415. in this water retaining structures 0.1 mm
crack is permissible. For the design of liquid retaining structures the code of practice recommended was IS 3370(part I-V). The storage tanks are mainly based on two types which was discussed below.
B. Classification of R.C.C Water Tank
> Classification based on Position of the Heads:

- Ground resting tanks
- Under ground
- Elevated
> Classification based on the Shape of Heads:
- Circular
- Rectangular
- Intze

We consider the elevated intze tank for the design and comparison with the STAAD pro software.

II. LITERATURE REVIEW

S. Deepika, Gugulothu. Swarna, "Design And Analysis of Intze Type Water Tank For Different Wind Speed And Seismic Zones As Per Indian Codes ", International Journal of Advanced Technology in Engineering and science, This project deals with the design and the analysis of intze type tank for the different wind speed and seismic zones as per Indian codes. The design of water tanks are subjected to live load, dead load and wind or seismic load as per IS codes of practices. The seismic load or earthquake load is also called as unstable load.

Issar Kapadia, PuravPatel, Nilesh Dholiya, Nikunj Patel "Analysis and Design of INTZE Type Overhead Water Tank under the Hydrostatic Pressure as Per IS: 3370 \& IS: 456 -2000 by Using STAAD Pro Software", Water tanks are the important public utility, industrial and storage structure. The design and construction methods are followed by the size of the tank and staging pattern of the tank.

III. DESIGN STEPS FOR THE INTZE TANK

- Design of Top Dome \& Top Ring Beam
- Design of Cylindrical wall
- Design of ring beam at the junction of the cylindrical wall and conical dome
- Design of Conical Dome \& Bottom Spherical Dome.
- Design of bottom ring beam
- Design of supporting structure, i.e., Staging
\checkmark Analysis of wind force.
\checkmark Analysis of lateral force.
- Design of Foundation.

A. Analysis of Wind Forces

The wind analysis of this structures are based on the code of IS: 875 Part III.The intze tanks are offer relatively less reduction factor of 0.7 to arrive at effective pressure. The basic formula used for the wind analysis is as per code is followed by

$\mathbf{V}_{\mathrm{z}}=\mathbf{V}_{\mathrm{b}} \mathbf{K}_{1} \mathbf{K}_{2} \mathbf{K}_{\mathbf{3}}$

Where,
$\mathrm{V}_{\mathrm{z}}=$ Design wind speed at any height of the structure
$\mathrm{V}_{\mathrm{b}}=$ Basic wind speed in $\mathrm{m} / \mathrm{sec}$
$\mathrm{K}_{1}=$ Risk coefficient
$\mathrm{K}_{2}=$ Structure factor and terrain height
$\mathrm{K}_{3}=$ Topography factor
For chosen direction of wind, the maximum shear force occurs in a brace beam connecting a column, while the maximum bending moment occurs in a brace connecting a column, while maximum bending moment occurs in a brace. For the consideration of wind or seismic force for the design of tank is depending upon the tank location.

B. Analysis of Lateral Force:

Housner (1963) proposed a method of two mass model system for the lateral forces of elevated tank and it is used commonly used method in most of the codes. Pressure produced by the fluid in tank is divided into two separate masses they are;

- Impulsive
- Convective

(a) Elevated tank

(c) Two mass idealization of elevated tank

(d) Equivalent uncoupled system

Fig 1: Idealization of Two Mass Model of the Elevated Tank

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165

$>$ Time Period:

- Impulsive Mode:

Impulsive mode time period (T)
$\mathrm{T}_{\mathrm{i}}=2 \pi \sqrt{(m i+m c) / K s}$
Where:
$\mathrm{mi}=$ the impulsive mass
$\mathrm{ms}=$ mass of the staging
$\mathrm{Ks}=$ stiffness of the lateral staging

- Convective Mode:

The mode of convective time period, in seconds is given by
$\mathrm{T}_{\mathrm{c}}=2 \pi \sqrt{m c / K c}$
Where:
The convective mode of the time period for the circular and rectangular tanks is taken from IS 1893 (part-II)
$\mathrm{T}_{\mathrm{C}}=\mathrm{C} \sqrt{\frac{D}{g}}$
Where:
$C_{c}=$ Coefficient of time period $\left(\mathrm{T}_{\mathrm{c}}\right)$ for the convective mode. (Obtained from fig 2(b) of IS 1983 part-2)
$D=$ diameter of tank (inner).

$>$ Damping:

Damping is taken for all types of tanks in convective mode shall be taken as 0.5% of the critical. Damping in convective mode is 5% and in impulsive mode is 2%.

- Seismic zone factor, Z as per IS 1893 (Part 1): 2002 India has been divided into IV seismic zones. And the different zones are having different zone factors.
- Importance factor, (I) this factor is decided by the function of the structure. Mostly for water retaining structures I value is taken as 1.5 as per IS 1893(part-I)
- Response reduction factor, R This factor is depends on the perceived seismic damage performance of the structure Response reduction factor depends on the perceived as per code this value is taken as 2.5 (for SMRF).
- Structural response factor, $(\mathrm{Sa} / \mathrm{g})$ Design horizontal seismic coefficient (A_{h})
- $A_{h}=(Z / 2) x(I / R) x\left(S_{a} / g\right)$

Where
$Z=$ zone factor
$R=$ response reduction factor
$I=$ importance factor
$S_{a} / g=$ average acceleration coefficient
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139

Fig 2: 5\% Damping Response Spectra
Base Shear
$V_{i}=\left(A_{h}\right)\left(m_{i}+m_{s}\right) g$ \qquad impulsive mode
$\mathrm{V}_{\mathrm{c}}=\left(\mathrm{A}_{\mathrm{h}}\right)\left(\mathrm{m}_{\mathrm{c}}\right) \mathrm{g}$. $\ldots \ldots \ldots$. convective mode
Total base shear $\mathrm{V}=\sqrt{V i^{2}+V c^{2}}$
Where:
$m_{s}=(1 / 3)$ mass of the staging + mass of the container .
$\mathrm{V}=$ total base shear.
$\mathrm{V}_{\mathrm{i}}=$ base shear in impulsive mode.
$\mathrm{V}_{\mathrm{C}}=$ base shear in convective mode.

IV. METHODOLOGY

> Calculation of Population

- Total Population $=7000$
- Per Capita Demand of 135 Liters/day (AS Per 1172-1971)
- Capacity of tank $=(7000 \times 135)=945000$ Liters
- Design Capacity of tank $=1000000$ Liters

> Tank Dimension

- Grade of Steel $=\mathrm{Fe} 415$
- Grade of Concrete $=$ M30
- Tank Diameter $(\mathrm{D})=15 \mathrm{~m}$
- Lower Ring Beam diameter (D0) $=15 \times 0.6=9 \mathrm{~m}$
- Rise of the top dome $(\mathrm{h} 1)=3.0 \mathrm{~m}$
- Rise of the bottom dome (h2) $=2.0 \mathrm{~m}$
- Conical dome height $(\mathrm{h} 0)=2.5 \mathrm{~m}$
- Height of the cylindrical portion:
- Tank Capacity:

$$
\begin{gathered}
=\frac{\pi}{4} \times\left(D^{2} \times h\right)+\frac{\pi}{12} \times h_{0}\left(D^{2}+D_{0}^{2}+D \times D_{0}\right)-\frac{\pi}{3} \times h_{2}^{2}\left(3 R_{2}-h_{2}\right) \\
R_{2}=\frac{\left(\frac{D}{2}\right)^{2}+{h_{2}}^{2}}{2 h_{2}} \\
R_{2}=6.0625 \mathrm{~m} \\
1000 \mathrm{~m}^{3}=\left(\frac{\pi}{4} \times 15^{2} \times \mathrm{h}\right)+\frac{\pi}{12} \times 2 \times\left(15^{2}+9^{2}+15 \times 9\right)-\frac{\pi}{3} \times 1.5^{2} \times(3 \times 7.25-1.5) \Rightarrow \mathrm{h}=4.28 \mathrm{~m}
\end{gathered}
$$

Say, $h=4.5 \mathrm{~m}$

Fig 3: Water Tank Dimension

- Top Dome Design

Provide 150 mm thickness for the roof dome.
The angle subtended by dome is 2θ of its centre
$\therefore \operatorname{Sin} \theta=\frac{\mathrm{d}}{2 R_{1}}$
$R_{1}=\frac{\left(\frac{15}{2}\right)^{2}+3^{2}}{2 \times 3}$
$R_{1}=10.875 \mathrm{~m}$

$$
\theta=43.6^{\circ}
$$

> Loads Calculation

Total Dead load $=0.15 \times 25000$
$=3750 \mathrm{~N} / \mathrm{m}^{2}$
Dome Live load $=0.75-0.52 \mathrm{y}^{2}$ (from Table 2, IS : 875 part -2)
$\mathrm{Y}=\frac{\mathrm{h} 1}{\mathrm{D}}=\frac{3.0}{15}=0.2$
Live load $=729.2 \mathrm{~N} / \mathrm{m}^{2}$
Total load $(\mathrm{w})=4.4792 \mathrm{KN} / m^{2}$

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
> Hoop Stress Calculation at the Level of Springing

$$
\begin{gathered}
f=\frac{W R_{1}}{t}\left(\cos \theta-\frac{1}{1+\cos \theta}\right) \\
f=\frac{4485 \times 10.875}{.15}\left(\cos 43.60-\frac{1}{1+\cos 43.60}\right)
\end{gathered}
$$

$f=0.047 \mathrm{~N} / \mathrm{mm}^{2}<5$ (As per IS 875 code for M30 Grade)
> Hoop Stress at the Level of Crown

$$
\begin{aligned}
& \text { i.e, at } \theta=0^{0} \\
& f=\frac{W R_{1}}{t}\left(1-\frac{1}{1}\right)
\end{aligned}
$$

$\mathrm{f}=0.188 \mathrm{~N} / \mathrm{mm}^{2}<5$ (As per IS 875 code for M_{30} Grade)
Meridional thrust of the springing, per meter run:

$$
\begin{gathered}
T_{1}=\frac{W R_{1}}{1+\cos \theta} \\
T_{1}=28.25558 \mathrm{KN} / \mathrm{m}
\end{gathered}
$$

\therefore Meridional stress $=\frac{28288.5}{150 \times 1000}$

$$
=0.188 \mathrm{~N} / \mathrm{mm}^{2}
$$

Provide nominal reinforcement because the stresses are very small
\therefore nominal reinforcement (0.3%)
Ast $=\frac{.30}{100} \times 1000 \times 150=450 \mathrm{~mm}^{2}$
\therefore Provide $8 \mathrm{~mm} \emptyset @ 110 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Top Ring Beam

Horizontal component of T1

$$
\begin{gathered}
\mathrm{W}=\mathrm{T} 1 \operatorname{Cos} \theta \\
=28.25558 \times \cos 43.6 \\
\mathrm{~W}=20.4658 \mathrm{KN}
\end{gathered}
$$

Ring beam Hoop tension $=20.4658 \times \frac{15}{2}$

$$
\mathrm{T}=153.453 .5 \mathrm{KN}
$$

\therefore Steel required for hoop tension $=\frac{153643.5}{150}=1023.28 \mathrm{~mm}^{2}$

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139
\therefore Provide 6 bars 16 mm diameter $\left(1206.37 \mathrm{~mm}^{2}>1023\right.$ mm^{2})

Size of the Ring Beam
The area of the ring beam $=\mathrm{A} \mathrm{mm}{ }^{2}$
Equivalent concrete area $=\mathrm{A}+(\mathrm{m}-1) \mathrm{x}$ Ast (IS : 456-2000, Cl B-1.3 page no.80)
$\mathrm{A}+(\mathrm{m}-1) \mathrm{Ast}=\mathrm{A}+(9.33-1) \times 1130=\mathrm{A}+9412.9 \mathrm{~mm}^{2}$
Limiting tensile stress of the equivalent concrete area to 1.5 $\mathrm{N} / \mathrm{mm}^{2}$
$\sigma_{c t}=\frac{\mathrm{T}}{\mathrm{A}+(\mathrm{m}-1) \mathrm{Ast}} \therefore \sigma_{c t}=1.5\left(\mathrm{IS}: 456 _2000, \mathrm{Cl} \mathrm{B}-1.3\right.$ page no.80)

Area $=93778.41 \mathrm{~mm}^{2}$

Provide $250 \times 400 \mathrm{~mm}$ section

- Shear Reinforcement in the Ring Beam

Provide 2 legged stirrups 8φ (IS: 456 - 2000, Clause no - 26 .5.1.6)
$0.7 \mathrm{D}+(0.75 \times 400)=300$
2) 300 mm
3) $S v=\frac{0.87 \times \mathrm{fy} \times \mathrm{Asv}}{0.4 \times \mathrm{b}}$

Asv $=2 \times \frac{\pi}{4} \times 8^{2}=100.54 \mathrm{~mm}^{2}$
$\mathrm{Sv}=262.89 \mathrm{~mm}$
Provide $\mathrm{Sv}=250<262.89 \mathrm{~mm}$
\therefore Provide 2 legged 8φ vertical stirrups @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Fig 4: Top Ring Beam Detailing

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
> Cylindrical Wall
Intensity of Pressure at the bottom of cylindrical wall $=(4.5 \times 10000)=45000 \mathrm{~N} / m^{2}\left(\gamma_{\mathrm{w}} \mathrm{xh}\right)$

Consider 1 m bottom strip of the wall.
Hoop tension $=\frac{\mathrm{Pd}}{2}=337.500 \mathrm{KN}$
\therefore Ast $=\frac{337500}{150}=2250 \mathrm{~mm}^{2}$
Assume 12 mm diameter bars
Spacing $=\frac{\frac{\pi}{4} \times 12 \times 12 \times 1000}{2250}=50.26 \mathrm{~mm}$
\therefore Provide 12 mm dia bars @ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ near each face of cylindrical wall

Thickness of wall
$\mathrm{Ct}=\frac{\mathrm{T}}{(1000 \mathrm{t})+(\mathrm{m}-1) \mathrm{Ast}} \mathrm{N} / \mathrm{mm}^{2}<1.5$ (As per IS 875 code for M_{30} Grade)
$\mathrm{T}=\frac{\gamma \mathrm{w} \times \mathrm{h} \times \mathrm{D}}{2}=\frac{10 \times 4.5 \times 15}{2}=337.5 \mathrm{KN}$
\therefore Ast $=\frac{\pi}{4} \times 12^{2} \times 110=1028 \mathrm{~mm}^{2}$
$\therefore \quad 216.43<\mathrm{t}$
\therefore Provide thickness $\mathrm{t}=300 \mathrm{~mm}$
Thickness of the wall kept as 300 mm .
Steel in Distribution $=\frac{0.3}{100} \times(300 \times 1000)=900 \mathrm{~mm}^{2}(0.3 \%$ of gross area)

Spacing of $8 \mathrm{~mm} \varphi$ bars $==\frac{\frac{\pi}{4} \times 8 \times 8 \times 1000}{900}=55.85=55 \mathrm{~mm}$
\therefore Provide 8 mm dia bars @ $110 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ near each face.
Check for compressive stress @ the bottom of cylindrical wall.
Vertical component $\mathrm{T} 1=\mathrm{V} 1$
$\mathrm{T} 1 \sin \theta=28255.58 \times \sin 43.6^{0}$
$=19.4813 \mathrm{KN} / \mathrm{m}$
Wall Weight $=0.3 \times 4.5 \times 25000=33.750 \mathrm{KN} / \mathrm{m}$
Ring beam weight $=0.25 \times 0.4 \times 25000=25.000 \mathrm{KN} / \mathrm{m}$
Total vertical load per meter $(\text { V2 })^{\prime}=19508.3+33750+2500$

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139
$=55731.3 \mathrm{~N} / \mathrm{m}$
Compressive stress $=\frac{55731.3}{300 \times 1000}=0.185 \mathrm{~N} / \mathrm{mm}^{2}$
This stress being low when the profile of nominal vertical stress at 0.3% of gross area
\therefore Vertical steel $=\frac{0.3}{100}(300 \times 1000)=900 \mathrm{~mm}^{2}$
Spacing of $8 \mathrm{~mm} \varphi$ bars $=\frac{\frac{\pi}{4} \times 8^{2} \times 1000}{900}$
Provide of $8 \mathrm{~mm} \varphi$ steel bars @ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ near each end face.

$>$ Ring Beam Near Bottom Dome

Let T 2 is to be the thrust/meter run exerted at the junction B by the conical slab.

Resolving B vertically,
$\mathrm{T} 2 \operatorname{Sin} \alpha=\mathrm{V} 2=55.7313 \mathrm{KN} / \mathrm{m}$.
$\operatorname{Tan} \alpha=\frac{2.5}{3}=0.84$
$\alpha=39.80^{\circ}$
$\mathrm{T} 2=55731.3 \mathrm{~N} / \mathrm{m}$.
Horizontally Resolving at B,
$\mathrm{H}_{2}=\mathrm{T}_{2} \cos \alpha=\mathrm{V}_{2} \cot \alpha$
$=\frac{55731.3}{0.833}=66.90396 \mathrm{KN} / \mathrm{m}$
The hoop tension @ ring beam B is produced by the horizontal load H2

Hoop tension due to $\mathrm{H} 2=H_{2} \times \frac{d}{2}=66903.96 \times \frac{15}{2}=$ 501779.7 N

Assume ring beam depth as 1000 mm .
Water pressure in the ring beam $=(1000 \times 4.5) \times \frac{900}{1000}=40.500$ KN/m

By the water pressure the hoop tension $=40.500 \times \frac{15}{2}=303.750$ KN

Total hoop tension $=501.779+303.750=805.529 \mathrm{KN}$
Steel for hoop tension $=\frac{805529.7}{150}=5370.198 \mathrm{~mm}^{2}$
So provide $25 \mathrm{~mm} \varphi$ bars and the number of bars required $=$

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
$\frac{5370.198}{\frac{\pi}{4} \times 25^{2}}=14$
Provide 14 bars of 25 mm dia.
Assume the area of ring beam is A .
Equivalent of concrete area $=(\mathrm{A})+(\mathrm{m}-1) \times\left(\mathrm{A}_{\mathrm{st}}\right)=\mathrm{A}+$ 57245.42

Limiting tensile stress on equivalent concrete area is to 1.5 $\mathrm{N} / \mathrm{mm}^{2}=\frac{805529.7}{A+57245.42}=1.5$
$\mathrm{A}=479774.38 \mathrm{~mm}^{2}$
\therefore Provide, $650 \mathrm{~mm} \times 900 \mathrm{~mm}$ section

Fig 5: Detailing of Ring beam at bottom dome

> Conical Slab Design

The Conical slab is to be designed for the two conditions mentioned below:

- Hoop tension

- The span bending on a sloping slab from the ring beam @ B' at the ring girder @ C.

$>$ Design for the Hoop Tension

The hoop tension is given by on the conical slab $=\frac{\mathrm{Ww}_{\mathrm{w}}+\mathrm{Ws}}{2 \pi}+$ $\frac{\mathrm{W}_{\mathrm{w}}}{2 \pi} \tan \alpha$

Where,
$\mathrm{Ww}=$ the weight of water which is resting on the conical slab. $\mathrm{Ws}=$ conical slab weight.
$\alpha=$ inclination of the conical slab compared to the horizontal.

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139

Fig 6: Dome Section Design of Tank
Water Section Area Standing on the conical slab

$$
\begin{aligned}
= & \frac{3}{2}(4.5+7.0)=17.25 \mathrm{~m}^{2} \\
& \bar{x}=\frac{(4.5 \times 3)+\left(\frac{3 \times 2}{6}\right)}{17.25}=0.9 \mathrm{~m}
\end{aligned}
$$

at the conical slab the weight of water resting on it is

$$
\begin{gathered}
\mathrm{W}_{\mathrm{w}}=\gamma_{w} \times \mathrm{A} \times 2 \pi \times((9 / 2)+\overline{\mathrm{x}}) \\
\mathrm{W}_{\mathrm{w}}=1000 \times 17.25 \times 2 \pi \times\left(\frac{9}{2}+0.9\right)
\end{gathered}
$$

$$
\mathrm{Ww}=5852.787 \mathrm{KN}
$$

Length of sloping slab $=\sqrt{3^{2}+2.5^{2}}$

$$
=3.90 \mathrm{~m}
$$

sloping slab thickness $=300 \mathrm{~mm}$.
Weight of the conical slab $(W s)=(3.9 \times 0.3 \times 25000 \times$

$$
\begin{gathered}
2 \pi) \times \frac{\left(\frac{15}{2}+\frac{9}{2}\right)}{2}=1102.6992 \mathrm{KN} \\
\therefore \text { Hoop tension }=\frac{5852787.1+1102699.021}{2 \pi}+\frac{5852787.1}{2 \pi} \times \frac{2.5}{3} \\
=1756.698 \mathrm{KN}
\end{gathered}
$$

\therefore The hoop steel in the entire section $=\frac{175669.698}{150}=11713.32$

$$
m^{2}
$$

Provide 35 no. of bars of 20 mm diameter
These total bars are distributed at both faces of conical slab.

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139
> Design for the Bending Moment
Load per one meter width of the conical slab is
$=\frac{(\mathrm{Ww}+\mathrm{Ws})}{(2 \pi \times \text { mean radian })}$
$=\frac{5852787+1102699.021}{2 \pi \times 6}$
$=183.704 \mathrm{KN}$

Maximum bending moment
$=\frac{w l^{2}}{8}=\frac{183704 \times 3 \times 3}{8}=206.667 \mathrm{KN}-\mathrm{m}$.
Axial compression $T_{2}=\frac{V_{2}}{\sin \alpha}=\frac{55731}{\sin 39.80}$

$$
T_{2}=87.064 K N
$$

Provide 20 mm dia bars @ clear covers of the spacing 25 mm .
The effective depth $=(300-25-10)=265 \mathrm{~mm}$.
Distance between the centre of section and the centre of steel
$\mathrm{X}=\left(\mathrm{d}-\frac{t}{2}\right)=265-150$
$\mathrm{X}=115 \mathrm{~mm}$
The resultant bending moment $=(\mathrm{M}+\mathrm{T} 2 \mathrm{X})$
$=206.66 \times 10^{3}+\left(87.064 \times 10^{3} \times 115\right)$
Resultant bending moment $=10219.027 \mathrm{KN}-\mathrm{mm}$
Ast $=\frac{M}{\sigma s t \times j \times d}=\frac{10219027}{190 \times 0.86 \times 265}$
$=2359.99 \mathrm{~mm}^{2}$
Spacing of 20 mm dia bar $=\frac{\frac{\pi}{4} \times 20^{2} \times 1000}{2359.99}$
$=133.118 \mathrm{~mm}$
provide 20 mm diameter bars @ $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Bottom Dome

The Span of the bottom dome $=9 \mathrm{~m}$
The Rise of the bottom dome $=2 \mathrm{~m}$
Let be R is the radius of dome $=\frac{\left(\frac{D}{2}\right)^{2}+h^{2}}{2 \times h}$
$\mathrm{R}=\frac{\left(\frac{9}{2}\right)^{2}}{(2 \times 2)}=6.0625 \mathrm{~m}$
Let angle subtended by the dome is 2θ
$\sin \theta=\frac{\left(\frac{D}{2}\right)}{R}=\frac{\left(\frac{9}{2}\right)}{6.0625}=0.75$

$$
\theta=48.6^{\circ}
$$

Thickness of dome is $=300 \mathrm{~mm}$

> Loads Calculation

The Dead load $=25000 \times 0.3=7.500 \mathrm{KN} / m^{2}$
The weight of water resting on bottom dome is

$$
=\gamma_{w}\left[\frac{\pi}{4} \times d^{2} \times h-\frac{\pi h_{c}}{3}\right]\left(3 R-h_{c}\right)
$$

$=1000\left[\frac{\pi}{4} \times 9^{2} \times 7-\left(\frac{\pi \times 2}{3}\right)(3 \times 6.0625-2)\right]$
$=4114.207 \mathrm{KN}$
Area of the dome surface $=2 \pi \times \mathrm{R} \times \mathrm{h}=2 \pi \times 6.0625 \times 2=$ $76.18 \mathrm{~m}^{2}$.

Load intensity due to the weight of water $=\frac{4114207.5}{76.1836}$
$=54.003 \mathrm{KN} / m^{2}$
The total load intensity $=54003.8+7500=61.503 \mathrm{KN} / \mathrm{m}^{2}$
Meridional thrust $=\frac{W R}{1+\cos \theta}$
$=\frac{61503 \times 6.0625}{\left(1+\cos 48.60^{\circ}\right)}=224.438 \mathrm{KN} / \mathrm{m}$
The Meridional compressive stress $=\left(\frac{224438.25}{300 \times 1000}\right)$
$=0.75 \mathrm{~N} / \mathrm{mm}^{2}$
The hoop stress $=\frac{W R}{t}\left(\cos \theta-\frac{1}{1+\cos \theta}\right)$
$=\frac{61503.8 \times 6.6025}{0.3}\left(\cos 48.60^{\circ}-\frac{1}{1+\cos 48.60^{\circ}}\right)$
$=0.073 \mathrm{~N} / \mathrm{mm}^{2}$
The hoop stress @ crown, i.e. at θ is 0°
Maximum hoop stress is $=\left(\frac{W R}{t}\right)\left(\cos \theta-\frac{1}{1+\cos \theta}\right)$
$=\frac{61503.8 \times 6.6025}{0.3}\left((1)-\frac{1}{2}\right)$

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
$=0.621 \mathrm{~N} / \mathrm{mm}^{2}$
So provide nominal reinforcement of 0.3% of steel (stresses are low)

Provide 8 mm bars @ 100 mm of spacing.

\rightarrow Circular Girder

The total load is calculated on the circular girder is: -
Weight of water, $w_{1}=$ the weight of water on the (conical slab + dome)
$=5852787+4114207.5$
$=9966994.5 \mathrm{~N}$
$=9966.9945 \mathrm{KN} \quad\left(\mathrm{w}_{1}\right)$
Weight of the top dome and the side wall, $w_{2}=V_{2} \times 2 \pi \times \frac{D}{2}$
$=55758 \times 2 \pi \times \frac{15}{2}$
$=2627.5338 \mathrm{KN} \quad\left(\mathrm{w}_{2}\right)$
Weight of the ring beam at $\mathrm{B}, w_{3}=(0.65 \times 0.9 \times 25000 \times 2 \pi \times$ 4.5)
$=4133512.13 \mathrm{~N} \quad\left(\mathrm{~W}_{3}\right)$
Weight of conical wall, $w_{4}=1102.699 \mathrm{KN} \quad\left(\mathrm{w}_{4}\right)$
Weight of lower dome, $w_{5}=25000 \times 0.3 \times 76.183=571.372$
KN (w_{5})
Total load, $\mathrm{W}=w_{1}+w_{2}+w_{3}+w_{4}+w_{5}=14682.111 \mathrm{KN}$
Initially we assumed 8 number of columns for this tank so: -
Maximum negative bending moment $=(0.0083 \mathrm{Wr})=(0.0083)$
$\times(1468211.36 \times 4.5)$
$=548.376 \mathrm{KN}-\mathrm{m}$
Maximum positive bending moment $=(0.00416 \mathrm{Wr})=$ $(0.00416) \times(1468211.36 \times 4.5)$
$=274.849 \mathrm{KN}-\mathrm{m}$
Max. Torsion $=0.0006 \mathrm{Wr}=0.0006 \times 14682111.36 \times 4.5$
$=39.641 \mathrm{KN}-\mathrm{m}$
Shear force at support $=\frac{W}{2 \times \text { Number of columns }}$
$=\frac{14682111.36}{2 \times 8}=917.631 \mathrm{KN}$

Support Section Design

Equating the B.M at support and the moment of resistance

$$
0.913 b d^{2}=M_{\max }
$$

$\therefore \mathrm{d}=960 \mathrm{~mm}$
The overall depth of the beam $=985 \mathrm{~mm}$

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139
The Actual effective depth is $=960 \mathrm{~mm}[(985-25)(25 \mathrm{~mm}=$ clear cover)]

The Equivalent shear force is $=\mathrm{Se}=\mathrm{S}+1.6 \times \frac{T}{b}$
$=917631+1.6 \times \frac{39641.7 \times 10^{3}}{650}$
$=1015.210 \mathrm{KN}$
Equivalent nominal shear stress

$$
\begin{gathered}
\tau_{v c}=\frac{s_{e}}{b d}=\frac{1015210.569}{650 \times 960} \\
\tau_{v c}=1.626 \mathrm{~N} / \mathrm{mm}^{2}
\end{gathered}
$$

Maximum shear stress $\tau \max >\tau \mathrm{v}$
$\tau \max =2.2 \mathrm{~N} / \mathrm{mm}^{2}$ (for the mix of M_{30} grade of the concrete as per IS : 456-2000)
\therefore Hence it is safe.
So Provide the longitudinal and the transverse reinforcement according to the (B-6.4 of (IS : 456-2000)

- The Longitudinal Reinforcement
$\mathrm{Me}=(\mathrm{M}+\mathrm{M} 1)$
$\mathrm{M} 1=\frac{T\left(1+\frac{D}{b}\right)}{1.7}$
$=\frac{39641.7 \times 10^{3}\left(1+\frac{985}{650}\right)}{1.7}$
$=58655366.06 \mathrm{~N}-\mathrm{mm}$

$$
A_{s t}=\frac{M}{\sigma_{s t} \times j \times d}
$$

$=\frac{548376.85 \times 1000}{(230 \times 0.9 \times 960)}=2760 \mathrm{~mm}^{2}$
Provide 14 number of bars of 16 mm Ø ($\left.2814.86 \mathrm{~mm}^{2}\right)$

- Transverse Reinforcement
$\mathrm{Asv}=\frac{\mathrm{T} \times \mathrm{Sv}}{\mathrm{bl} \times \mathrm{d} 1 \times \sigma \mathrm{sv}}+\frac{\mathrm{V} \times \mathrm{Sv}}{2 \mathrm{~s} \times \mathrm{d} 1 \times \sigma \mathrm{sv}}$
Distance b / w centers of the corner bars which is parallel to the width is
$\mathrm{b} 1=650-(2 \times 40)=570 \mathrm{~mm}$
The distance b / w centers of the corner bars parallel to the depth is

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
$\mathrm{d} 1=985-2 \times 40=905 \mathrm{~mm}$

Fig 7: Reinforcement detailing of the girder

- Area Section of Stirrups

Asv $=\left[\frac{39641.7 \times 10^{3}}{570 \times 905 \times 230}+\frac{1015210.5}{2.5 \times 905 \times 230}\right] S_{v}$
Provide 4 legged 10 mm dia stirrups.
Asv $=4 \times \frac{\pi}{4} \times 10^{2}=316 \mathrm{~mm}^{2}$
$\mathrm{Sv}=138 \mathrm{~mm}$
Provide, $\mathrm{Sv}=100 \mathrm{~mm}$
Transverse reinforcement shall not be less than $\frac{\left(\tau_{v c}-\tau_{c}\right) b s_{v}}{\sigma_{s v}}$
$315=\frac{(1.46-0.3) \times 650}{230} \times s_{v}$

$$
s_{v}=83 \mathrm{~mm}
$$

\therefore Provide 80 mm of spacing (<83mm)

- Steel for the Sagging Moment

$$
A_{s t}=\frac{M}{\sigma_{s t} \times j \times d}
$$

$=\frac{274849.12 \times 10^{3}}{230 \times 0.9 \times 960}$
$=1383.09=1400 \mathrm{~mm}^{2}$
So Provide 8 numbers of 16 mm diameter

$$
A_{s t}=1608 \mathrm{~mm}^{2}
$$

- Hoop Stress
$T_{c}=$ Thrust exerted by conical slab on the girder.

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139
$\left(T_{c} \operatorname{Sin} \alpha \times 2 \pi \mathrm{r}\right)=\left(\mathrm{W}_{\mathrm{w}}+\mathrm{Ws}+\right.$ weight of upper dome and the cylindrical wall).
$T_{c} \sin \alpha \times 2 \pi \mathrm{r}=5852787+2627533.84+413512.133$
$=8893.83284 \mathrm{KN}$
$\left(\mathrm{Tc} \sin 33.69^{\circ}\right) \times 2 \pi \times 4.5$
$=8893.83284 \mathrm{KN}$
The Horizontal component of Tc is $=567073.023 \times \cos 33.69^{\circ}$,

$$
H_{1}=471.8336 K N
$$

Horizontal component due to dome $T^{\prime}=224438.25 \times \cos 48.60^{\circ}$
$\mathrm{H} 2=148.432677 \mathrm{KN}$
\therefore Net Horizontal force $=\mathrm{H} 1-\mathrm{H} 2$
$=323.410 \mathrm{KN}$
\therefore Hoop force $=323410 \times 4.5=1455.345 \mathrm{KN}$
Hoop compressive stress is $=\frac{1455345}{650 \times 985}=2.273 \mathrm{~N} / \mathrm{mm}^{2}$

> Columns

Columns are should be designed by the direct loads coming upon them and the Bending moments are caused by wind load.

The Vertical load on the one column at top $=\frac{14682111.36}{8}$ $=1835.263 \mathrm{KN}$

Let α be the inclination of column with the vertical.
$\tan \alpha=\frac{1}{12}, \alpha=4.76^{\circ}$
$\sin \alpha=(0.83) ;$ and $\cos \alpha=0.99$
The Actual length of the column is $=1 \mathrm{sec} \alpha=12.04 \mathrm{~m}$
Providing the diameter of the colun is 500 mm .
Weight of column $($ dead load $)=\frac{\pi}{4} \times 0.5^{2} \times 12.04 \times 25000=$ 59.102 KN

Total vertical load $=1835263.9+59102 \mathrm{~N}$
$=1894.365 \mathrm{KN}$
\therefore Corresponding axis load $=\frac{1894365.9}{0.995}$
$=1903.885 \mathrm{KN}$
Weight of water in the tank is $=9966.994 \mathrm{KN}$ or 9966994.50 N

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
Weight transmitted to the one column is $=\frac{9966994.5}{8}=1245.875$ KN

Vertical load in one column when the tank is totally empty in condition $=1894365.9-1245874.3$
$=648.492 \mathrm{KN}$
\therefore Corresponding axial load $=\frac{648491.58}{0.996}$
$=651.095 \mathrm{KN}$
By Ignoring the wind load effect on column if the steel requirement is A_{sc}

Then the A_{sc}
$\mathrm{C}(\mathrm{A}-\mathrm{Asc})+\mathrm{Asc}=1903885.347$

$$
8\left(\frac{\pi}{4} \times\right)+190 \times A_{s c}=1903885.347
$$

$A_{s c}=1440 \mathrm{~mm}^{2}$
Minimum Requirement of steel $=0.8 \%$
$=\frac{0.8}{100} \times\left(\frac{\pi}{4} \times 500^{2}\right)$
$=1571 \mathrm{~mm}^{2}$
Provide 7 number of bars of 20 mm diameter $=2199 \mathrm{~mm}^{2}$
(More of the steel has been subjected because the column is subjected to the bending moment caused by Wind load)

The Staging And Gravity Load
The Height of the column $=12.04 \mathrm{~m}$
No. of column is $=8$, Diameter of the column $=500 \mathrm{~mm}$
Number of the braces is $=4$, Size of the braces $=300 \times 500$ mm

> The Gravity Loads

- From the Container

When tank is in full condition $=14108.730 \mathrm{KN}$
When tank is in empty $=4663.689 \mathrm{KN}$

- The weight of column is
$=8 \times \frac{\pi}{4} \times 0.5^{2} \times 12.04 \times 25=472.809 \mathrm{KN}$

- The Weight of Braces

The clear length of braces b / w two column $=2 \times \frac{(10.5)}{2} \times$ $\sin 22.5^{\circ}-0.5$ $=3.519 \mathrm{~m}$

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139
Weight of braces is $=(3.519 \times 0.3 \times 25 \times 0.5 \times 4 \times 8)=422.160$ KN

Total weight of the staging $=472.8097+422.160$ $=894.970 \mathrm{KN}$

- Lateral Forces Analysis

The base shear $=\mathrm{V}=\sqrt{V i^{2}+V c^{2}}$
$\mathrm{V}_{\mathrm{i}}=\left(\mathrm{A}_{\mathrm{n}}\right) \mathrm{i}\left(\mathrm{m}_{\mathrm{i}+} \mathrm{m}_{\mathrm{s}}\right)$
$\mathrm{A}_{\mathrm{h}}=\frac{Z}{2} \times \frac{I}{R} \times \frac{S a}{g}$

- Impulsive Mode:
$\frac{h i}{h}=0.35$ (from fig (2) (a) of IS 1893 part-2)
$\frac{m i}{m}=0.325$
$\mathrm{Z}=0.16=$ III as per 1893 part -1)
$\mathrm{I}=1.5$ (Drinking water tanks IS 1893 part II)
$\mathrm{R}=2.5$ (Table no. 2 of IS 1893 part II)
$\frac{s a}{g}=$ The Average response acceleration coefficient
$\mathrm{H}=4.5 \mathrm{~m}, \mathrm{D}=15 \mathrm{~m}$
$\mathrm{T}_{\mathrm{i}}=2 \pi \sqrt{ }\left(\frac{\mathrm{mi}+\mathrm{ms}}{\mathrm{ks}}\right)$
$m_{s}=1 / 3$ of staging and the mass of empty container
$\mathrm{k}_{\mathrm{s}}=$ stiffness of staging in lateral direction
$\mathrm{K}=\frac{n(12 E I)}{\sum j 3}$
$\mathrm{I}=\frac{\pi}{64} \times 550^{4}=4.4910 \times 10^{9} \mathrm{~mm}^{4}$
$\mathrm{E}=5000 \sqrt{f c k}$
$=5000 \sqrt{30}$
$=2.7386 \times 10^{4} \mathrm{Mpa}$
$K=\frac{8 \times 12 \times 2.7386 \times 10^{4} \times 4.491 \times 10^{9}}{4 \times 3.01 \times 10^{9}}$
$\mathrm{K}=1.0826 \times 10^{5} \mathrm{~N} / \mathrm{mm}$
$\mathrm{T}_{\mathrm{i}}=2 \pi \sqrt{ }\left(\frac{9966.99 \times 10^{3} \mathrm{~ms}}{k s}\right)$

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
$\mathrm{m}_{\mathrm{s}}=4663.689+\frac{1}{3} \times 894.970$
$\mathrm{m}_{\mathrm{s}}=4692.012$
$\mathrm{T}_{\mathrm{i}}=2 \pi \sqrt{ }\left(\frac{9966.99 \times 10^{3}+4692.012 \times 10^{3}}{1.0826 \times 105}\right)$
$\mathrm{T}_{\mathrm{i}}=2.33 \mathrm{sec}$
$\frac{s a}{g}$ Value is taken from fig for hard soil (IS 1893 part-1)
$\frac{s a}{g}=\frac{1}{T}=\frac{1}{2.33}(0.4<\mathrm{T}>0.4)$
$\frac{s a}{g}=0.429$
$\mathrm{A}_{\mathrm{h}}=\frac{0.16}{2} \mathrm{x} \frac{1.5}{2.5} \times 0.429$
$\mathrm{A}_{\mathrm{h}}=0.0206$
$\mathrm{V}_{\mathrm{i}}=0.0206(3239.25+4982.012) \times 9.81$
$\mathrm{V}_{\mathrm{i}}=168.946 \mathrm{KN}$

- Convective Mode:
$\frac{h i}{h}=0.560$
$\frac{m i}{m}=0.610($ from fig 2(b) of IS 1893 part 2)
$\mathrm{Tc}=\operatorname{Cc} \sqrt{ }\left(\frac{\mathrm{D}}{\gamma}\right)$
$\frac{h}{D}=\frac{4.5}{15}=0.3 \quad($ from fig 5 of IS 1893 part-2)
$\mathrm{Cc}=4, \mathrm{D}=15 \mathrm{~m}$
$=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{Tc}=4 \sqrt{ }\left(\frac{15}{1000}\right)$
$\mathrm{Tc}=0.489$
$\frac{s a}{g}=\frac{1}{T}=(0.4<\mathrm{T}>0.4)$
$=\frac{1}{2.33}=2.0412$
$\mathrm{A}_{\mathrm{h}}=\frac{0.16}{2} \times \frac{1.5}{2.5} \times 2.0412$
$\mathrm{Vc}=\left(\mathrm{A}_{\mathrm{hc}}\right)\left(\mathrm{m}_{\mathrm{c}}\right) \mathrm{g}$
$\mathrm{m}_{\mathrm{c}}=$ convective mass of liquid

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139
$\mathrm{Vc}=0.0979 \times 6079.86 \times 9.81$
$\mathrm{Vc}=595.21 \mathrm{KN}$
$V=\sqrt{168.946^{2}+595.21^{2}}$
$\mathrm{V}=618.730 \mathrm{KN}$
$\mathrm{V}_{\mathrm{i}}=168.946 \times 10^{3} \mathrm{~N}$
$\mathrm{Vc}=595.21 \times 10^{3} \mathrm{~N}$
$\mathrm{V}=618.730 \times 10^{3} \mathrm{~N}$
Take shear force for column for impulsive mode
Shear force for column $=\frac{168946.23}{8}$
$=211.182 \mathrm{KN}$
Maximum bending moment for the column $=211.182 \times \frac{3.01}{2}$
$=317.829 \mathrm{KN}-\mathrm{m}$
$>$ Analysis of Wind Forces in Tank
Terrain category - 2
The type of the structure - class A
The Basic wind speed of North to the East Indian, $\mathrm{V}_{\mathrm{b}}=50$ $\mathrm{m} / \mathrm{sec}$ or $180 \mathrm{~km} / \mathrm{hr}$

The Design wind speed is $\mathrm{VZ}=\mathrm{V}_{\mathrm{b}} \mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}$
The Rise coefficient $\mathrm{K} 1=0.9$; taken from the table -1 of IS: 875-1987 part - 3

The Terrain height factor is $\mathrm{K} 2=1,124$; this is from table -2 of IS: 875-1987 part-3

Topography factor is K3 $=1$; for the slope of <30, (it is taken from cl.5...3.1of IS: 875-1987 part - 3)

Design wind speed is $(\mathrm{Vz})=50 \times 1 \times 0.9 \times 1.124=50.58 \mathrm{~m} / \mathrm{sec}$
The Design wind pressure is $\mathrm{Pz}=(0.6 \times \mathrm{V})=1535 \mathrm{~N} / \mathrm{m}^{2}$
Reduction factor is taken as 0.7

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165

Fig 8: Wind Force Analysis in the Column
Now the wind force on the top of the dome and cylindrical walls is

$$
=\left(4.5+\frac{3}{2}\right) \times 15.6 \times 1535 \times 0.7
$$

$=100.573 \mathrm{KN}$
Wind force Acting at the 16.9 meters above the base.
The Wind force acting on the circular wall $=\left(\frac{15.6+10.5}{2}\right) \times 2 \times$ $1535 \times 0.7=28.045 \mathrm{KN}$

Acting @ 13.04 meters above the base
The wind force acting on the circular girder $=10.5 \times 0.905 \times$ $1500 \times 0.7=9.978 K N$

Acting @ 12.04meters above the base of tank
The Wind force acting on column and the braces is $=0.7 \times$ $(12.04 \times 0.5 \times 5)+(7 \times 10.5) \times 1535$
$=71.831 \mathrm{KN}$
Acting at 6.02 meters above the base
The total moment of the wind pressure about the base is

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139

$$
\begin{aligned}
& =(16.9 \times 96383)+(13.04 \times 28045)+(12.04 \times 9978)+ \\
& (6.02 \times 71831) \\
& =26179.578 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

due to wind load the Vertical load on any column $=\frac{M X}{\Sigma X^{2}}$

$$
\Sigma X^{2}=2 r^{2}+4\left(r \sin \frac{\pi}{4}\right)^{2}=2 \times 5.5^{2}+4\left(5.5 \sin 45^{\circ}\right)
$$

Whereas
$\mathrm{r}=$ radius of the column circle $=5.5 \mathrm{~m}$

$$
\Sigma X^{2}=121 \mathrm{~m}^{2}
$$

The maximum wind force is in most leeward and the most of windward side
$=\frac{2617951.789 \times 5.5}{121}=118.997 \mathrm{KN}$
Maximum wind load in the column marked as no. 5
$=\frac{2617951.789 \times 5.5}{121} \times \frac{5.5}{\sqrt{2}}=462.792 \mathrm{KN}$
Consider the column 1 as windward
Vertical load due to the load and wind load $=1894.3659+$ $118.997=2013.362 \mathrm{KN}$

Corresponding axial load $=\frac{201336.29}{0.996}=2021.448 \mathrm{KN}$
Since the columns are inclined to the horizontal component of the axial force caused by wind

This action reduces the horizontal shear in the column.
So Horizontal component of the axial force caused by wind action is
$=2 \times 118997 \times(0.0996+4) \times 462792 \times(0.0996) \times \frac{1}{\sqrt{2}}=$ 130.397 KN
\therefore Actual horizontal force at the base $=(100573.2+28045+$ $9978+71831)-13397.45$
$=197.029 \mathrm{KN}$
\therefore Horizontal shear per each column is $=\frac{197029.75}{8}=$ 24.62871 KN
\therefore Bending moment maximum for the column is $=24628.71 \times$ $\frac{3.01}{2}=37.066 \mathrm{KN}-\mathrm{m}$

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
The effect of wind load is less than the seismic loads so;
The design staging is fully governs by seismic forces.
> The Column Section Analysis
Radius of the column circle $=5.5 \mathrm{~m}$
The Axial force in the column due to gravity load when tank is full $=15003.700 \mathrm{KN}$

The overturning moment when the tank is full $=16.07 \times$ $145.8714=2344.154 \mathrm{KN}-\mathrm{m}$

The Maximum axial force on remotest column staging,
When the tank is full $=\frac{15003700}{8} \pm \frac{2344154}{\Sigma(\mathrm{x} \times \mathrm{x})} \times R$
Where, $\Sigma X^{2}=2 R^{2}+4\left(r \sin \frac{\pi}{4}\right)^{2}=121$
$=\frac{15003700}{8} \pm \frac{2344154}{121} \times 5.5=1982.015 \mathrm{KN}$
$=\frac{19820015}{0.995}=1989.975 \mathrm{KN}$
Provide 9 no.s of 20 mm diameter, and an effective cover 50 mm.

Area of the steel, (Ast) $=9 \times \frac{\pi}{4} \times 20^{2}=2828 \mathrm{~mm}^{2}$
Equivalent concrete area $=\frac{\pi}{4} \times 500^{2}+12.33 \times 2828=$ $231219 \mathrm{~mm}^{2}$

Polar moment of inertia of the equivalent concrete section is

$$
=\frac{\pi d^{4}}{64}+A_{s t}(m-1) r^{2}\left(\frac{n}{2}\right)
$$

$=\frac{\pi \times 500^{4}}{64}+2828 \times(13.33-1) \times(250-150)^{2} \times\left(\frac{9}{2}\right)=$ $9.34 \times 10^{9} \mathrm{~mm}^{4}$

Therefore, the Equivalent polar moment of inertia about a diameter of circle $=9.34 \times 10^{9} \mathrm{~mm}^{4}$

The Direct stress in concrete section $=\frac{1989975}{231519}=8.61 \mathrm{~N} / \mathrm{mm}^{2}$
The Bending stress in the concrete section is $=\frac{228270.4}{9.34 \times 10^{9}} \times 250 \times$ $1000=6.11 \mathrm{~N} / \mathrm{mm}^{2}$

The designed Factored load, $\mathrm{Pu}=1.5 \times 1982015$
$=2973.0225 \times 10^{3} \mathrm{~N}$
$\mathrm{Mu}=1.5 \times 228170.400=342.405 \mathrm{KN}-\mathrm{m}$

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139
Dimensionless parameter for seismic forces,

$$
\begin{gathered}
\frac{P_{u}}{f_{c k} D^{2}}=\frac{2973022.5}{30 \times 500 \times 500}=0.396 \\
\frac{M_{u}}{f_{c k} D^{3}}=\frac{342405.5}{30 \times 500^{3}}=0.088
\end{gathered}
$$

From SP:16, chart-55,

$$
\frac{P}{f_{c k}}=\frac{0.12}{0.4}=0.048
$$

$\mathrm{P}=30 \times 0.048=1.44 \%$
Requirement of the steel $=\frac{1.44}{100} \times \frac{\pi}{4} \times 500^{2}=2828 \mathrm{~mm} 2$
Provide 9 no. of bars 20 mm diameter at an effective cover of 50 mm .

Fig 9: Reinforcement Detailing of the Column Section

> Braces Design

Consider the braces, say the base is BC

Fig 10: The Wind Pressure Acting on the Brace Beam AB

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
For the maximum B.M. condition for the brace BC, the seismic force should act normal to an adjoining of brace beam AB.

Moment in the brace $\mathrm{BC}=$ moment of the column $\times\left(\sec 45^{\circ}\right)$
$=317829.4 \times \sqrt{ } 2=449.478 \mathrm{KN}-\mathrm{m}$
Providing the section of $(300 \times 500) \mathrm{mm}$ and design it as a doubly reinforcement beam with the equal steel @ top and bottom,

So Asc $=$ Ast $=\frac{449.478 \times 1000}{220 \times 420}=4846.48 \mathrm{~mm}^{2}$
Provide 6 no.of bars 20mm dia. @ top and equal amount of steel @ bottom.

Brace beam Shear force $=\frac{\text { B.M for Brace }}{0.5 \times \text { Spam of Brace }}$
$=\frac{449478}{0.5 \times 3.518}=255.530 \mathrm{KN}$
Therefore, Nominal shear stress, $t_{v}=\frac{s}{b d}=\frac{255530.41}{300 \times 500}=$ $170 \mathrm{~N} / \mathrm{mm}^{2}<1.8 \mathrm{~N} / \mathrm{mm}^{2}$

Hence this section is adequate with the shear reinforcement.
So, provide 4-legged 8 mm dia stirrups @ $160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

Foundation Design for Tank

Total load in the columns when tank is in full condition $=$ $1894365 \times 8=15154.927 \mathrm{KN}$

The Approximate weight of the foundation is taken as (10% of column load) $=1515.4927 \mathrm{KN}$

The total loads $=16670.420 \mathrm{KN}$ or 16670420.235 N
Safe bearing capacity of soil $=112.815 \mathrm{KN} / \mathrm{m}^{2}$
The foundation area $=\frac{16670419.92}{112815}=147.76 \mathrm{~m}^{2}$
Let us provide 8 m inner dia and 16 m outer dia for the raft foundation.

Therefore, the area of footing $=\frac{\pi}{4}\left(16^{2}-8^{2}\right)=150.802 m^{2}$
Therefore, the net upward pressure intensity is $=\frac{15154927.2}{150.802}=$ $100496.86 \mathrm{~N} / \mathrm{mm}^{2}$
$=100.496 \mathrm{KN} / m^{2}<112.815 \mathrm{KN} / m^{2}$

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139

$>$ Circular Girder Design

Maximum -Ve B.M. at the centre $=(0.00416) \times r \times w$
$=0.00416 \times 15154927.5 \times 5.5=346.744 \mathrm{KN}-\mathrm{m}$
Maximum + Ve B.M. @ support $=0.0083 \times \mathrm{r} \times$ w
$=0.0083 \times 15154927.2 \times 5.5=691.823 \mathrm{KN}-\mathrm{m}$
The maximum torsion is $=0.0083 \times \mathrm{W} \times \mathrm{r}$
$=0.0083 \times 5.5 \times 15154927.2=50.012 \mathrm{KN}-\mathrm{m}$
Maximum S.F. at support $=\frac{15154927.2}{2 \times 8}=947.183 \mathrm{KN}$

Design of the Support Section

The Moment of resistance $=$ the maximum bending moment at the support
$0.913 \mathrm{bd}^{2}=691822.4$
$\mathrm{b} d^{2}=757749.3 \times 1000$
$\mathrm{d}=1000 \mathrm{~mm} ; \mathrm{b}=750 \mathrm{~mm}$;
Effective depth is $=(1000-60)=940 \mathrm{~mm}$.
The effective Shear Force is $\mathrm{Se}=\mathrm{S}+1.6 \frac{T}{b}=915007+1.6 \times$ $\frac{48312 \times 1000}{750}=1018.073 \mathrm{KN}$
Equivalent nominal shear stress, que $=\frac{s_{e}}{b d}=\frac{1018072.6}{750 \times 940}=$ $1.44 \mathrm{~N} / \mathrm{mm}^{2}$
For M30 mix of concrete, the tc max is taken as $=2.2$
N / m^{2} (from the code of IS 456:2000 table-24)

- The Longitudinal Reinforcement of Support Section

Equivalent B.M. $=\mathrm{Me} 1=(\mathrm{M}+\mathrm{Mt})$
$\mathrm{Mt}=\mathrm{T} \times \frac{1+\frac{D}{b}}{1.7}=\frac{48312000}{1.7} \times\left[1+\frac{1000}{750}\right]$
$=66310.588 \mathrm{KN}-\mathrm{m}$
$\mathrm{Me} 1=668321500+66310588=734632.088 \mathrm{KN}-\mathrm{m}$
Ast $=\frac{734632088}{230 \times 0.9 \times 900}=3775 \mathrm{~mm}^{2}$
So, provide 14 bars of $20 \mathrm{~mm} \emptyset\left(4400 \mathrm{~mm}^{2}\right)$

- The Transverse Reinforcement of Support Section

Distance between the centers of corner steel bars parallel to the width $=\mathrm{b} 1=750-(2 \times 40)=670 \mathrm{~mm}$

The Distance between the centers of corner steel bars parallel to the depth $=\mathrm{d} 1=1000-(2 \times 40)=920 \mathrm{~mm}$

Area of stirrups $=\mathrm{Aw}=\frac{T P}{b_{1} \times d_{1} \times t_{w}}+\frac{S P}{2.5 \times d_{1} \times t_{w}}$
Providing 4-legged $10 \mathrm{~mm} \emptyset$ stirrups, $\mathrm{Aw}=4 \times 79=316 \mathrm{~mm}^{2}$

$$
316=\left[\frac{48312000}{250 \times 920 \times 670}+\frac{915007}{230 \times 920 \times 2.5}\right] \times P
$$

Volume 9, Issue 3, March - 2024
ISSN No:-2456-2165
$316=[1.73+0.34] \mathrm{P}$
$\mathrm{P}=152.6 \mathrm{~mm}$ so provide $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}(<152.6 \mathrm{~mm})$
Steel for the hogging moment $=\frac{334966.5 \times 1000}{230 \times 0.9 \times 940}=1722 \mathrm{~mm}^{2}$
Provide 6 no. of bars $20 \mathrm{~mm} \emptyset\left(1885 \mathrm{~mm}^{2}\right)$.
> Design of the Bottom Slab
The cantilever projection beyond the face of beam $=\frac{1.5-0.5}{2}=$ 0.5 m

Max bending moment for 1 meter width of strip $=174.225 \times$ $\frac{0.5 \times 0.5}{2}=21.778 \mathrm{KN}-\mathrm{m}$

Equating the moment of resistance to the beam section is

$$
0.913 \times 1000 \times d^{2}=21778125
$$

depth $(\mathrm{d})=154 \mathrm{~mm}$
provide $\mathrm{d}=200 \mathrm{~mm}$.
So the effective depth is $=200-40=160 \mathrm{~mm}(40 \mathrm{~mm}$ clear cover)

Ast $=\frac{21778125}{230 \times 0.9 \times 160}=658 \mathrm{~mm}^{2}$

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/IJISRT24MAR2139
Spacing of 12 mm diameter bars $=\frac{113 \times 1000}{658}=172 \mathrm{~mm}$
provide $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ (<172mm)
Distribution steel $=\frac{0.12}{100} \times 200 \times 1000=240 \mathrm{~mm}^{2}$
Provide 8 mm diameter bars @ $200 \mathrm{~m} \mathrm{c} / \mathrm{c}$.
$>$ Check for the Sliding
When the tank is empty the total load acting on the foundation
$=15154927.2-9966994.5$
$=5187.933 \mathrm{KN}$
Horizontal force acting on the base $=1166.9713 \mathrm{KN}$
Assuming the co-efficient of friction is 0.5 .
So the factor of safety against sliding is $=\frac{0.5 \times 5187932}{1166971.3}=2.22>$ 2.0 Hence, OK.
> Check for Overturning
Factor of safety against overturning $=\frac{5187932.7 \times 8}{16.07 \times 1166971.3}=2.21>$ 2.0

Hence the check is ok so the tank is safe against overturning.

Fig 11: Intze Tank Reinforcement Detailing

V. STAAD PRO RESULTS

A. The Parameters Applied in Staad Pro Design

> Geometric Parameters for Frame Staging Tank:

- Top Dome thickness is 150 mm
- Top Ring Beam size 250x400 mm
- Cylindrical Wall thickness 300 mm
- Bottom ring beam size 650 x 900 mm
- Conical dome thickness is 300 mm
- Bottom dome thickness is 300 mm
- Size of circular ring beam 650 x 985 mm
- Column diameter is 500 mm
- Bracing size is $300 \times 500 \mathrm{~mm}$

Fig 12: Node Diagram of Intze Tank

Fig 13: Wire Frame Structure of Intze Tank

Fig 14: Assigning of Circular Column

Fig 15: Assigning of braces

Fig 16: Assigning of Ring Girder

Fig 17: Assigning of Bottom Ring Beam

Fig 18: Assigning of Top Ring Beam

Fig 19: Whole Structure of Intze Tank with Assigned Elements

Fig 20: 3D Rendering View

Fig 21: Analysis Results of Tank

Fig 22: Deflections of Tank

Fig 23: Moments and Deflections in Earthquake Condition

Table 1: Reactions Obtained in STAAD Pro

Reactions

		Horizontal	Vertical	Horizontal	Moment		
Node	L/C	FX (kN)	$\begin{gathered} \mathrm{FY} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { FZ } \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{MX} \\ (\mathrm{kNm}) \end{gathered}$	MY (kNm)	MZ (kNm)
1	1:DL	-58,378	703,331	0,000	0,000	-0,000	-0,801
	2:LL	-3.071	37.220	-1.923	-2.920	-0.324	-0.062
	3:COMBINATIC	-61,449	740,551	-1,923	-2,920	-0,324	-0,863
8	1:DL	-41.280	703.331	41.280	-0.566	-0.000	-0.566
	2:LL	-4.105	62.517	2.185	-2.638	-0.226	0.279
	3:COMBINATIC	-45,385	765,848	43.465	-3,203	-0,227	-0,287
14	1:DL	0.000	703.331	58.378	-0.801	0.000	-0.000
	2:LL	0.000	72.299	4.967	-2.322	0.000	-0.000
	3:COMBINATIC	0,000	775,629	63,346	-3,123	0,000	-0,000
20	1:DL	41.280	703.330	41.280	-0.566	0.000	0.566
	2:LL	4.105	62.517	2.185	-2.638	0.226	-0.279
	3:COMBINATIC	45,385	765,847	43.465	-3,203	0.227	0.286
26	1:DL	58.378	703.330	0.000	0.000	-0.000	0.801
	2:LL	3.071	37.220	-1.923	-2.920	0.324	0.062
	3:COMBINATIC	61.449	740,550	-1,923	-2,920	0.324	0.863
32	1:DL	41.280	703.330	-41.280	0.566	-0.000	0.566
	2:LL	0,238	11,923	-2,158	-2.550	0,226	0,367
	3:COMBINATIC	41.518	715.253	-43.438	-1.985	0.226	0.932
38	1:DL	0.000	703.331	-58.378	0.801	-0.000	-0.000
	2:LL	0,000	2.141	-1.175	-2,198	-0,000	-0,000
	3:COMBINATIC	0.000	705.472	-59.553	-1.396	-0.000	-0.000
44	1:DL	-41.280	703.331	-41.280	0.566	0.000	-0.566
	2:LL	-0,238	11.923	-2,158	-2.550	-0,226	-0,367
	3:COMBINATIC	-41.518	715.254	-43.438	-1.984	-0.226	-0.933

Table 2: Reaction Summary Obtained in STAAD pro
Reaction Summary

			Horizontal	Vertical	Horizontal	Moment		
	Node	L/C	$\begin{gathered} \text { FX } \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { FY } \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { FZ } \\ (\mathrm{kN}) \end{gathered}$	$\underset{(\mathrm{kNm})}{\mathbf{M X}}$	$\begin{gathered} \mathbf{M Y} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} \mathbf{M Z} \\ (\mathrm{kNm}) \end{gathered}$
Max FX	26	3:COMBINATIC	61.449	740.550	-1.923	-2.920	0.324	0.863
Min FX	1	3:COMBINATIC	-61.449	740.551	-1.923	-2.920	-0.324	-0.863
Max FY	14	3:COMBINATIC	0.000	775.629	63.346	-3.123	0.000	-0.000
Min FY	38	2:LL	0.000	2.141	-1.175	-2.198	-0.000	-0.000
Max FZ	14	3:COMBINATIC	0.000	775.629	63.346	-3.123	0.000	-0.000
Min FZ	38	3:COMBINATIC	0.000	705.472	-59.553	-1.396	-0.000	-0.000
Max MX	38	1:DL	0.000	703.331	-58.378	0.801	-0.000	-0.000
Min MX	8	3:COMBINATIC	-45.385	765.848	43.465	-3.203	-0.227	-0.287
Max MY	26	2:LL	3.071	37.220	-1.923	-2.920	0.324	0.062
Min MY	1	3:COMBINATIC	-61.449	740.551	-1.923	-2.920	-0.324	-0.863
Max MZ	32	3:COMBINATIC	41.518	715.253	-43.438	-1.985	0.226	0.932
Min MZ	44	3:COMBINATIC	-41.518	715.254	-43.438	-1.984	-0.226	-0.933

B. Wind Force Acting on Tank

Table 3: Wind Force Magnitude at Different Levels

LEVEL OF TANK	WIND FORCE MAGNITUDE
$@ 16.9 \mathrm{~m}$ above the base	100.573 KN
$@ 13.04 \mathrm{~m}$ above the base	28.045 KN
$@ 12.04 \mathrm{~m}$ above the base	9.978 KN
$@ 6.02 \mathrm{~m}$ above the base	7.183

C. Comparision Between Manual Results and Staad Pro Results:

Table 4: Comparison between Manual and STAAD Design

MANUAL DESIGN RESULTS	STAAD pro RESULTS
TOP RING BEAM: $\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{~F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{~A}_{\mathrm{st}}=1026.37 \mathrm{~mm}^{2}$ Dia of bar $=16 \mathrm{~mm}$ No. of bars $=6$ Size of ring beam $=0.25 \times 0.40 \mathrm{~m}$	$\begin{gathered} \hline \text { TOP RING BEAM: } \\ \mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{~F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{~A}_{\mathrm{st}}=678.58 \mathrm{~mm}^{2} \\ \text { Diameter of bar }=12 \mathrm{~mm} \\ \text { No. of bars }=6 \\ \text { Size of ring beam }=0.25 \times 0.40 \mathrm{~m} \\ \hline \end{gathered}$
BOTTOM RING BEAM: $\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{~F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{~A}_{\mathrm{st}}=5890.48 \mathrm{~mm}^{2}$ Dia of bar $=25 \mathrm{~mm}$ No. of bars $=14$ Size of ring beam $=0.65 \times 0.90 \mathrm{~m}$	BOTTOM RING BEAM: $\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{~F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{~A}_{\mathrm{st}}=4908.738 \mathrm{~mm}^{2}$ Dia of bar $=25 \mathrm{~mm}$ No. of bars $=10$ Size of ring beam $=0.65 \times 0.90 \mathrm{~m}$
RING GIRDER: $\begin{gathered} \mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{~F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{~A}_{\mathrm{st}}=2814.86 \mathrm{~mm}^{2} \end{gathered}$ Dia of bar $=16 \mathrm{~mm}$ No. of bars $=14$ Size of ring beam $=0.65 \times 0.985 \mathrm{~m}$	RING GIRDER: $\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{A}_{\mathrm{st}}=2199.11 \mathrm{~mm}^{2}$ Dia of bar $=10 \mathrm{~mm}$ No. of bars $=28$ Size of ring beam $=0.65 \times 0.985 \mathrm{~m}$
COLUMN: $\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{A}_{\mathrm{st}}=2827.43 \mathrm{~mm}^{2}$ Dia of bar $=20 \mathrm{~mm}$ No. of bars $=9$ Size of ring column $=0.5 \mathrm{~m}$ dia	COLUMN: $\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{A}_{\mathrm{st}}=2544.69 \mathrm{~mm}^{2}$ Dia of bar $=18 \mathrm{~mm}$ No. of bars $=10$ Size of ring beam $=0.5 \mathrm{~m}$ dia
BRACE BEAM: $\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{A}_{\mathrm{st}}=1884.95 \mathrm{~mm}^{2}$ Dia of bar $=20 \mathrm{~mm}$ No. of bars $=6$ Size of ring beam $=0.3 \times 0.50 \mathrm{~m}$	BRACE BEAM: $\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{A}_{\text {st }}=628.318 \mathrm{~mm}^{2}$ Dia of bar $=10 \mathrm{~mm}$ No. of bars $=8$ Size of ring beam $=0.3 \times 0.50 \mathrm{~m}$
TOP DOME: $\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{A}_{\mathrm{st}}=8 \mathrm{~mm}$ dia $@ 110 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ $\mathrm{A}_{\mathrm{st}}=502.65 \mathrm{~mm}^{2}$ Dia of bar $=8 \mathrm{~mm}$ No. of bars $=10$ Thickness of dome $=0.150 \mathrm{~m}$	TOP DOME: $\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{A}_{\mathrm{st}}=8 \mathrm{~mm}$ dia @ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ $\mathrm{A}_{\mathrm{st}}=452.92 \mathrm{~mm}^{2}$ Dia of bar $=8 \mathrm{~mm}$ No. of bars $=9$ Thickness of dome $=0.150 \mathrm{~m}$

BOTTOM DOME:	BOTTOM DOME:
$\mathrm{F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$	$\mathrm{~F}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{~F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$	$\mathrm{~F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{~A}_{\mathrm{st}}=8 \mathrm{~mm}$ dia @ $100 \mathrm{~mm} \mathrm{c}^{2} \mathrm{c}$	$\mathrm{A}_{\mathrm{st}}=8 \mathrm{~mm} \mathrm{dia} \mathrm{@} 100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
$\mathrm{A}_{\mathrm{st}}=552.92 \mathrm{~mm}^{2}$	$\mathrm{~A}_{\mathrm{st}}=552.92 \mathrm{~mm}^{2}$
Dia of bar $=8 \mathrm{~mm}$	Dia of bar $=8 \mathrm{~mm}$
No. of bars $=11$	No. of bars $=11$
Thickness of dome $=0.30 \mathrm{~m}$	Thickness of dome $=0.30 \mathrm{~m}$

Fig 24: Top Ring Beam Detailing in Manual Design

Fig 25: Top Ring Beam Detailing in STAAD Pro

Fig 26: Bottom Ring Beam Detailing in Manual Design

STAAD.Pro Query Concrete Design

Beam no. 228
Design Code: IS-456

at 0.000
5\#25@37.500.00 To 5740.25

at 5740.251

Design Load

$\mathrm{Mz}(\mathrm{Kn}$ Met $)$	Dist.et	Load
22.750000	3.300000	3
-36.900002	0.000000	1
-36.900002	5.700000	1

Design Parameter

$\mathrm{Fy}(\mathrm{Mpa})$	500.000000
$\mathrm{Fc}(\mathrm{Mpa})$	30.000000
Depth(m)	0.900000
Width(m)	0.650000
Length(m)	5.740251

Fig 27: Bottom Ring Beam Detailing in STAAD Pro

Fig 28: Ring Girder Detailing in Manual Design

Fig 29: Ring Girder Detailing in STAAD Design

Fig 30: Brace Beam Detailing in Manual Design

Fig 31: Brace Beam Detailing in STAAD Pro Design

Fig 32: Column Detailing in Manual Design

STAAD.Pro Query Concrete Design

Beam no. 145
Design Code: IS-456

Design Load

Load	2
Location	End 1
$\mathrm{Pu}(\mathrm{Kns})$	-3.850000
Mz (Kns-Mt)	17.360001
$\mathrm{My}($ Kns-Mt $)$	0.000000

Design Results

Fy(Mpa)	500
Fc(Mpa)	30
As Reqd(mm ${ }^{2}$)	1571.000000
As (\%)	0.806000
Bar Size	12
Bar No	14

Fig 33: Column Detailing in STAAD Pro Design

VI. CONCLUSION

- Both STAAD pro and manual designs are safe against static and earthquake loading condition
- The wind force magnitude increases with the increase in height.
- All the designed elements are safe in both manual and STAAD pro design.
- The maximum value of shear force obtaining from manual design is 947.185 KN and that from the STAAD pro results is 775.629 KN .
- The percentage variation of manually calculated area of steel in ring beam and that done using STAAD pro software is 16.67%.
- The percentage difference between manual calculating an area of steel in column and plates doing it using STAAD pro software is 9.99%.
- So that we conclude the use of STAAD pro software gives more economical design as compared to manual design.

REFERENCES

[1]. I.S 456:2000, "Code of Practice for Plain and Reinforced Concrete", I.S.I., New Delhi.
[2]. I.S 875 (Part II): 1987, "Code of Practice for Imposed Load", I.S.I., New Delhi.
[3]. I.S 875 (Part II): 1987, "Code of Practice for Wind Load", I.S.I., New Delhi.
[4]. I.S 1893: 2016, "Criteria for Earthquake Resistant Design of Structures", I.S.I., New Delhi.
[5]. I.S 3370 (Part I): 2009, "Code of Practice for Concrete Structures for Storage of Liquid", I.S.I., New Delhi.
[6]. I.S 3370 (Part IV): 1967, "Code of Practice for Concrete Structures for Storage of Liquid", I.S.I., New Delhi.
[7]. $201818^{\text {th }}$ edition of S. Ramamrutham, "Design of Reinforced concrete structures", Dhanpat Rai Publications.
[8]. SP 16 (1980), "Design Aids for Reinforced Concrete to IS 456: 1978".

