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Abstract:- Detecting breast cancer early is crucial for 

improving patient survival rates. Using machine learning 

models to predict breast cancer holds promise for 

enhancing early detection methods. However, evaluating 

the effectiveness of these models remains challenging. 

Therefore, achieving high accuracy in cancer prediction 

is essential for improving treatment strategies and patient 

outcomes. By applying various machine learning 

algorithms to the Breast Cancer Wisconsin Diagnostic 

dataset, researchers aim to identify the most efficient 

approach for breast cancer diagnosis. They evaluate the 

performance of classifiers such as Random Forest, Naïve 

Bayes, Decision Tree (C4.5), KNN, SVM, and Logistic 

Regression, considering metrics like confusion matrix, 

accuracy, and precision. 

 

The assessment reveals that Random Forest 

outperforms other classifiers, achieving the highest 

accuracy rate of 97%. This study is conducted using the 

Anaconda environment, Python programming language, 

and Sci-Kit Learn library, ensuring replicability and 

accessibility of the findings. In summary, this study 

demonstrates the potential of machine learning 

algorithms for breast cancer prediction and highlights 

Random Forest as the most effective approach. Its 

findings contribute valuable insights to the field of breast 

cancer diagnosis and treatment. 

 
Keywords:- Machine Learning Models, Data Exploratory 

Techniques, Breast Cancer Diagnosis, Tumors 
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I. INTRODUCTION 

 

Breast cancer, a widespread issue impacting women 

globally, continues to present a significant danger to female 

health on a global scale. In 2020, breast cancer saw over 2.2 

million new cases and nearly 685,000 fatalities, ranking 

second only to lung cancer in terms of female mortality. In 

the United States alone, there were 281,550 new cases and 
43,600 female deaths attributed to breast cancer in 2021. 

Emerging from breast tissue, breast cancer develops from 

cells found within milk ducts or lobules responsible for milk 

production. These cancerous cells arise from alterations or 

mutations in DNA and RNA, which can happen 

spontaneously or due to factors like radiation, chemicals, 

aging, and cellular damage. Breast cancer is divided into 

benign and malignant tumors, with the latter being more 

severe and life-threatening. Studies suggest that about 20% of 
women with malignant tumors do not survive, highlighting 

the critical importance of early detection and swift treatment. 

Over the past few decades, there has been a rise in breast 

cancer cases globally, although advancements in screening 

and treatment have led to a decrease in mortality rates. 

Specifically, mammography screenings have played a role in 

reducing mortality by 20%, while improvements in cancer 

treatments have further boosted survival rates by 60%. The 

field of machine learning has emerged as a valuable tool in 

predicting and diagnosing various diseases, including breast 

cancer. By utilizing demographic, lifestyle, laboratory data, 

mammographic patterns, patient biopsy information, and 
even genetic data, researchers have made significant progress 

in improving early detection and prognosis. To enhance the 

accuracy and efficiency of breast cancer diagnosis, several 

machine learning algorithms such as Random Forest, Naïve 

Bayes, Decision Tree, KNN, Support Vector Machine, and 

Logistic Regression have been utilized. These algorithms, 

along with data exploration techniques, aim to classify tumors 

as benign or malignant more precisely and with reduced 

computational time. In conclusion, this research contributes 

to the progression of breast cancer diagnosis through the 

utilization of sophisticated machine learning models. It 
establishes a structure for making precise predictions and 

conducting efficient analyses of tumor characteristics. With a 

focus on enhancing both time effectiveness and diagnostic 

precision, the study seeks to elevate the standards and 

trustworthiness of breast cancer diagnosis methodologies. 

 

II. LITERATURE REVIEW 

 

Breast cancer is responsible for a significant number of 

deaths globally. Despite traditional methods for detecting 

cancer, recent technological advancements provide experts 

with numerous adaptive approaches to identifying breast 
cancer in women. These modern technologies, combined with 

various techniques in data science (DS), aid in the gathering 

and assessment of cancer-related data, facilitating the 

prediction of this deadly disease. Among these DS methods, 
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machine learning algorithms have shown promise in 

analyzing cancer-related data. For instance, a study [21] 

demonstrated that these algorithms can substantially enhance 

diagnostic accuracy. While an expert physician achieved a 

diagnostic accuracy of 79.97%, machine learning algorithms 

achieved an impressive 91.1% accuracy in predicting breast 

cancer. 

 
In recent decades, the utilization of machine learning in 

medical applications has steadily grown. However, the 

collection of patient data and the expertise of medical 

practitioners remain pivotal for diagnosis. Machine learning 

classifiers have been instrumental in minimizing human 

errors and providing thorough analysis of medical data in a 

timely manner [22]. There exists a range of machine learning 

classifiers for modeling and predicting data. In our research, 

we employed Random Forest, Naïve Bayes, Decision Tree, 

KNN, Support Vector Machine, and Logistic Regression for 

the prediction of breast cancer. 
 

In recent investigations, harmonic imaging and real-

time compounding have proven effective in enhancing the 

clarity of images and the characterization of lesions. 

Additionally, ultrasound elastography has emerged as a 

promising technique. Initial findings suggest that it can 

enhance the accuracy of ultrasound in distinguishing breast 

masses, improving both specificity and positive predictive 

value. Lesions become visible on mammography or 

ultrasound due to variations in density and acoustic resistance 

compared to the surrounding breast tissue. In their work titled 

"Breast Cancer Prediction Using Genetic Algorithm Based 
Ensemble Approach," Pragya Chauhan and Amit Swami 

propose a system indicating that predicting breast cancer 

remains an area ripe for exploration in research. 

 

This research investigates the application of diverse 

machine learning algorithms for Breast Cancer Prediction. 

Decision tree, random forest, support vector machine, neural 

network, linear model, adaboost, and naive bayes methods are 

utilized for prediction purposes. To enhance prediction 

accuracy, an ensemble method is employed, introducing a 

novel technique known as the GA-based weighted average 
ensemble method. This method addresses the limitations 

observed in classical weighted average approaches. By 

utilizing genetic algorithms, the GA-based weighted average 

method is applied for predicting multiple models. A 

comparative analysis among Particle Swarm Optimization 

(PSO), Differential Evolution (DE), and Genetic Algorithm 

(GA) reveals that GA performs exceptionally well for 

weighted average methods. Furthermore, a comparison 

between the classical ensemble method and the GA-based 

weighted average method concludes that the latter surpasses 

the former. This study, titled "On Breast Cancer Detection: 

An Application of Machine Learning Algorithms on the 
Wisconsin Diagnostic Dataset," is authored by Abien Fred M. 

Agarap. 

 

In this study, six different machine learning algorithms 

are applied to detect cancer, focusing specifically on breast 

cancer diagnosis. The GRUSVM model, along with Linear 

Regression, Multilayer Perceptron (MLP), Nearest Neighbor 

(NN) search, Softmax Regression, and Support Vector 

Machine (SVM), are evaluated using the Wisconsin 

Diagnostic Breast Cancer (WDBC) dataset. The evaluation 

includes measuring their accuracy in classification testing, as 

well as their sensitivity and specificity values. This dataset 

contains features derived from digitized images of Fine 

Needle Aspiration (FNA) tests conducted on breast masses. 

The dataset is split into 70% for training and 30% for testing 
during the implementation of the machine learning 

algorithms. The findings indicate that all the machine 

learning algorithms performed strongly in classifying 

carcinoma, distinguishing between benign and malignant 

tumors effectively. Consequently, the statistical measures 

employed for classification tasks are considered satisfactory. 

To validate these results further, the study suggests 

employing cross-validation techniques like k-fold cross-

validation. Using such methods not only provides a more 

precise evaluation of model prediction performance but also 

aids in determining the most optimal hyperparameters for the 
machine learning algorithms. 

 

The paper "Breast Cancer Diagnosis by Various 

Machine Learning Techniques Using Blood Analysis Data" 

authored by Muhammet Fatih Aslan, Yunus Celik, Kadir 

Sabanci, and Akif Durdu focuses on early detection of 

carcinoma. It employs four distinct machine learning 

algorithms – Artificial Neural Network (ANN), Extreme 

Learning Machine (ELM), Support Vector Machine (SVM), 

and Nearest Neighbor (k-NN) – to analyze routine blood 

analysis results. Utilizing a dataset sourced from the UCI 

library, containing attributes like age, BMI, glucose, insulin, 
HOMA, leptin, adiponectin, resisting, and MCP1, the study 

explores the significance of these attributes in breast cancer 

detection. The study also utilizes hyperparameter 

optimization for k-NN and SVM, with ELM exhibiting the 

highest accuracy of 80% and a training time of 0.42 seconds. 

In "Performance Assessment of Machine Learning 

Techniques for Breast Cancer Prediction" by Yixuan Li and 

Zixuan Chen, two datasets are analyzed: the BCCD dataset 

with 116 volunteers and the WBCD dataset with 699 

volunteers. After preprocessing, the WBCD dataset 

comprises 683 volunteers and a tumor indication index. 
Random Forest (RF) emerges as the top-performing 

classification model due to its superior accuracy, F-measure 

metric, and ROC curve performance. However, the study 

recognizes limitations related to data quantity and suggests 

exploring combinations of RF with other data mining 

technologies for enhanced results. In "Breast Cancer 

Prediction and Detection Using Data Mining Classification 

Algorithms: A Comparative Study" by Mumine Kaya Keles, 

various data mining classification algorithms are compared 

using the Weka tool to predict and detect breast cancer early. 

Random Forest emerges as the best-performing algorithm 

during 10-fold cross-validation, achieving an average 
accuracy of 92.2%. The study underscores the importance of 

further research to address data quantity limitations and the 

potential for combining RF with other data mining 

technologies. Lastly, in "Breast Cancer Prediction Using Data 

Mining Methods" by Haifeng Wang and Sang Won Yoon, the 

impact of feature space reduction on breast cancer prediction 

is explored. A hybrid approach combining principal 
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component analysis (PCA) with data mining models is 

proposed. Performance evaluation using two test datasets – 

the Wisconsin Breast Cancer Database (1991) and the 

Wisconsin Diagnostic Breast Cancer (1995) – shows the 

effectiveness of PCA pre-processing, with PCs-SVM 

achieving 97.47% accuracy for WBC data and PCi-ANN 

achieving 99.63% accuracy for WDBC data. This is 

attributed to noise reduction and enriched feature space. 
 

III. PROBLEM STATEMENT 
 

The aim is to anticipate, using past data, whether a 

specific lump is benign (non-cancerous) or malignant 

(cancerous). This forecast is pivotal for early identification, 

allowing for timely intervention if there's a possibility of the 

lump progressing to cancer. Detecting the condition early 

enables swift treatment, improving the likelihood of recovery 

and reducing the potential for fatalities. 

 

IV. MODULE DESCRIPTION 
 

The central goal of our study is to differentiate between 

benign and malignant lumps, and to determine the most 

accurate classification model among the three employed - 

Decision Tree, Naïve Bayes, and Random Forest classifier. 

The methodology adopted to tackle this issue is outlined as 

follows:  

 

A. Dataset Used 

B. Data Pre-Processing 

C. Feature selection and scaling 
D. Training the models 

 

A. Dataset Used 

The research relies on the Breast Cancer Wisconsin 

(Diagnostic) Dataset sourced from Kaggle, comprising cases 

classified as either benign or malignant. It consists of 569 

entries and 32 attributes, totaling 33 unique features. Both 

benign and malignant tumor instances are present in the 

dataset for examination. 

 

 Wisconsin Diagnostic Breast Cancer (WDBC): The 
WDBC dataset, curated by Dr. William H. Wolberg and 

sourced from the General Surgery Department at the 

University of Wisconsin-Madison, USA, encompasses 10 

attributes associated with breast tumors, derived from 569 

patient samples. These data, accessible via FTP, were 

generated from fluid samples extracted from solid breast 

masses and analyzed using the Xcyt software for 

cytological feature assessment. Xcyt employs a curve-

fitting algorithm to compute ten features, including mean, 

worst, and standard error values for each feature, resulting 

in 30 values per sample. An additional ID column is 

included for sample differentiation, and the diagnosis 
outcome (malignant or benign) is appended to each 

sample. In total, the dataset comprises 32 attributes, 

including ID, diagnosis, and 30 input features, across 569 

instances. These attributes represent diverse tumor traits, 

including dimensions like radius, perimeter, and area, as 

well as texture, smoothness, compactness, concavity, 

concave points, symmetry, and fractal dimension. 

 
Fig 1: Wisconsin Breast Cancer Diagnostic Datasets 

 

B. Data Preprocessing 

The first and foremost stage in the procedure is data 

processing. It's necessary to process the data to filter out 
unnecessary information that could disrupt the prediction 

process. Data preprocessing involves identifying and 

removing outliers, addressing null values, and refining the 

dataset to ensure its suitability for model training. 

 

 Removal of Outliers: An outlier denotes a data point that 

significantly deviates from the norm within a random 

sample from a population. To put it plainly, outliers are 

data points that stand far apart from the majority of the 

dataset. Eliminating these outliers is crucial as their 

extreme values can disrupt both the training and 
prediction processes, potentially leading to inaccurate 

outcomes. Various techniques exist for outlier detection 

and removal, with the interquartile range method being a 

widely accepted approach. In this study, I opted for the 

interquartile range method to identify outliers. This 

method involves scrutinizing each feature of the dataset 

to pinpoint outliers and subsequently replacing the 

minimum values with the minimum quartile and the 

maximum values with the maximum quartile. 

 Removal of Null Values: As there were no values present 

in the dataset, there was no need to perform null value 

removal. 
 

C. Features Selection and Scaling 

The next step in the prediction process involves feature 

selection, where we identify the attributes that will be used 

for classification. In this case, our classification class is 

determined by a single attribute, 'diagnosis'. Datasets often 

include features with diverse magnitudes, units, and ranges. 

However, since many machine learning algorithms compute 

distances between data points using the Euclidean method, 

it's crucial to normalize the features to the same magnitude 

level. This normalization process, known as scaling, ensures 
that all features are comparable and aids in accurate 

predictions. 

 

D. Training the Models 

In the realm of machine learning methodologies, the 

learning process can be bifurcated into two primary 

categories: supervised and unsupervised learning. In 

supervised learning, a dataset containing input-output pairs is 

utilized to train the model, where each input is associated with 
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a corresponding output label. Conversely, unsupervised 

learning involves working with unlabeled data, where there 

are no predetermined input-output pairs, rendering the 

learning task more complex. 

 

Regression and classification represent the two 

fundamental approaches within supervised learning. 

Regression seeks to predict a continuous target variable, 
whereas classification predicts a discrete target variable. 

 

This study explores six distinct classification 

algorithms, each serving its unique purpose in the predictive 

modeling process. 

 

 Decision Tree 

 Naïve Bayes 

 Random Forest Classifier 

 k-Nearest Neighbors (K-NN) 

 Support Vector Machine (SVM) 
 Logistic Regression 

 

 Decision Tree 

The Decision Tree C4.5 stands as a versatile tool for 

predictive modeling, applicable across various domains. It's 

crafted using an algorithmic approach that splits datasets in 

multiple ways based on various conditions. In regression 

modeling, these trees predict future outcomes or classify data 

based on input. Visually resembling flowcharts, decision 

trees begin at the root node with a specific data query, 

branching out to potential answers, and progressing to 

decision nodes that pose further questions, ultimately ending 
in terminal or "leaf" nodes. In machine learning, decision 

trees offer an effective decision-making method by laying out 

the problem and its potential outcomes. As the algorithm 

accesses more data, it can forecast future outcomes. Entropy 

values for each variable are calculated, with subtracting these 

values from one yielding information values. A higher 

information gain indicates a superior attribute, positioning it 

higher in the tree. The Gini index gauges how frequently a 

randomly chosen element would be incorrectly identified, 

with lower values signifying better attributes. While decision 

trees are straightforward to interpret, they may encounter 
issues such as overfitting when handling datasets with 

numerous features. Hence, it's pivotal to discern when to halt 

tree growth. Two common methods for preventing overfitting 

are pre-pruning, which halts growth early but requires 

selecting a stopping point, and post-pruning, which involves 

cross-validation to determine if expanding the tree improves 

results or leads to overfitting. The structure of a decision tree 

encompasses a root node, splitting, decision nodes, terminal 

nodes, sub-trees, and parent nodes. The induction process 

comprises two primary phases: the growth phase, where 

training data is recursively partitioned to form the tree, and 

the pruning phase, which assesses whether expanding the tree 
enhances results or leads to overfitting. Decision trees possess 

a natural "if", "then", "else" construction, facilitating their 

integration into programmatic structures. Gini index can be 

found with the given formula: 

 

 

 

G=∑pi∗(1−pi)  

 

for i=1…n                             (1) 

 

A decision tree provides a simple approach to analysis. 

However, when confronted with datasets containing multiple 

features, there's a danger of overfitting, where the model 
becomes overly customized to the training data and performs 

poorly on new data. Thus, it's crucial to identify the 

appropriate moment to halt the tree's expansion. Two 

common techniques for averting overfitting are pre-pruning, 

which involves stopping the tree's growth prematurely, 

although determining the optimal stopping point can be 

challenging, and post-pruning, which entails cross-validation 

to ascertain whether expanding the tree enhances its 

performance or exacerbates overfitting. The architecture of a 

decision tree encompasses various elements such as root 

nodes, decision nodes, terminal nodes, sub-trees, and parent 

nodes. The construction of a decision tree typically entails 
two phases: the growth phase, during which the training data 

is partitioned recursively, resulting in a tree structure, and the 

pruning phase, where the tree is refined to mitigate 

overfitting. Decision trees exhibit an inherent "if-then-else" 

format, rendering them easily adaptable into programming 

paradigms. 

 

 Naïve Bayes 

Naive Bayes models are classifiers based on probability 

theory, specifically the Bayes Theorem. They typically 

require less training data compared to other classifiers like 
neural networks and support vector machines, and they have 

fewer parameters. Additionally, Naive Bayes models are 

adept at filtering out irrelevant inputs and noise. However, 

they make the simplifying assumption that input variables are 

independent, which is often not the case in real-world 

classification tasks. Despite this limitation, Naive Bayes 

models have been successful in various applications. They 

work by calculating the probability of a given instance 

belonging to a certain class and selecting the class with the 

highest probability. Although they assume independence 

among variables, they can still yield good results in many 

scenarios. Recent research has focused on enhancing Naive 
Bayes classifiers, as they offer a straightforward and efficient 

approach to classification based on Bayes theorem. It is 

represented below: 

 

P(X|Y)=P(Y|X)P(X)P(Y)                           (2) 

 

The foundational concept of this algorithm operates on 

the assumption that each variable independently and 

uniformly influences the outcome. As a consequence, each 

feature is perceived as unrelated to others and carries an equal 

weight in determining the output. Consequently, applying the 
naive Bayes theorem directly to real-world problems may 

yield suboptimal results, potentially resulting in reduced 

accuracy. Gaussian Naive Bayes represents a specific 

instantiation of the naive Bayes approach, presuming that 

features adhere to a normal distribution. It posits that features 

follow a Gaussian distribution and assigns them conditional 

probabilities accordingly. The theorem for Gaussian Naive 

Bayes is articulated as follows:  
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P(xi|y)=12πσ2ye^(−(xi−μy)22σ2y)                                                (3)      

 

 Random Forest     

Random Forest (RF) stands as a non-parametric method 

utilizing classification techniques. It rapidly categorizes data 

by employing multiple decision trees. Each tree selects a 

random subset of input variables, and their collective output 
improves inference from the data. Random forests, also 

known as random decision forests, serve as ensemble 

methods for classification, regression, and similar tasks. They 

create numerous decision trees during training and determine 

the most frequent class (for classification) or average 

prediction (for regression) from the individual trees. This 

approach mitigates the risk of decision trees overfitting their 

training data. The rotation forest algorithm aims to construct 

classifiers by extracting attributes from the dataset. It 

randomly divides the attribute set into K subsets to build 

accurate and robust classifiers. Feature selection poses a 
primary challenge in decision tree models, with various 

strategies available. Random forest addresses this challenge 

by searching for the best feature among a random subset, 

rather than consistently choosing the most significant one 

when splitting nodes. Furthermore, it can introduce additional 

randomness by employing random thresholds for each feature 

instead of seeking the optimal one. Tweaking specific 

parameters within the model can enhance its performance. 

Parameters such as max features, n estimators, and min 

sample leaf contribute to improving prediction accuracy. 

Conversely, parameters like n jobs and random state aid in 

accelerating the model's execution. In this study, adjustments 
were made to the n estimators parameter, determining the 

number of trees to grow, and setting the random state 

parameter to improve both the accuracy and speed of the 

model. 

 

 Randomly sample K data points from the training dataset. 

 Utilize these K data points to construct decision trees. 

 Determine the desired number of trees, denoted as N, and 

iterate through steps (i) and (ii). 

 Aggregate the predictions of the N trees to classify a new 

data point. Assign the new data point to the category with 
the highest predicted probability. 

 

 K-Nearest Neighbors (K-Nn) 

K-Nearest Neighbors (KNN) is an instance-based, non-

parametric machine learning algorithm utilized for 

classification and regression tasks. Unlike conventional 

methods that construct explicit models from training data, 

KNN retains all instances and classifies new ones based on 

similarity. When presented with a new data point, KNN 

identifies the K nearest neighbors from the training set using 

a chosen distance measure like Euclidean or Manhattan 
distance. These neighbors are determined by comparing the 

distance between the new data point and each instance in the 

training set. Once the K nearest neighbors are determined, 

KNN predicts the class of the new data point in classification 

tasks by majority voting among its neighbors' classes. In 

regression tasks, KNN predicts the target value of the new 

data point by averaging its neighbors' target values. KNN is 

valued for its simplicity and intuitive nature, making it 

straightforward to understand and implement. However, the 

selection of the parameter K, representing the number of 

neighbors to consider, and the choice of an appropriate 

distance metric are pivotal decisions that significantly 

influence the algorithm's performance. Despite its simplicity, 

KNN has demonstrated effectiveness in various domains, 

including pattern recognition, medical diagnosis, and 

recommendation systems. Its ability to adapt to complex data 
distributions without making strong assumptions makes it a 

versatile tool in machine learning applications. If the number 

of neighbors is denoted by N in K-NNs, then N samples are 

evaluated using the specified distance metric value 

Minkowski 

 

Distance: Dist(x, y) =                     (4) 
 

When p=1, it represents Manhattan distance; when p=2, 

it signifies Euclidean distance; and when p=∞, it denotes 

Chebyshev distance. Despite the array of choices available, 

Euclidean distance remains the commonly adopted metric. 

Within the collection of K neighbors, the process evaluates 

the distribution of information across each class. Following 

this assessment, the algorithm assigns the new data point to 

the class with the highest occurrence.Top of Form 

 

 Logistic Regression 
Logistic regression is a statistical method primarily 

utilized in binary classification tasks, aiming to predict the 

probability of an outcome belonging to one of two classes. 

Unlike linear regression, which forecasts continuous values, 

logistic regression estimates the likelihood of the binary 

outcome using a logistic or sigmoid function. Throughout the 

training process, logistic regression learns the optimal 

coefficients by maximizing the likelihood of observed data or 

minimizing an appropriate loss function, such as binary cross-

entropy loss. Following training, logistic regression applies 

the learned coefficients to new input data, passing the result 

through the logistic function to generate predictions. If the 
predicted probability exceeds a specified threshold, the input 

is classified as belonging to the positive class; otherwise, it is 

categorized as belonging to the negative class. Logistic 

regression is extensively applied across diverse domains, 

including healthcare, finance, and marketing, due to its 

simplicity, interpretability, and ability to provide 

probabilistic forecasts for binary classification tasks. 

 

 Support Vector Machine (SVM) 

The Support Vector Machine (SVM) is a flexible 

supervised machine learning method primarily utilized for 
classification tasks, although it can also be adapted for 

regression purposes. Its operation revolves around 

identifying the optimal hyperplane that effectively separates 

data points into different classes within the feature space. The 

core principle of SVM is to maximize the margin between 

this hyperplane and the nearest data points from each class, 

known as support vectors, thereby enhancing its ability to 

generalize and withstand noise. 

 

https://doi.org/10.38124/ijisrt/IJISRT24MAR845
http://www.ijisrt.com/


Volume 9, Issue 3, March – 2024                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                https://doi.org/10.38124/ijisrt/IJISRT24MAR845 

 

 

IJISRT24MAR845                                                               www.ijisrt.com                                                                        931 

During the training phase, SVM determines the optimal 

hyperplane by identifying support vectors and defining 

coefficients that govern the hyperplane's orientation. This is 

achieved through an optimization process aimed at 

maximizing the margin while simultaneously minimizing 

classification errors. In cases where the data lacks linear 

separability, SVM employs kernel functions to transform the 

input space into a higher-dimensional feature space, 
potentially facilitating separability. Common kernel 

functions include linear, polynomial, radial basis function 

(RBF), and sigmoid kernels. 

 

A notable advantage of SVM lies in its effectiveness at 

handling high-dimensional data, making it suitable for tasks 

with numerous features. Additionally, SVM demonstrates 

robust generalization to unseen data and is less prone to 

overfitting, particularly when the regularization parameter is 

appropriately tuned. 

 
Nonetheless, SVMs can be influenced by the choice of 

hyperparameters such as the regularization parameter and the 

selection of the kernel function, necessitating careful 

calibration and validation. Despite this sensitivity, SVM finds 

widespread application across diverse domains such as image 

classification, text classification, bioinformatics, and finance, 

due to its effectiveness, adaptability, and ability to handle 

complex classification tasks involving high-dimensional 

data. 

 

The concept of a hyperplane is central to SVM, 

representing a boundary within an n-dimensional space. This 
hyperplane, which exists in (n - 1) dimensions, defines a level 

subspace that may not intersect the origin. Visualizing a 

hyperplane in higher dimensions presents challenges, hence 

the utilization of a (n - 1) dimensional level subspace remains 

pertinent. Constructing an SVM classifier is straightforward 

when a separating hyperplane is discernible. However, if the 

dataset's categories cannot be adequately delineated by a 

hyperplane, expanding the feature space using Gaussian 

radial basis function (RBF), sigmoid function, cubic, 

quadratic, or even higher order polynomial functions 

becomes necessary. The formulation of the hyperplane in p-
dimensions can be expressed as follows: 

 

β0 + β1X1 + β2X2 + ……… + βpXp = 0        (5) 

 

Where X1, X2,…, and Xp are the data points in the 

sample space of p-dimension and β0, β1, β2,…, and βp are 

the hypothetical values. 

 

V. CONFUSION MATRIX 

 

The criteria for measuring the efficiency of the models 

are as follows: 

 

 Accuracy: Accuracy determines how accurate the model 

has predicted both positive and negative results and to 

know whether the model is over fitted or not or is there 

any biasedness in the model towards a particular class or 

not. 

 

Accuracy =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁)
 

 

 Sensitivity: Sensitivity, also referred to as Recall, 
indicates the ratio of actual positive instances correctly 

classified as positive (true positives) among all positive 

cases. 

 

Sensitivity= 
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
 

 

 Specificity: Specificity gives the measure of the 

proportion of those values that got predicted as negatives 

or true negatives.  

 

Specificity=
(𝑇𝑁)

(𝐹𝑃+𝑇𝑁)
 

 

 Precision: Precision is one indicator of a machine learning 
model's performance – the quality of a positive prediction 

made by the model. Precision refers to the number of true 

positives divided by the total number of positive 

predictions (i.e., the number of true positives plus the 

number of false positives). 

 

Precision=
(𝑇𝑃)

(𝐹𝑃+𝑇𝑃)
 

 

VI. RESULT AND ANALYSIS 

 

Next, we'll gather the results from different machine 

learning algorithms and evaluate them against our 

performance criteria to identify the model that best meets our 

needs. We'll compare the confusion matrices and accuracy 

scores of the various models to make our assessment. 

 

 

 
Fig 2: Decision Tree Confusion Matrix and its Accuracy 

 

 

 
Fig 3: Naïve Bayes Confusion Matrix and its Accuracy 

 

 

 
Fig 4: Random Forest Confusion Matrix and its Accuracy 
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Fig 5: KNN Confusion Matrix and its Accuracy 

 

 

 
Fig 6: Logistic Regression Confusion Matrix and its 

Accuracy 

 

 

 
Fig 7: Support Vector Machine Confusion matrix and its 

accuracy 

 

VII. CONCLUSION 

 

To uncover the outcomes, we utilized all 529 data 

entries from the dataset. These were divided into two 

segments: 70% were allocated for training the model, while 

the remaining 30% were reserved for testing purposes. Across 

six distinct machine learning models, the Support Vector 

Machine classifier emerged with the highest count of true 

negatives, numbering 59, followed by KNN, Logistic 
Regression, Random Forest, Naïve Bayes, and Decision Tree, 

in that order. Conversely, the Decision Tree model exhibited 

the highest count of false negatives, totaling 5, followed by 

Naïve Bayes. Additionally, the Decision Tree produced the 

greatest number of false positives, with 9, followed by Naïve 

Bayes. In terms of accuracy, Random Forest achieved 97%, 

Decision Tree 91%, Naïve Bayes 95%, KNN 97%, Logistic 

Regression 97%, and SVM 99%. 
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