Diversity of Insect Pest on Various Crops from Sakoli Tahshil, Bhandara, Maharashtra

¹Samrit C.R. Department of Zoology, Late N. P. Waghaye College of Arts and Science, Chopa, Mohadi, Maharashtra, India.

Abstract:- The field survey in Sakoli Tahshil, Bhandara District, Maharashtra State, during 2023-24 discovered 41 insect pests from diverse crops. Lepidoptera was the dominant order, with 18 species, followed by Hemiptera, Orthoptera, Coleoptera, and Thysanoptera, which had 17, 2, and 1 species, respectively. Hemipteran and Lepidopteran insect pests cause significant harm to all crops. The current study provides valuable information on many insect pests and their associated insects in agriculture fields.

Keywords:- Insect Pests, Diversity, Hemiptera, Lepidoptera, Sakoli.

I. INTRODUCTION

Numerous insects spread different infections that infect crops and vegetables and cause diseases. A good agricultural area is necessary for the growth of several insect species, which feed on roots, stems, leaves, flowers, and seeds. Insect larvae are voracious eaters that seriously harm agricultural crops.

Greatest diversity of rice pests was seen to be in India and China because of their huge land area. Plant hoppers (Brown plant hopper and white-backed plant hopper) and leafhoppers (green leafhopper, zigzag leafhopper) were found to be widely distributed in Paddy fields of major rice producers (Ane and Hussain, 2015).

Climatic conditions are also important to increase the pest population. Some time it's highly suitable for insect pest and it increase in high diversity and damage the crop plant in high range. For its own defenses, a farm field growing a variety of plants tends to attract fewer insect pests than a field growing just one type of crop. Since long, scientists and farmers are aware of vulnerability of monoculture fields to insect infestations but they are clueless about strategy to curb this menace. Recent study suggests the role of nutritional need of insect in it. Single type of plants provides appropriate nutrition to insect helping them to proliferate (Wetzel, 2016).

Insect pest could also be suppressed by growing flowering plants around agricultural fields which will attract the insect pest which would otherwise target crop and vegetables (Cloyd, 2020). Crop varieties with different nutrient content in their leaf, stem, flower and fruit could also help to curb the insect infestation (William Wetzel, 2016). ^{2*}Masram S.C. Department of Zoology, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, Maharashtra, India.

II. MATERIALS AND METHODS

The survey and collection of general insect pests were made throughout the year 2023-2024. From agriculture areas of Sakoli in Bhandara district. Study area is located in the Bhandara, Maharashtra, India; its geographical coordinates are 21° 5' 0" North, 79° 59' 0" East. This Tahshil covered with large biodiversity, it is famous for pond ecosystem and biodiversity zone. Vegetables and various agricultural crops are present in the research area. Two different approaches were used to capture insect pests: the hand-picking method and the sweep net method. Aphids, mealy bugs, and larvae were among the small and medium-sized insect pests that were manually gathered, while grasshoppers and other larger pests were caught using an insect net. The observations were made with the aid of binocular and Digital camera Nikon 5700D; lense 70-300mm was used for photography of insect. The agricultural pests were identified with the help of standard literature (Jonathan and Kulkarni, 1986; Karungi et al., 2008; Nair et al., 2012).

III. RESULT AND DISSCUSSION

For the current study, 41 insect pest species were gathered from crop fields in the Bhandara district. They are classified under the orders Hemiptera, Coleoptera, Lepidoptera, Orthoptera, and Thysanoptera. The order Lepidoptera was prominent, with 18 species, followed by Hemiptera, Orthoptera, Coleoptera, and Thysanoptera, each with 17, 2, and 1 species (Table 1). The Hemiptera order includes 17 insect species, including the whitefly, stink bug, aphid, jassid, and mealy bug. They inflict significant harm to host plants like brinjal, sugarcane, rice, cowpea, and tomato.

Mango trees are harmed by pests known as coleoptera, which are insects that live in forests. The gram poder, green pea moth, and cabbage looper larvae, which make of the third order Lepidoptera, are responsible for harming red gram, green peas, and cabbage. The remaining orders— Phasmatodea, Thysanoptera, Orthoptera, Isoptera, and Hymenoptera—are to blame for the significant harm done to tomatoes, rice, and brinjal. Moreover, several host plant species were shown to be home to termite and ant species. The principal crop pests found in the different crop fields of Maharashtra State's Sakoli Tahshil, Bhandar District are listed in this study.

Graph 1 Distribution of Insect Pest (Percentage Wise)

Table 1 List of Insect	Pests Recorded on Various Cro	ps in Bhandara Distri	ct, Maharashtra.	
Scientific Name	Common Name	Family	Order	Сгор
Gryllotalpa fossor	Mole cricket	Gryllotalpidae	Orthoptera	Paddy
Schistocerca gregaria	Desert locust	Acrididae		Green vegetation
Locusta migratoria	Migratory locust			Green vegetation
Caliothrips indicus	Thrips	Thripidae	Thysanoptera	Wheat
Curculio nucum	Hazelnut weevil	Curculionidae	Coleoptera	Nuts
Epilachninae mulsant	Mexican bean beetle	Coccinellidae		ladyfinger
Amrasca biguttula	Cotton Jassid	Cicadellidae		Cotton
Nephotettix nigropictus	Green rice leafhopper			Paddy
Aphis gossypii	Cotton aphids	Aphididae		Cotton
Myzus persicae	Green peach aphids			Cotton
Aphis crassivora	Cow pea aphids			Chick pea
Rhopalosiphum maidis	Maize aphid			wheat
Myzus persicae	Green peach aphids			Mustard, wheat
Dysdercus cingulatus	Red cotton bug	Pyrrhocoridae	Hemiptera	Cotton
Bemisia tabaci	Whitefly	Aleyrodidae	-	Cotton
Pyrilla perpusilla	Sugarcane leaf hopper	Lophopidae	-	Sugarcane, Maize
Phenococcus solenopsis	Mealy bug	Pseudococcidae	-	Cotton
Lygaeus militaris	Plant bug	Lygaeidae	-	Cotton
Lygaeus hospes	Lygaeid bug			Cotton
Nezara gramineae	Green plant bug	Pentatomidae		Paddy
Bagrada picta	Bagrada bug/ Colourful bug	Psychidae		cabbage
Anoplocnemis phasiana	Coreid bug	Coreidae	-	Chick pea
Clavigralla gibbosa	Pod sucking bug			Chick pea
Scirpophaga auriflua	Sugarcane top shoot borer	Pyralidae		Sugarcane
Ostrinia nubilalis	European corn borer			Corn
Manduca quinquemaculata	Tomato hornworm	Sphingidae		Tomato
Papilio polytes	common mormon	Papilionidae		citrus
Papilio demoleus	citrus butterfly		Lepidoptera	citrus
Pieris brassicae	cabbage butterfly	Pieridae		vegetable
Operophtera brumata	Winter moth	Geometridae		Vegetable
Lymantria dispar	Gypsy moth	Lymantriidae		Vegetable
Pectinophora gossypiella	Pink bollworm	Gelechiidae		Cotton
Nyctemera annulata	Magpie moth	Arctiidae		Beans
Hyphantria lunea	Web worm			vegetables
Melanitis leda	Common Evening Brown	Nymphalidae		Paddy
Earias insulana	Spiny bollworm			Cotton
Helicoverpa armigera	American bollworm			Cotton
Spodoptera littoralis	African Cotton Leaf worm	Noctuidae		Cotton
Pericallia ricini	Darth Maul Moth			Maize
Spodoptera frugiperda	Armyworm			vegetables
Trichoplusia ni.	Cabbage looper			vegetables

Volume 9, Issue 5, May - 2024

ISSN No:-2456-2165

IV. CONCLUSION

Diversity indices of insect pest differed in every year. This study revealed that the statistical data of insect pest arise during the year of 2023-2024. It is also helpful for data verification of previous insect pest and future insect pest. Numerous tactics are being developed to combat these pests, which cause significant financial losses to rice crops, in order to maintain their normal level.

ACKNOWLEDGMENT

The author gratefully acknowledge to Dr.Suresh Masram, Associate Professor, Department of Zoology, RTM Nagpur University for identification of insects and proper guidance during field investigation .

REFERENCES

- Ahuja, D.B., Ahuja, U. R., Srinivas, P., Singh, R.V., Malik, M., Sharma, P. and Bamawala, O.M. (2012). Development of farmer-led integrated management of major pests of cauliflower cultivated in rainy Season in India. Journal of Agriculture Science, 4 (2): 79-90.
- [2]. Aktar, M.W., Sengupta, D. and Chowdhury, A. (2009). Impact of pesticide use in Indian agriculture -Their benefits and hazards. Interdisciplinary Toxicology, 2(1): 1-12.
- [3]. Arif, M. I., Rafiq, M. and Ghaffar, A. (2009). Host plant of cotton mealy bug (*Phenococcus solenopsis*): A new menace to cotton agroecosystem of Punjab. International Journal of Agriculture and Biology, 11: 163-167.
- [4]. Ane, N. U. and Hussain, M, 2015). Diversity of insect pests in major rice growing areas of the world. Journal of Entomology and Zoology Studies, 4(1): 36-41.
- [5]. Anita Singh., Sharma, A.L. (2014). Agriculturally important insects diversity in kharif and rabi crop of Talwandi sabo, Punjab. International Journal of Scientific and Research, 4: 31-53.
- [6]. Cloyd, R. (2020). How Effective Is Conservation Biological Control in Regulating Insect Pest Populations in Organic Crop Production Systems. Insect, 1-15.
- [7]. Dhaliwal, G.S., Jindal, V. and Dhawan, A.K. (2010). Insect pest problems and crop losses: Changing trends. Indian Journal of Ecology, 2010, Vol. 37,
- [8]. Dhaliwal, G.S., Dhawan, A. K. and Singh, R. (2007). Biodiversity and ecological agriculture: Issues and perspectives. Indian Journal of Ecology, 34 (2):100-109.
- [9]. Gamhiarachi, G.A.S.M. and Fernando, I.V.S. (2006). Biology of *Pyrilla perpusilla* Walker (Homoptera: Lophopidae), A pest of sugarcane in wet Sri Lanka. Journal of Entomology, 3: 26-33.

[10]. Gupta, G.P., Seema, R., Ajanta, B., and Raghuraman, M. (2004). Relative toxicity of certain new insecticides against *Spodoptera litura* (Fab.). Pesticides Research Journal, 16: 45-47.

https://doi.org/10.38124/ijisrt/IJISRT24MAY2364

- [11]. Jonathan, J. K. and Kulkarni, P. P. (1986). Manual: Collection, preservation and identification of insects and mites of economic importance. Zoological Survey of India, Calcutta, *pp* 322.
- [12]. Karungi, M., Ekbom, B., Kyamanywa, S. and Sabiiti, E. (2008). Handbook on identification and management of pests and disease of cabbage and other Brassicas in Uganda, African Crop Science Society, Faculty of Agriculture, Makerere University, Kampala, pp 51.
- [13]. Kumara Singhe, N. C. and Dwratten, S. D. (1996). The sugarcane Lophopidae plant hopper *Pyrilla perpusilla* (Homoptera: Lophopidae): A review of its biology, pest status and control. Bulletin of Entomology Research, 86: 485-498.
- [14]. Nair, S., Braman, K. and Bausk, E. (2012). Insect identification guide for southeastern landscape, Cooperative Extension, University of Georgia, Athens pp 42.
- [15]. Wetzel, W.C., Kharouba ,H.M., Robinson M., Holyoak, M. and Karban, R. (2016). Variability in plant nutrients reduces insect herbivore performance. Nature, 539(7629): 425-427.