
Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY261

IJISRT24MAY261 www.ijisrt.com 564

FPGA Based Accelerator for Implementation of

Large Integer Polynomials

Dr. J. Kamala

Department of ECE

Anna University Chennai, India

M. V. Tejendra Prasad

Department of ECE Anna

 University Chennai, India

Abstract:- A 13-bit multiplier is implemented on the Artix-

7 100T FPGA using a divide-and-conquer algorithm. The

design is coded in SystemVerilog, leveraging its powerful

features for hardware description and synthesis. The

divide-and-conquer approach breaks down the

multiplication task into smaller sub- tasks, enhancing

efficiency and reducing complexity. The FPGA’s high-

performance capabilities, particularly on the Artix-7 100T

board, make it well-suited for accelerating the

computations involved. Additionally, Area Delay Product

(ADP) tools are employed to evaluate the algorithm’s

efficiency. This project aims to showcase the synergy

between algorithmic design, hardware implementation, and

FPGA capabilities, emphasizing the versa- tility of the

Artix-7 100T FPGA in handling complex arithmetic

operations.

Keywords:- Multiplier, Verilog, FPGA, Areadelayprod-

UCT(ADP).

I. INTRODUCTION

In the realm of cryptography, the choice of a 13-bit mul-

tiplier holds particular significance, serving as a foundational
operation within cryptographic algorithms and protocols. This

specific multiplier implies that the operands involved in the

multiplication process are each 13 bits in length, representing

a careful consideration of bit size in cryptographic computa-

tions.[6]

Multiplication, as a core mathematical operation, plays a

crucial role in various cryptographic processes such as key

generation, encryption, and signature schemes. The decision

to employ a 13-bit multiplier is strategic, striking a delicate

balance between computational complexity and resource effi-
ciency. This balance is pivotal in ensuring that cryptographic

algorithms perform optimally without sacrificing computa-

tional speed or requiring excessive resources.[6]

The application of a 13-bit multiplier is notably prevalent

in cryptographic systems that involve modular arithmetic and

finite field operations. These operations are fundamental to

many cryptographic algorithms, including those based on

elliptic curve cryptography, where finite field multiplication is

a key component. The 13-bit size is carefully chosen to align

with the specific requirements of these cryptographic schemes,
contributing to their security and efficiency.[7]

The use of a 13-bit multiplier in cryptography reflects

a thoughtful consideration of the intricate interplay between se-

curity needs and practical implementation constraints. Whether

in hardware or software, the choice of bit size in multiplication

is a critical decision, and the 13-bit multiplier exemplifies

a meticulous approach to achieving a harmonious blend of

computational effectiveness and resource optimization within

the cryptographic domain.[7]

II. RELATED WORKS

The systolic implementation of the Karatsuba algorithm

(KA)-based digit-serial multiplier over GF(2m) on FPGA

platforms. The primary focus is on addressing the high register-

complexity issues associated with existing designs. The

proposed approach introduces a novel KA-based algorithm that

significantly reduces computational complexity. Furthermore,

efficient register minimization techniques, including redundant

register removal, two-stage pipelining, and register sharing, are

proposed to mitigate the register complexity of the suggested

structure. The study also employs an FPGA-specific digit-
parallel implementation strategy to optimize area, time, and

power complexities. Comparative results with existing designs,

particularly using NIST- recommended polynomials, highlight

substantial reductions in area-delay product (ADP) and power-

delay product (PDP). The proposed multiplier demonstrates

superior performance on FPGA platforms and holds promise

for applications in resource-constrained platforms such as

wearable devices and deeply embedded systems[1]

A lightweight, FPGA-based hardware implementation for

polynomial multiplication, addressing a key bottleneck in the
NTRU public-key cryptographic scheme. Focused on IoT

applications, the proposed constant-time implementation with

optimized hardware consumption utilizes a single-step

multiplexer-based iterative architecture. By eliminating the

need for a modular arithmetic unit and replacing it with an

accumulator, substantial device resource savings are achieved.

Experimental results on an FPGA demonstrate an impressive

2.86× reduction in area and a 1.23× increase in throughput

compared to state-of-the-art strategies. The proposed

architecture, resilient against timing attacks, proves well-

https://doi.org/10.38124/ijisrt/IJISRT24MAY261
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY261

IJISRT24MAY261 www.ijisrt.com 565

suited for IoT applications, showcasing constant execution time

and significant area reduction, outperforming existing works in
terms of area utilization. Future work aims to extend this

approach to complete NTRU encryption and decryption

module[2]

The vulnerability of the baseline schoolbook polynomial

multiplication architecture in lattice-based cryptography to

power side-channel leakage. The authors conduct power

analysis on the FPGA implementation, identifying substantial

power leakage in the R-LWE crypto-system. The study

emphasizes the need for countermeasure strategies due to the

susceptibility of naive implementations to side-channel
attacks.Future work aims to explore SCA-countermeasure

strategies and assess their effectiveness, considering power

and timing analyses, along with area-delay product (ADP)

evaluations.[3]

This paper focuses on enhancing the vulnerability-prone

schoolbook polynomial multiplication architecture in lattice-

based cryptography by addressing power side-channel leakage.

Through power analysis on FPGA, significant power leakage

is identified in the R-LWE crypto-system, emphasizing the

need for countermeasure strategies. Future work aims to

explore SCA-countermeasure effectiveness, incorporating
power and timing analyses, and evaluating area-delay product

(ADP). In a related context, the widely used Schoolbook

algorithm in mainstream post-quantum cryptography is

optimized by leveraging Toeplitz matrix features. Implemented

with the Saber architecture on FPGA, the proposed multiplier

exhibits a notable 3.33× higher throughput and 1.58× higher

throughput-per-slice compared to state-of-the-art

implementations. These results underscore the advantages of the

proposed multiplier for high-performance post-quantum
cryptography hardware implementations.[4]

KaratSaber introduces an optimized Karatsuba

polynomial multiplier for Saber, achieving a 7.47× speed

improvement over SPMA Saber and 2.11× higher throughput

than LWRPro, with a 46.04 percent efficiency gain. This FPGA-

based architecture sets new speed records for Saber polynomial

multiplication. Future work includes extending KaratSaber for

other Lattice-Based Cryptography schemes and optimizing

energy consumption for IoT on ASIC platforms. The proposed

improvements position KaratSaber as a notable advancement in
FPGA-based polynomial multiplication cores for Saber, a NIST

PQC Round 3 KEM scheme.[5]

III. METHODS

A. Divide and Conquer Algorithm

The Divide and Conquer algorithm for integer

multiplication is a transformative approach that optimizes the

computation of large integer products. This method

strategically divides the numbers into smaller segments,

significantly reducing the number of necessary multiplications.

Throughout this project, we explore the fundamental principles,

advantages, and implementation considerations of this Divide

and Conquer algorithm. Its efficiency in managing extensive

integer multiplication tasks positions it as a key strategy in

algorithmic design, offering notable improvements over
traditional multiplication methods. [1]

Fig 1: Divide and Conquer Algorithm Flow

https://doi.org/10.38124/ijisrt/IJISRT24MAY261
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY261

IJISRT24MAY261 www.ijisrt.com 566

The divide and conquer algorithm is a fast

multiplication algorithm that divides numbers into smaller
chunks and recursively multiplies them to achieve a more

efficient multiplication process. In the context of 13-bit

multiplication using the Karatsuba algorithm, each 13-bit

number is divided into two 6.5-bit parts. The algorithm then

performs three recursive multiplications instead of four

traditional ones. This reduction in subproblems improves the

overall computational efficiency. The process involves

calculating three partial products, combining them with

appropriate shifts, and performing additions to obtain the final

product. Despite its simplicity, the Karatsuba algorithm

showcases the power of divide-and-conquer techniques,
optimizing multiplication for relatively small bit lengths like

13 bits. [1]

B. School Book Multiplication

Multiplying 13-bit numbers involves multiplying two
binary numbers, each consisting of 13 bits (binary digits). In

binary multiplication, the process is similar to decimal

multiplication, but it only involves the digits 0 and 1. The

multiplication is carried out bit by bit, starting from the

rightmost bit (the least significant bit) and progressing towards

the left.// For each bit position, the product is calculated by

multiplying the corresponding bits of the two numbers and

considering any carry from the previous step. The partial

products are then added together to obtain the final result. The

result may exceed 13 bits, so overflow bits need to be managed

accordingly. multiplying 13-bit numbers involves a systematic
process of multiplying individual bits, managing carries, and

summing up partial products to arrive at the correct binary

representation of the product of the two original numbers. This

process ensures an accurate result within the constraints of the

13-bit representation.

Fig 2: School Book Algorithm Flow

IV. RESULT

A. Output

The algorithm successfully produces for multiplying num- bers from 0 to 8191.

Fig 3: Simulation Output

https://doi.org/10.38124/ijisrt/IJISRT24MAY261
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY261

IJISRT24MAY261 www.ijisrt.com 567

B. Synthesis

Divide and conquer algorithm uses only 4 DSP’s whereas the School book polynomial algorithm consumes 91 LUT’s.

Fig 4: Synthesis Output

C. Power and Delay

Power analysis in electronics assesses the energy

consump- tion of a circuit, crucial for optimizing energy

efficiency. It involves evaluating dynamic power (related to

switching activities) and static power (leakage). Delay analysis

measures the time it takes for signals to propagate through a

circuit, influencing the overall performance. Balancing power

and delay is essential in designing efficient and high-

performance electronic systems.

Fig 5: Power Analysis

https://doi.org/10.38124/ijisrt/IJISRT24MAY261
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY261

IJISRT24MAY261 www.ijisrt.com 568

Fig 6: Timing Analysis

Fig 7: Comparison of Power and Delay

D. Hardware Implementation

Loading code onto an FPGA using Xilinx Vivado involves

several steps. Firstly, the hardware description, typically

written in a hardware description language (HDL) like Verilog

or VHDL, is synthesized to generate a netlist. This netlist is then

implemented, mapping the design onto the specific FPGA’s

architecture. After successful implementation, a bitstream file is

generated, representing the configuration data for the FPGA.

In Vivado, the bitstream file is loaded onto the FPGA
using programming tools such as Xilinx’s Hardware Manager.

This process may involve configuring the FPGA through

JTAG or other programming interfaces. Once loaded, the FPGA

effectively becomes a customized hardware circuit, executing

the logic described in the HDL code. This approach allows

for flexible and reconfigurable hardware designs in various

applications such as digital signal processing, communication,

and embedded systems.

https://doi.org/10.38124/ijisrt/IJISRT24MAY261
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY261

IJISRT24MAY261 www.ijisrt.com 569

E. Area Delay Product

The Area-Delay Product (ADP) is a metric used in digital
circuit design to evaluate the trade-off between the physical

area occupied by a circuit and its propagation delay. It is

calculated by multiplying the total logic area of a circuit (in

square units) by its corresponding delay (in time units). A lower

ADP signifies a more efficient design as it implies a balance
between circuit size and performance speed. Designers often aim

to minimize the ADP to optimize both area and delay, achieving

a desirable compromise in integrated circuit performance.

Fig 8: Hardware Implementation on Artix-7 100T

Fig 9: Area Delay Product Comparison

V. CONCLUSION

The comparison of the divide and conquer algorithm

with an ADP of 92.724 um**2ps and the schoolbook algorithm

with an ADP of 1084.54 um**2ps on the FPGA Artix 7 100T

indicates a significant performance advantage for the divide and
conquer algorithm. The lower ADP value of 92.724 um**2ps

suggests that the divide and conquer algorithm is more power-

efficient compared to the schoolbook algorithm, which has a

higher ADP of 1084.54 um**2ps.

This performance difference can be attributed to the

inherent nature of the divide and conquer algorithm, which

optimally utilizes the FPGA’s resources and architecture to

achieve better power efficiency. The FPGA Artix 7 100T

appears to be well-suited for the implementation of the divide

and conquer algorithm, contributing to its superior performance

in terms of ADP.

In practical terms, a lower ADP value is desirable as it

indicates that the algorithm consumes less dynamic power per
unit area, making it more energy-efficient. Therefore, based on

the provided ADP values, it can be concluded that the divide

and conquer algorithm is a better choice for implementation on

the FPGA Artix 7 100T in comparison to the schoolbook

algorithm.

https://doi.org/10.38124/ijisrt/IJISRT24MAY261
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY261

IJISRT24MAY261 www.ijisrt.com 570

REFERENCES

[1]. J. Xie, P. K. Meher, M. Sun, Y. Li, B. Zeng, and Z.-H.

Mao, ”Efficient FPGA Implementation of Low-

Complexity Systolic Karatsuba Multi- plier Over

GF(2m) Based on NIST Polynomials,” in IEEE

Transactions on Circuits and Systems–I: Regular

Papers, vol. 64, no. 7, pp. 1815, July 2017. DOI:

10.1109/TCSI.2017.2667164

[2]. S. Khan, W.-K. Lee, A. Khalid, A. Majeed, and S. O.

Hwang, ’Area- Optimized Constant-Time Hardware

Implementation for Polynomial Multiplication,’ in IEEE

Embedded Systems Letters, vol. 15, no. 1, pp. 5, March
2023. DOI: 10.1109/LES.2023

[3]. Lu, Y. Cui, A. Khalid, C. Gu, C. Wang, and W. Liu, ”A

Novel Combined Correlation Power Analysis (CPA)

Attack on Schoolbook Polynomial Multiplication in

Lattice-based Cryptosystems,” in 2022 IEEE 35th

International System-on-Chip Conference (SOCC),

Nanjing, China, 2022, pp. 1-6, DOI:

10.1109/SOCC56010.2022.9908076.

[4]. Y. Cui, Y. Zhang, Z. Ni, S. Yu, C. Wang, and W. Liu,

”High-Throughput Polynomial Multiplier for

Accelerating Saber on FPGA,” in IEEE Transactions on

Circuits and Systems—II: Express Briefs, vol. 70, no.
9, September 2023.

[5]. Z.-Y. Wong, D. C.-K. Wong, W.-K. Lee, K.-M. Mok,

W.-S. Yap, and A. Khalid, ”KaratSaber: New Speed

Records for Saber Polynomial Multiplication Using

Efficient Karatsuba FPGA Architecture,” in IEEE

Transactions on Computers, vol. 72, no. 7,July 2023

[6]. P. He, Y. Tu, Ç . K. Koç, and J. Xie, ”Hardware-

Implemented Lightweight Accelerator for Large Integer

Polynomial Multiplication,” in IEEE Computer

Architecture Letters, vol. 22, no. 1, pp. 1-1, January-

June 2023.
[7]. Y. Cui et al., ”High-Throughput Polynomial Multiplier

for Accelerating Saber on FPGA,” in IEEE Transactions

on Circuits and Systems—II: Express Briefs, vol. 70,

no. 9, pp. 1465-1469, September 2023.

[8]. Zoni, A. Galimberti, and W. Fornaciari, ”Flexible and

Scalable FPGA-Oriented Design of Multipliers for

Large Binary Polynomials,” in IEEE Access, DOI:

10.1109/ACCESS.2022.3084732.

https://doi.org/10.38124/ijisrt/IJISRT24MAY261
http://www.ijisrt.com/

