
Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1444

Understanding SQL Injection Attacks:

Best Practices for Web Application Security

Tanzila Hasan Pinky1; Kaniz Ferdous2; Jarin Tasnim3; Kazi Shohaib Islam4

Abstract:- SQL (Structured Query Language) injection

represents a security weakness that enables attackers to

run SQL commands within a web applications database.

When exploiting a designed application lacking input

validation a malicious actor can control input data to

execute SQL queries. The objective of detecting SQL

injection vulnerabilities is to identify any section of a web

application to user input exploitation, for SQL injection

attacks and confirm that the application adequately

validates user inputs. The aim of this project is to try and

form an attack chain and test the same against any

website to assess the website for any weak links and

identify any entry points that an attacker could use to

penetrate the system and take control of the same.

From the paper it is figured that most of the tools

only check the vulnerability for the given URL and do not

crawl through the webpages and find if the vulnerability

is present in any of the other pages. In this project, we are

taking the additional step to confirm that there are no

vulnerabilities mentioned in this research present in any

of the webpages.

Keywords:- SQL Injection, SQL Queries, Vulnerabilities,

Website, URL, Webpages.

I. INTRODUCTION

In today's era web applications are essential, in our

lives helping us with tasks like online shopping and sharing

data. The main goal of this study is two pronged; first to

examine how well web applications can withstand security

risks and second to suggest and assess methods to improve

their ability to defend against threats. t's not only the option

to defend ourselves from the attacker but also think like them
to check the security of the webpages from the queries of the

attackers. By this, all the points of the security will be tested

and implemented carefully. For browsing the online pages

and make them more user friendly as well trustworthy this

research will be more convenient and facilizing for the users.

However, relying on these platforms also exposes us to

security risks that could compromise our information. As

students studying computer science, it's our duty to protect.

This data and keep the confidentiality of the user’s
information’s. Our study focuses on evaluating the security

of web applications specifically looking into vulnerabilities

such as SQL injection, Cross Site Scripting (XSS), and

HTTP Strict Transport Security (HSTS). Our goal is to

pinpoint weaknesses and suggest ways to strengthen defence

mechanisms. Divided into three parts our research delves

into testing for SQL injection XSS scripting and HSTS

vulnerabilities. This study aims to provide a comprehension

of web application security paradigms by combining real

world data and theoretical perspectives. By examining these

weaknesses and exploring ways to mitigate them we aim to

offer insights, for improving web application security.
Through this study, we aim to enhance understanding of web

application security and help stakeholders defend against

threats while maintaining user trust in platforms. For the

testing environment we are going to use the following

structure below:

Fig 1: Proposed Architecture of the Testing Applications

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1445

In this paper we will proceed with the steps; (II)

presenting the findings of our research and insights gained

from them (III) demonstrating the outcomes of our study and

research by outlining the challenges for our strategy, (IV)

following by a discussion on the significance of our

discoveries and (V) potential areas for further exploration, in

future work.

II. RELATED WORKS

Research on the use of the black-box method for

penetration testing, with a specific focus on SQL injection

attacks. This research only gave more statistical information

than technical information and goes on to explain the

vulnerability of every website and how it is important to

perform penetration testing at regular intervals to better

safeguard the web application [1]. Oliver Moradov on SQL

Injection Testing methods [10] mentioned in a blog, there are

5 types of testing for an SQL Injection: Stacked Query
Testing (Completing an SQL query and writing a new one

on top of the previous), Error-Based Injection testing

(exploiting SQL error messages), Boolean-Based Injection

Testing (adding conditional statements), Out-of-Band

(Blind) Exploit Testing and Time Delay Exploit Testing

(monitoring server response time). The fist documentation

for SQL injection was exploited in 1998 by a researcher and

hacker where it was mentioned that with basic coding skills,

one could use unauthorized SQL commands on legitimate

SQL statements to extract confidential information from a

database. There are multiple tools to test for every one of

these vulnerabilities separately and there are a lot of
applications that offer tests for various vulnerabilities

combined. But all these tools require basic knowledge of

how the application works and the kind of parameters that

need to be sent to execute the tests [8]. In another research

paper network traffic patterns uses machine learning

algorithms to identify unusual or suspicious traffic patterns

that may indicate an attempt to launch a SQL injection

attack. The proposed detection system employs machine

learning methods to identify patterns and scrutinize gathered

data for indications of an SQL injection risk [3]. Since this

isn't a tool there could be hurdles, in constructing the model
and initiating the testing phase. Like the machine learning

model, another proposal uses runtime validation to detect

and prevent SQL Injection Attacks (SQLIA). The model uses

a proxy server as a middle layer between the client and

database server to check input queries and filter out any

SQLIA [12]. For an understanding of various detection and

prevention techniques like Hybridization of Knuth-Morris-

Pratt (KPM) and Boyer-Moore (BM) algorithm, detection

model to scan SQL injection on the web environment for the

SQL Injection attacks like Tautology, Union Queries, Piggy-

Backed attack etc, which will be useful for us to write

different SQL Injection attack queries [2].The cheat sheet
(Invicti, n.d.), like other blogs, gives an in-depth explanation

of different SQL injection attacks on MySQL, Microsoft

SQL Server, ORACLE and PostgreSQL SQL servers [5].

SQL Injection blog gives a good introduction on how to test

for SQL Injection attacks. From this blog, we will be using

the examples provided for basic use cases [16]. In another

blog, there are given examples for each testing method.

Using these queries, we will test for each type of SQL

Injection attack [15].Moving from simpler use cases, we will

use queries from the exhaustive list provided by the OWASP

organization to test for advanced cases for our research

testing [13].For a deeper explanation of SQL Injection with

the threat modelling, explain the impact of the attack and

what the attacker is capable of, applications where SQL

Injection is common like PHP and ASP and the severity of
SQL Injection attacks. Also, briefing the occurrence and the

consequences of the attack. Making this remark makes one

wonder about how we could link a SQL Injection attack with

other forms of vulnerability [14]. In a blog the major

problem arises because there are not enough tests written to

validate all negative use cases when the code is developed.

Organizations might not have enough funding to dedicate a

testing team or have sufficient manpower. For a persistent

attacker, this is an easy target. The author suggests using

Feedback-Based Fuzzing to overcome the issues. This

automates the testing process along with generating the test
data based on the previous results [9].

III. PROPOSED MODEL

 System Construction

This model is a collection of tools used for checking

vulnerabilities in a website. This framework uses various

open-source applications to identify different types of

vulnerabilities. We implement Vulnerability Checker using

Python and vulnerability testing software like SQLMap,

Nmap, DirBuster, Nikto and various Python modules to test

the website for SQL Injection attacks, Man-in-the-Middle
attacks by testing if the web application has HTTP Strict-

Transport-Policy and Cross-Site scripting attack.

 SQLMap: SQLMap is an open-source penetration testing

tool used for testing SQL injections which generates the

SQL queries to test against the website. SQLMap has a

lot of options to choose from and it is extensive to test for

sql injection. Basic arguments required to execute the

sqlmap command is ‘-u’ option, to specify we are going

to enter an URL and the second argument is the URL

itself.

 Nmap: Nmap short for Network mapper, is an open-

source application to discover network and audit security

vulnerabilities. Nmap needs the URL as a mandatory

argument and depending on the requirements additional

options can be provided to get the desired output.

 Dir buster: Dir buster is a Java application used for brute

forcing files and directories on a web application. It tries

to find any hidden files or directories within the

application. Dir buster tool reads all files and directories

on the website and displays on the terminal. The output

can also be redirected to an output file.

 Nikto: Nikto is an open-source application that scans web

servers and common gateway interfaces. Nikto provides

support for HTTP proxy, accepts cookies, and verifies if

the server is running on any outdated components. Nikto

takes 2 inputs as arguments. First, -h to indicate host URL

and the second argument URL or the IP address of the

web application to test.

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1446

Fig 2: Flow Chat of the System Process

A Python script combines it all and imports sqlmap-dev

version. All options that need to be executed are sent as

arguments to the sqlmap-dev script and the command is
executed with the appropriate values and the result is

returned which can be redirected to a file. Various options of

sqlmap are tested the same way. Once the results are taken,

to check for the strength web application, by checking if the

HSTS header is present in the first HTTPS response from the

server. If the HSTS header is present, then the website cannot

be downgraded to an HTTP site. Moving on to the next level

of testing for cross-site scripting possibilities in the web

application. Retrieving all the forms available on the

webpage and insert a Java script into the forms. If the website

executes the malicious script, then the website is vulnerable

to cross-site scripting attacks. All these tools check for the
URL specified and do not go forward and check if any other

web pages on the site is vulnerable to these attacks. Using an

application called Dir buster, we can extract all hidden

directories and files and try to navigate to these web pages.

By passing these webpages as arguments to the script, we

can check if all the webpages on the website is vulnerable to

any security risks.

 Developed System

The Python script includes a set of tools that thoroughly

check the website's compliance, with cybersecurity
standards especially focusing on HTTP Strict Transport

Security (HSTS) and the validity of Secure Socket Layer

(SSL) certificates. It also evaluates the susceptibility, to

cross-site scripting (XSS) by examining web forms. To

detect SQL Injection the script uses a subprocess to handle

command line inputs. It is designed for users of all skill

levels providing two testing options: Intermediate and

Expert. The script implements a comprehensive suite of

tests, covering the gamut of injection techniques including

Error-based, Time-based, and Union Query-based.

 SQL Injection Testing: Sqlmap additionally can be used

to automate various tasks, making it a valuable tool for

streamlining the testing process and maximizing

efficiency. Upon executing the SQL injection test, it was

determined that the target object was not susceptible to

injection. The testing procedure proceeds to assess the

remaining links discovered on the webpage. Further

evaluation is performed to ensure that the website

remains secure against potential security threats.

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1447

Fig 3: Intermediate Level Users Test of SQL Map Test

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1448

Fig 4: For Second Level of Webpage SQL Injection Test

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1449

Fig 5: Both of Figures are Test Result for SQL Injection

 Cross-Site Scripting Testing: The cross-site scripting

assessments are not limited to the initial URL provided

by the user, but rather encompass a broader examination

of other pages available on the website to identify those

that are susceptible to XSS attacks. For intermediate

level users we go a level up and test all available
webpages on the website. To retrieve the available

webpages, we use dirb to find any hidden files or folders.

Custom Word List generator generates a wordlist based

on the words present on the website. Dirb takes as

argument the wordlists created by CeWL and a

predefined wordlist to navigate through the webpages to

identify any hidden folder or files. Dirb identifies hidden

folders and files. We store these findings in an output file

and use the found links to test for presence of cross-site

scripting in all these webpages. Cross-site scripting for
intermediate level users is done not just for the given

website, but also for other files found using dirb tool. The

script iterates over the found webpages and applies cross-

site scripting tests to identify the vulnerability if any.

Fig 6: DIRB Executions Result

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1450

Fig 7: Results of Cross-Site-Scripting

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1451

 HSTS Header Tester: Sqlmap also performs tests for

more advanced security vulnerabilities. These tests

include verifying the availability of the strict-transport-

security header, which is an important security feature

that helps to protect against man-in-the-middle attacks. It

also provides valuable insight into the underlying

technologies and components utilized in the creation of

the web application, including the version and type of

database employed. These tests confirm if the specific

security vulnerability is present on the website. Thus,

giving the owner an idea of the security of their web

application.

Fig 8: SSL Certification and HSTS Header Test Results for Components

 Valid SSL Certification: Sqlmap also checks for the
presence and configuration of SSL certificates, which are

used to encrypt communication between the client and

server. By verifying the SSL certificate, Sqlmap can

identify potential vulnerabilities that could be exploited

by an attacker. Other tests that Sqlmap performs include

checking for cross-site scripting vulnerabilities, testing

for cross-site request forgery, and validating the security

of session cookies. Tests for strict-transport-policy

header, verification of valid SSL certificate and check for

any outdated components are a part of expert level testing

too.

 Remaining vulnerabilities testing in Expert level:
Remaining tests are like that of the intermediate user

level. Cross-site scripting tests are performed for all the

hidden files and folders obtained through dirb. Tests for

strict-transport-policy header, verification of valid SSL

certificate and check for any outdated components are a

part of expert level testing too. Expert level users can run

any SQL query to test the website using this script. All

other functionalities are like intermediary users. User

enters a query that he wants to test on the vulnerable

server to see the response he receives. Every tool initiated

a sub process and the corresponding results were stored
in a log file which was further accessed to retrieve

information.

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1452

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1453

Fig 9: Results of the Remaining Vulnerability in the Expert Level

IV. RESULT

This analysis has provided a thorough examination of

the current landscape of SQL injection testing and

emphasized the significance of being proactive in protecting

against these types of attacks. The increasing prevalence of

SQL injection attacks and the potential consequences, such

as data breaches, highlight the need for organizations to take

these threats seriously. By utilizing the right tools and
techniques, as well as implementing secure coding practices,

organizations can significantly reduce their risk of falling

victim to a SQL injection attack. It is important to note that

the threat of SQL injection is constantly evolving, and

organizations must stay vigilant and stay up to date with the

latest technologies and best practices. SQL injection is a

serious security threat that can have devastating

consequences for organizations if not properly addressed.

The purpose of this thesis was to explore the various

methods and techniques used for SQL injection testing along

with testing for HTTP Strict Transport Policy header and
check for cross-site scripting attacks. In conclusion, by

taking a comprehensive and proactive approach to security

as it ensures the confidentiality, integrity of their sensitive

information.

V. CONCLUSION AND FUTURE WORK

To ensure the web applications' security we were able

to test the XSS and HSTS tools that will reduce the chance

of website vulnerability by SQL injection attack. For

detecting the vulnerabilities this paper discusses the methods

and the used tools in testing to identify the loopholes for
attacks. Discusses methods and tools for detecting these

vulnerabilities. Furthermore, it underscores the importance

of incorporating development practices such, as input

validation and query usage to thwart SQL attacks. The

serious consequences of SQL attacks, including data loss and

financial implications underscore why organizations should

implement security strategies that involve testing and strong

protective measures. The thesis stresses the significance of

XSS testing to prevent script injections on web pages and

HSTS testing to ensure secure HTTPS transmissions that

protect users from attacks and data breaches.

In the future, for easy access, as we want to secure the

process of online use as well as computer usage, we are also

working to create software for reducing the risk of SQL

injection attacks for the webpages. Such a tool would

significantly improve an organization's ability to defend

against attacks and maintain the confidentiality of their

information.

In conclusion, the thesis highlights the importance of

taking an approach, to security by staying informed about

practices and emerging technologies to address evolving
security threats. If this process can be adopted by the people

who work in online businesses or use online for their

working sites can easily protect their personal information

and secure credentials from SQL injection attacks. This can

ensure the confidentiality, accessibility, and integrity of the

user's information.

ACKNOWLEDGEMENT

We would like to express our gratitude to parents and our

friends also dealing with the solution to SQL Injection attack

in our research paper, we would thank the group members
for contributing their fullest in completing this paper.

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY501

IJISRT24MAY501 www.ijisrt.com 1454

REFERENCES

[1]. Alde Alanda, D. S. (September 2021). Web

Application Penetration Testing Using SQL Injection.

International Journal On Informatics Visualization,

320-326.

[2]. Shobana R, D. M. (2020). A Thorough Study On SQL

Injection Attack-Detection And Prevention
Techniques And Research Issues. Journal of

Information and Computational Science, 135-143.

[3]. Bandi Aruna, B. U. (2020). SQLID Framework In

Order To Perceive SQL Injection Attack on Web

Application. ICRAEM.

[4]. GitHub. (n.d.). sqlmapproject. Retrieved from

GitHub: https://github.com/sqlmapproject/sqlmap

[5]. Invicti. (n.d.). SQL Injection Cheat Sheet. Retrieved

from Invicti: https://www.invicti.com/blog/web-

security/sql-injection-cheat-sheet/

[6]. Chris Sullo, D. L. (n.d.). Nikto2. Retrieved from
CIRT.net: https://cirt.net/Nikto2

[7]. Kali. (n.d.). dirbuster. Retrieved from Kali:

https://www.kali.org/tools/dirbuster/

[8]. Malware Bytes. (n.d.). What is SQL Injection.

Retrieved from Malware Bytes:

https://www.malwarebytes.com/sql-injection

[9]. Wagner, R. (n.d.). How To Test for SQL Injections

[Complete Guide]. Retrieved from Code Intelligence:

https://www.code-intelligence.com/blog/how-to-

test-for-sql-injections

[10]. Moradov, O. (2022, May 12). 5 SQL Injection Test

Methods and Why to Automate Your Testing.
Retrieved from Bright:

https://brightsec.com/blog/sql-injection-test

[11]. nmap.org. (n.d.). Nmap: the Network Mapper.

Retrieved from nmap.org: https://nmap.org/

[12]. Abdalla Hadabi, E. E. (March 2022). An Efficient

Model to Detect and Prevent SQL Injection Attack.

Journal of Karary University for Engineering and

Science (JKUES), 141-146.

[13]. OWASP. (n.d.). SQL Injection | OWASP Foundation.

Retrieved from OWASP: https://owasp.org/www-

community/attacks/SQL_Injection
[14]. OWASP. (n.d.). WSTG - Latest | OWASP

Foundation. Retrieved from OWASP:

https://owasp.org/www-project-web-security-

testing-guide/latest/4-

Web_Application_Security_Testing/07-

Input_Validation_Testing/05-

Testing_for_SQL_Injection

[15]. Singh, S. (2022, July 07). Common SQL Injection

Attacks. Retrieved from Pentest Tools:

https://pentest-tools.com/blog/sql-injection-attacks

[16]. Software Testing Help. (2022, October 25). SQL

Injection Testing Tutorial (Example and Prevention
of SQL Injection Attack). Retrieved from Software

Testing Help:

https://www.softwaretestinghelp.com/sql-injection-

how-to-test-application-for-sql-injection-attacks/

https://doi.org/10.38124/ijisrt/IJISRT24MAY501
http://www.ijisrt.com/
https://github.com/sqlmapproject/sqlmap
https://www.invicti.com/blog/web-security/sql-injection-cheat-sheet/
https://www.invicti.com/blog/web-security/sql-injection-cheat-sheet/
https://cirt.net/Nikto2
https://www.kali.org/tools/dirbuster/
https://www.malwarebytes.com/sql-injection
https://www.code-intelligence.com/blog/how-to-test-for-sql-injections
https://www.code-intelligence.com/blog/how-to-test-for-sql-injections
https://brightsec.com/blog/sql-injection-test
https://nmap.org/
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://pentest-tools.com/blog/sql-injection-attacks
https://www.softwaretestinghelp.com/sql-injection-how-to-test-application-for-sql-injection-attacks/
https://www.softwaretestinghelp.com/sql-injection-how-to-test-application-for-sql-injection-attacks/

