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Abstract:- A 13-bit multiplier is implemented on the Artix-

7 100T FPGA using a divide-and-conquer algorithm. The 

design is coded in SystemVerilog, leveraging its powerful 

features for hardware description and synthesis. The 

divide-and-conquer approach breaks down the 

multiplication task into smaller sub- tasks, enhancing 

efficiency and reducing complexity. The FPGA’s high-

performance capabilities, particularly on the Artix-7 100T 

board, make it well-suited for accelerating the 

computations involved. Additionally, Area Delay Product 

(ADP) tools are employed to evaluate the algorithm’s 

efficiency. This project aims to showcase the synergy 

between algorithmic design, hardware implementation, and 

FPGA capabilities, emphasizing the versa- tility of the 

Artix-7 100T FPGA in handling complex arithmetic 

operations. 
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I. INTRODUCTION 

 

In the realm of cryptography, the choice of a 13-bit mul- 

tiplier holds particular significance, serving as a foundational 
operation within cryptographic algorithms and protocols. This 

specific multiplier implies that the operands involved in the 

multiplication process are each 13 bits in length, representing 

a careful consideration of bit size in cryptographic computa- 

tions.[6] 

 

Multiplication, as a core mathematical operation, plays a 

crucial role in various cryptographic processes such as key 

generation, encryption, and signature schemes. The decision 

to employ a 13-bit multiplier is strategic, striking a delicate 

balance between computational complexity and resource effi- 
ciency. This balance is pivotal in ensuring that cryptographic 

algorithms perform optimally without sacrificing computa- 

tional speed or requiring excessive resources.[6] 

 

The application of a 13-bit multiplier is notably prevalent 

in cryptographic systems that involve modular arithmetic and 

finite field operations. These operations are fundamental to 

many cryptographic algorithms, including those based on 

elliptic curve cryptography, where finite field multiplication is 

a key component. The 13-bit size is carefully chosen to align 

with the specific requirements of these cryptographic schemes, 
contributing to their security and efficiency.[7] 

 

The use of a 13-bit multiplier in cryptography reflects 

a thoughtful consideration of the intricate interplay between se- 

curity needs and practical implementation constraints. Whether 

in hardware or software, the choice of bit size in multiplication 

is a critical decision, and the 13-bit multiplier exemplifies 

a meticulous approach to achieving a harmonious blend of 

computational effectiveness and resource optimization within 

the cryptographic domain.[7] 

 

II. RELATED WORKS 

 

The systolic implementation of the Karatsuba algorithm 

(KA)-based digit-serial multiplier over GF(2m) on FPGA 

platforms. The primary focus is on addressing the high register-

complexity issues associated with existing designs. The 

proposed approach introduces a novel KA-based algorithm that 

significantly reduces computational complexity. Furthermore, 

efficient register minimization techniques, including redundant 

register removal, two-stage pipelining, and register sharing, are 

proposed to mitigate the register complexity of the suggested 

structure. The study also employs an FPGA-specific digit-
parallel implementation strategy to optimize area, time, and 

power complexities. Comparative results with existing designs, 

particularly using NIST- recommended polynomials, highlight 

substantial reductions in area-delay product (ADP) and power-

delay product (PDP). The proposed multiplier demonstrates 

superior performance on FPGA platforms and holds promise 

for applications in resource-constrained platforms such as 

wearable devices and deeply embedded systems[1] 

 

A lightweight, FPGA-based hardware implementation for 

polynomial multiplication, addressing a key bottleneck in the 
NTRU public-key cryptographic scheme. Focused on IoT 

applications, the proposed constant-time implementation with 

optimized hardware consumption utilizes a single-step 

multiplexer-based iterative architecture. By eliminating the 

need for a modular arithmetic unit and replacing it with an 

accumulator, substantial device resource savings are achieved. 

Experimental results on an FPGA demonstrate an impressive 

2.86× reduction in area and a 1.23× increase in throughput 

compared to state-of-the-art strategies. The proposed 

architecture, resilient against timing attacks, proves well-
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suited for IoT applications, showcasing constant execution time 

and significant area reduction, outperforming existing works in 
terms of area utilization. Future work aims to extend this 

approach to complete NTRU encryption and decryption 

module[2] 

 

The vulnerability of the baseline schoolbook polynomial 

multiplication architecture in lattice-based cryptography to 

power side-channel leakage. The authors conduct power 

analysis on the FPGA implementation, identifying substantial 

power leakage in the R-LWE crypto-system. The study 

emphasizes the need for countermeasure strategies due to the 

susceptibility of naive implementations to side-channel 
attacks.Future work aims to explore SCA-countermeasure 

strategies and assess their effectiveness, considering power 

and timing analyses, along with area-delay product (ADP) 

evaluations.[3] 

 

This paper focuses on enhancing the vulnerability-prone 

schoolbook polynomial multiplication architecture in lattice- 

based cryptography by addressing power side-channel leakage. 

Through power analysis on FPGA, significant power leakage 

is identified in the R-LWE crypto-system, emphasizing the 

need for countermeasure strategies. Future work aims to 

explore SCA-countermeasure effectiveness, incorporating 
power and timing analyses, and evaluating area-delay product 

(ADP). In a related context, the widely used Schoolbook 

algorithm in mainstream post-quantum cryptography is 

optimized by leveraging Toeplitz matrix features. Implemented 

with the Saber architecture on FPGA, the proposed multiplier 

exhibits a notable 3.33× higher throughput and 1.58× higher 

throughput-per-slice compared to state-of-the-art 

implementations. These results underscore the advantages of the 

proposed multiplier for high-performance post-quantum 
cryptography hardware implementations.[4] 

 

KaratSaber introduces an optimized Karatsuba 

polynomial multiplier for Saber, achieving a 7.47× speed 

improvement over SPMA Saber and 2.11× higher throughput 

than LWRPro, with a 46.04 percent efficiency gain. This FPGA-

based architecture sets new speed records for Saber polynomial 

multiplication. Future work includes extending KaratSaber for 

other Lattice-Based Cryptography schemes and optimizing 

energy consumption for IoT on ASIC platforms. The proposed 

improvements position KaratSaber as a notable advancement in 
FPGA-based polynomial multiplication cores for Saber, a NIST 

PQC Round 3 KEM scheme.[5] 

 

III. METHODS 

 

A. Divide and Conquer Algorithm 

The Divide and Conquer algorithm for integer 

multiplication is a transformative approach that optimizes the 

computation of large integer products. This method 

strategically divides the numbers into smaller segments, 

significantly reducing the number of necessary multiplications. 

Throughout this project, we explore the fundamental principles, 

advantages, and implementation considerations of this Divide 

and Conquer algorithm. Its efficiency in managing extensive 

integer multiplication tasks positions it as a key strategy in 

algorithmic design, offering notable improvements over 
traditional multiplication methods. [1] 

 

 
Fig 1: Divide and Conquer Algorithm Flow 

 

https://doi.org/10.38124/ijisrt/IJISRT24MAY261
http://www.ijisrt.com/


Volume 9, Issue 5, May – 2024                                                   International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                      https://doi.org/10.38124/ijisrt/IJISRT24MAY261 

 

 

IJISRT24MAY261                                                                www.ijisrt.com                                                                                       566 

The divide and conquer algorithm is a fast 

multiplication algorithm that divides numbers into smaller 
chunks and recursively multiplies them to achieve a more 

efficient multiplication process. In the context of 13-bit 

multiplication using the Karatsuba algorithm, each 13-bit 

number is divided into two 6.5-bit parts. The algorithm then 

performs three recursive multiplications instead of four 

traditional ones. This reduction in subproblems improves the 

overall computational efficiency. The process involves 

calculating three partial products, combining them with 

appropriate shifts, and performing additions to obtain the final 

product. Despite its simplicity, the Karatsuba algorithm 

showcases the power of divide-and-conquer techniques, 
optimizing multiplication for relatively small bit lengths like 

13 bits. [1] 

 

 

 

B. School Book Multiplication 

Multiplying 13-bit numbers involves multiplying two 
binary numbers, each consisting of 13 bits (binary digits). In 

binary multiplication, the process is similar to decimal 

multiplication, but it only involves the digits 0 and 1. The 

multiplication is carried out bit by bit, starting from the 

rightmost bit (the least significant bit) and progressing towards 

the left.// For each bit position, the product is calculated by 

multiplying the corresponding bits of the two numbers and 

considering any carry from the previous step. The partial 

products are then added together to obtain the final result. The 

result may exceed 13 bits, so overflow bits need to be managed 

accordingly. multiplying 13-bit numbers involves a systematic 
process of multiplying individual bits, managing carries, and 

summing up partial products to arrive at the correct binary 

representation of the product of the two original numbers. This 

process ensures an accurate result within the constraints of the 

13-bit representation. 

 

 
Fig 2: School Book Algorithm Flow 

 

IV. RESULT 

 

A. Output 

The algorithm successfully produces for multiplying num- bers from 0 to 8191. 

 

 
Fig 3: Simulation Output 
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B. Synthesis 

Divide and conquer algorithm uses only 4 DSP’s whereas the School book polynomial algorithm consumes 91 LUT’s. 
 

 
Fig 4: Synthesis Output 

 

C. Power and Delay 

Power analysis in electronics assesses the energy 

consump- tion of a circuit, crucial for optimizing energy 

efficiency. It involves evaluating dynamic power (related to 

switching activities) and static power (leakage). Delay analysis 

measures the time it takes for signals to propagate through a 

circuit, influencing the overall performance. Balancing power 

and delay is essential in designing efficient and high-

performance electronic systems. 

 

 
Fig 5: Power Analysis 
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Fig 6: Timing Analysis 

 

 
Fig 7: Comparison of Power and Delay 

 

D. Hardware Implementation 

Loading code onto an FPGA using Xilinx Vivado involves 

several steps. Firstly, the hardware description, typically 

written in a hardware description language (HDL) like Verilog 

or VHDL, is synthesized to generate a netlist. This netlist is then 

implemented, mapping the design onto the specific FPGA’s 

architecture. After successful implementation, a bitstream file is 

generated, representing the configuration data for the FPGA. 

 

 

In Vivado, the bitstream file is loaded onto the FPGA 
using programming tools such as Xilinx’s Hardware Manager. 

This process may involve configuring the FPGA through 

JTAG or other programming interfaces. Once loaded, the FPGA 

effectively becomes a customized hardware circuit, executing 

the logic described in the HDL code. This approach allows 

for flexible and reconfigurable hardware designs in various 

applications such as digital signal processing, communication, 

and embedded systems. 
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E. Area Delay Product 

The Area-Delay Product (ADP) is a metric used in digital 
circuit design to evaluate the trade-off between the physical 

area occupied by a circuit and its propagation delay. It is 

calculated by multiplying the total logic area of a circuit (in 

square units) by its corresponding delay (in time units). A lower 

ADP signifies a more efficient design as it implies a balance 
between circuit size and performance speed. Designers often aim 

to minimize the ADP to optimize both area and delay, achieving 

a desirable compromise in integrated circuit performance. 

 

 
Fig 8: Hardware Implementation on Artix-7 100T 

 

 
Fig 9: Area Delay Product Comparison 

 

V. CONCLUSION 

 

The comparison of the divide and conquer algorithm 

with an ADP of 92.724 um**2ps and the schoolbook algorithm 

with an ADP of 1084.54 um**2ps on the FPGA Artix 7 100T 

indicates a significant performance advantage for the divide and 
conquer algorithm. The lower ADP value of 92.724 um**2ps 

suggests that the divide and conquer algorithm is more power-

efficient compared to the schoolbook algorithm, which has a 

higher ADP of 1084.54 um**2ps. 

 

This performance difference can be attributed to the 

inherent nature of the divide and conquer algorithm, which 

optimally utilizes the FPGA’s resources and architecture to 

achieve better power efficiency. The FPGA Artix 7 100T 

appears to be well-suited for the implementation of the divide 

and conquer algorithm, contributing to its superior performance 

in terms of ADP. 

 

In practical terms, a lower ADP value is desirable as it 

indicates that the algorithm consumes less dynamic power per 
unit area, making it more energy-efficient. Therefore, based on 

the provided ADP values, it can be concluded that the divide 

and conquer algorithm is a better choice for implementation on 

the FPGA Artix 7 100T in comparison to the schoolbook 

algorithm. 
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