
Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2188

IJISRT24MAR2188 www.ijisrt.com 2916

A Framework for Detection of Malicious Code by

Exploiting Machine Learning Techniques on

Portable Executables

Yash Gajjar*1; Vaishnavi Sharma*2; Sanskruti Bhatt*3; Dr. Maitri Jhaveri4

1,2,3,4Department of Computer Science, Gujarat University – 380009

Abstract:- Executable files coming from the internet

bring along with them many potential hazards and vul-

nerabilities in the form of malware to computer systems.

The executables can be of form raw binaries, mnemonics,

libraries, and function calls/APIs. They can misguide

many of the conventional malware detection techniques.

This paper explores the potential of Machine Learning-

based methods for malware detection problems. The

scope of the work here is currently limited to Static Anal-

ysis of Executable files. Various feature selection tech-

niques are implemented to reduce the size of the training

data. Machine learning algorithms like K-Nearest Neigh-

bors and Random Forest Classifier were trained on the

curated feature sets. The outperforming experiment re-

sult was shown by the Random Forest Classifier having

an accuracy of 99.5%. We have developed a framework

as a two-step module; in the first step, a list of features

are extracted from a given executable file, and then for

the next step, trained algorithm is integrated into the

framework which will classify whether the given executa-

ble file is malicious or not. This framework is demon-

strated in the form of a Webapp developed in Python.

Furthermore, this framework is evaluated based on its

performance on a small dataset containing 35 portable

executables (.exe) files and it is observed to be retaining

the accuracy of the trained algorithm.

Keywords:- Portable Executables (PE), Malicious Code,

Machine Learning (ML).

I. INTRODUCTION

Computers nowadays are an important part of every

sector. In this digital age, the transfer of data, information,

software, etc. between computer systems and external net-

works is a common practice that can introduce malware,
vulnerabilities, or other risks. Any program or file that pur-

posefully hurts a computer, network, or server is known as

malware or malicious software. Computer viruses, trojan

horses, ransomware, worms and spyware are a few examples

of malware. These malicious programs can steal, alter, en-

crypt, hijack, or delete sensitive data, core computing func-

tions and they can even monitor user’s computer activity.

The way malware harms the users or endpoints can vary

depending on its type, ranging from mild and harmless to

severe and catastrophic consequences.

Executable files coming from the internet bring the

highest vulnerability to any computer system. The executable
can be raw binaries, mnemonics, libraries, and API/function

calls. They can misguide many of the traditional malware

detection techniques such as Signature, Check summing,

Reduced Masks, known Plain text Cryptanalysis, Statistical

analysis, Heuristics, and Sandboxing. The next-generation

techniques include AI/Machine-Learning-Based Static Anal-

ysis, NLP-based techniques, Application Whitelisting, End-

point Detection, and Response. Machine Learning algorithms

can replace the rule-based approach of detecting malicious

code, where different algorithms can be trained on the dataset

consisting of the features of executable files. Such trained
models can classify between Legitimate and Malicious files

and can reduce the hectic work of analyzing executable files

manually. Further, these trained models can be retrained on

new datasets for better predictions of malicious files.

This paper focuses on Machine Learning based detec-

tion using Portable Executable (PE) files. Windows (both

x86 and x64) utilizes the PE file format, which serves as a

structured data container that holds the necessary information

needed for the Windows OS loader to manage the wrapped

executable code. The PE format is a file format for executa-
ble, object code, DLLs, FON font files, and core dumps. The

kind of code which are malicious is attached to PE files.

The techniques for identifying malware can be catego-

rized into static and dynamic analysis. In static analysis, exe-

cutable files are not executed but the tools and apps can be

used to get the required forensic information and the values

of its features can be extracted. While, in dynamic analysis,

the executable files are executed in a safe environment and

then observed and classified. The work here is currently lim-

ited to the Static analysis of PE files. We have developed a

framework that extracts features from portable executable
files and will then classify these files as legitimate or mali-

cious. We have applied binary classification algorithms on

labelled data in this work.

II. RELATED WORKS

(Kim et al., 2020) proposed a static analysis automation

technique using machine learning to classify malicious code.

Using variety of algorithms like Random Forest Classifier,

AdaBoost, Gaussian Naïve Bayes, Logistic Regression and

Decision Tree, they extracted and classified several distinc-
tive characteristics, including packer information, PE

https://doi.org/10.38124/ijisrt/IJISRT24MAR2188
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2188

IJISRT24MAR2188 www.ijisrt.com 2917

metadata, and hash value. (Kumar et al., 2019) proposed a

technique that uses static analysis to extract features with

lower time and resource requirements than dynamic analysis.

By combining raw and derived features based on various PE

file header field values, they have produced an integrated

feature set that has the classification accuracy of 98%. (Shijo

& Salim, 2015) have developed an integrated approach using

both static and dynamic features for malware detection and

their results show that the support vector machine (SVM)

algorithm is best equipped to classify the data. (Chaudhary,
2021) have identified the most suitable features to detect

malicious executable files using both static and dynamic

analysis techniques. A simpler and faster method to distin-

guish between malware and legitimate .exe files by analyzing

some key features from MS Windows PE headers was pro-

posed by (Liao, 2018). He also performed icon extraction to

identify malware by extracting the embedded icons such as

the prevalent or misleading. (Abdessadki & Lazaar, 2019)

extract features from the header of each file, which are then

used as input for machine learning algorithms for classifying

PE files without executing them. (Baldangombo et al., 2013)

developed a PE-Miner program to parse the PE format of the
Windows executable in their dataset. The PE Miner extracts

all PE header information, DLL names, and API function

calls inside each DLL contained in a PE file. They utilize

data mining techniques such as Information Gain and PCA

transformation, due to which the system extracts valuable

features from Windows PE files and achieves a high detec-

tion rate using machine learning and data mining concepts.

(Schultz et al., 2001) extracted the information using PE files

and proposed a framework based on ML to detect the mali-

cious PE files. The author’s dataset contained 4266 samples

from which 3265 are malicious and 1001 are benign files.

They have used three Machine Learning algorithms – Ripper,

Naïve Bayes, and Multi-Naïve Bayes out of which Multi-
Naïve Bayes had the highest accuracy and detection rate of

about 97.76%. Their framework automatically detects mali-

cious executables, significantly improving detection rates

compared to traditional methods.

III. AVAILABILITY OF DATA AND MATERIALS

The raw data was gathered from the malware security

partner of Meraz'18, the annual techno-cultural festival of IIT

Bhilai. The information extracted from several PE files in the

form of 55 features, is contained in the raw data (CSV data).

In our work, we have used two datasets namely, dataset-1
(75,502 Legitimate and 140,848 Malicious) and dataset-2

(41,323 Legitimate and 96,724 Malicious). The data is a

mixture of categorical and continuous values.

Table 1: Preview of both Datasets

IV. RESEARCH METHODOLOGY

We propose a machine learning-based model for detect-

ing malicious executable files. The problem is implemented

as a classic supervised learning problem that classifies an

input file into either of two classes, i.e., Malicious or Legiti-

mate.

A. Preprocessing and Feature Selection

Preprocessing steps include the removal of string fea-

ture ‘md5’, which does not contribute to the classifier model.
Detailed examination of the dataset reveals that out of 55

features, only a limited number of features have the infor-

mation that can differentiate between malicious and legiti-

mate files. And hence, feature selection becomes an im-

portant part of the process. We have performed feature selec-

tion by following methods:

 Correlation Coefficient Method

Correlation calculates the linear relationship between

variables. Features which are important should be highly

correlated with the target variable. Furthermore, if two varia-

bles are highly correlated then we can drop the one which has

low correlation coefficient value with the target variable, as

the model only needs one of them and the second one does

not add any information.

 Chi-Square (χ2) Method

The Chi-square (χ2) test can be used as a feature selec-

tion method when our dataset contains categorical features.

The chi-square distribution is a sampling distribution and is a

family of probability distributions based on the number of

degrees of freedom (df). A chi-square variable cannot be
negative and the area under each chi-square distribution is

equal to 1.00, or 100%. Chi-square value is calculated be-

tween each feature and the target variable. The features with

the best Chi-square values are selected according to one’s

necessity. The purpose of chi-square analysis is not to identi-

fy the exact nature of a relationship between nominal varia-

bles but to simply test whether the variables could be inde-

pendent of each other.

https://doi.org/10.38124/ijisrt/IJISRT24MAR2188
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2188

IJISRT24MAR2188 www.ijisrt.com 2918

 Gini Impurity-based Method

This approach involves assessing the reduction in Gini

impurity for each feature as it's utilized to partition the data.

The extent of this reduction is determined by the proportion

of data points influenced by the split. Features leading to

greater drops in Gini impurity are considered more signifi-

cant. To ensure that feature importance values sum up to 1,

they are normalized. The formula for calculating Gini im-

portance for a given feature Xi involves various parameters

related to the nodes and splits in the decision trees (Breiman,
1984). This implementation utilizes the scikit-learn Python

package for training and extracting feature importance from

Random Forest Classifier.

B. Classification Framework

The classification framework is built as a web applica-

tion. To build the framework, machine learning models like

Random Forest Classifier, Decision tree Classifier, K-Nearest

Neighbors, Support Vector Machine, and Gaussian Naive-

Bayes are trained on various feature sets curated based on

feature selection. These algorithms are being trained and

tested on CSV datasets. Outperforming combinations of fea-
ture sets and trained models are then wielded for further inte-

gration with the framework. The work here is split up into

two modules; the first module acts as an extractor that ex-

tracts the values of features from the portable executable

taken as input and then passes the extracted values to the

other module where the trained model is integrated for classi-

fication.

Fig 1: Flowchart of the Classification Framework

C. Experimentation

We have conducted several experiments; in the first ex-

periment, we chose to train five classifiers namely Decision

Tree Classifier, Random Forest Classifier, Gaussian Naïve

Bayes, K-Nearest Neighbors, and Support Vector Machine.

The data used for training has all the features (54 features)

except md5. The train-test split criterion is kept the same for

all the experiments conducted on dataset-1, i.e., 70% of the
data is used for training and 30% for testing. The accuracy

scores obtained by above mentioned algorithms in experi-

ment-1 are shown in Table 2.

Table 2: Accuracy Scores of Algorithms from Experiment 1

Out of all the trained models, the accuracy of KNN and

RFC is very high. Random Forest is a combination of n deci-

sion trees (n - hyperparameter) and hence we are not consid-

ering the results based on DTC. Therefore, in the succeeding

experiments, RFC and KNN are chosen, for training.

In experiment 2, the feature set used for training con-

tains 10 features selected based on the Correlation method,

and the training & testing are done on dataset 1. In experi-

ment 3, the feature set used for training has 10 features se-

lected based on χ2 -test which shows how much a nominal

feature is dependent on the targets. Here as well, dataset-1 is

used for training and testing. In experiment 4, the feature set

used for training has 12 features (top 10 from the Correlation

method and top 2 from χ2 -test). In experiment 5, the same

feature-set of experiment 4 is used but the training is done on

dataset-1 and testing is done on dataset-2. In experiment 6,
the same feature set of experiment 4 is used but dataset-1 was

balanced by under-sampling malicious class for training and

then testing is done on dataset-2. Finally, in experiment 7, an

updated feature set is curated which has 12 features (top 8

from the Correlation method and top 4 from the χ2 -test). For

training, balanced dataset-1 is used, and for testing dataset-2.

The accuracy scores of both classifiers in above mentioned

experiments are shown in the figure below.

Fig 2: Accuracy scores of RFC and KNN from Experiment 2

to Experiment 7

V. RESULTS

In the creation of the web application, the trained model
Random Forest Classifier from experiment 7 is selected

which has an accuracy of 99.50%. We selected this model for

integration in Webapp as the features used while training in

this experiment, are computationally convenient to extract

Algorithm Accuracy

Decision Tree Classifier (DTC) 98.21%

Random Forest Classifier (RFC) 98.93%

Gaussian Naïve Bayes (GNB) 65.06%

K-Nearest Neighbors (KNN) 97.71%

Support Vector Machine (SVM) 65.06%

https://doi.org/10.38124/ijisrt/IJISRT24MAR2188
http://www.ijisrt.com/

Volume 9, Issue 3, March – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAR2188

IJISRT24MAR2188 www.ijisrt.com 2919

from the raw PE file as compared to other features. The fea-

tures selected for experiment 7 and eventually for the frame-

work are shown in Table 3.

Table 3 : Updated Combined Feature Set Used in

Experiment 7 and in our Framework

VI. DISCUSSION

From the results obtained out of all the experiments, it

can be concluded that the accuracy of the model Random

Forest Classifier which is an ensemble model, is compara-
tively better which is integrated into our framework. Up until

now, the models have been tested on CSV files and hence,

the framework needs to be evaluated based on performance

on PE files. A total of 35 PE files were downloaded, among

them 16 files are legitimate, obtained from

www.exefiles.com [accessed on 12 August 2022], and 19

files are malicious, obtained from www.tekdefense.com [ac-

cessed on 12 August 2022]. The web app was able to predict

all 35 files correctly which shows that on such a small dataset

model can maintain the accuracy of 99.50%.

VII. CONCLUSION

We observe that the Machine Learning-based classifica-

tion algorithms are successfully able to classify an executable

file into malicious or legitimate. Our best model is the Ran-

dom Forest Classifier with 12 features (fusion of features

selected from Correlation and Chi-square method) having an

accuracy of 99.50% which is further integrated into our

framework. The developed framework for detecting mali-

cious files is found to be robust. Current work which focuses

on static analysis of executable files, might be applied further

to the executables of different extensions as well.

FUTURE SCOPE

The authors intend to execute the work using Deep

Learning Algorithms to have a better efficiency of the devel-

oped web application. Furthermore, this work can be

stretched for multi-class classification of malware and to the

executables of different extensions.

 Data can be Accessed through:

https://www.kaggle.com/competitions/malware-
detection/data.

ACKNOWLEDGEMENTS

The work in this paper is done on Google Colab note-

books and the authors are especially thankful to Ero Carrera

for pefile library (Carrera Ventura, 2022).

REFERENCES

[1]. Abdessadki, I., & Lazaar, S. (2019). A New Classifica-

tion Based Model for Malicious PE Files Detection. In-
ternational Journal of Computer Network and Infor-

mation Security, 11(6), 1–9.

https://doi.org/10.5815/ijcnis.2019.06.01

[2]. Baldangombo, U., Jambaljav, N., & Horng, S. (2013). a

S Tatic M Alware D Etection S Ystem U Sing. 4(4),

113–126.

[3]. Breiman, L. a. (1984). In Classification and Regression

Trees. Taylor \& Francis.

[4]. Carrera Ventura, E. (2022). pefile (2022.5.30).

https://github.com/erocarrera/pefile

[5]. Chaudhary, P. (2021). PE File-Based Malware Detec-

tion Using Machine Learning PE File-Based Malware
Detection Using. January. https://doi.org/10.1007/978-

981-15-4992-2

[6]. Kim, S., Yeom, S., Oh, H., Shin, D., & Shin, D. (2020).

Automatic malicious code classification system through

static analysis using machine learning. Symmetry,

13(1), 1–11. https://doi.org/10.3390/sym13010035

[7]. Kumar, A., Kuppusamy, K. S., & Aghila, G. (2019). A

learning model to detect maliciousness of portable exe-

cutable using integrated feature set. Journal of King

Saud University - Computer and Information Sciences,

31(2), 252–265.
https://doi.org/10.1016/j.jksuci.2017.01.003

[8]. Liao, Y. (2018). PE-Header-Based Malware Study and

Detection. 4.

[9]. Schultz, M. G., Eskin, E., Zadok, E., & Stolfo, S. J.

(2001). Data mining methods for detection of new mali-

cious executables. Proceedings of the IEEE Computer

Society Symposium on Research in Security and Priva-

cy, February 2001, 38–49.

https://doi.org/10.1109/secpri.2001.924286

[10]. Shijo, P. V., & Salim, A. (2015). Integrated static and

dynamic analysis for malware detection. Procedia

Computer Science, 46(Icict 2014), 804–811.
https://doi.org/10.1016/j.procs.2015.02.149

Feature names

Machine SectionsMeanEntropy

SizeOfOptionalHeader SectionsMaxEntropy

Characteristics SizeOfStackCommit

MajorSubsystemVersion SizeOfStackReserve

Subsystem ImageBase

DllCharacteristics CheckSum

https://doi.org/10.38124/ijisrt/IJISRT24MAR2188
http://www.ijisrt.com/
https://www.kaggle.com/competitions/malware-detection/data
https://www.kaggle.com/competitions/malware-detection/data

	B. Classification Framework
	C. Experimentation
	V. RESULTS
	VI. DISCUSSION
	VII. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

