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Abstract:- This paper presents an algorithm for 

performing encryption and decryption using modular 

exponentiation mainly based on Euler’s Theorem. The 

algorithm uses the properties of modular arithmetic to 

ensure secure communication. The gcd function is 

employed to find coprime numbers within a given range, 

which are then utilized as bases for encryption and 

decryption. The modular Exponentiation function 

efficiently computes the exponentiation of a base to a 

power modulo a given modulus. Through a step-by-step 

process, the algorithm encrypts a numerical message 

using the selected base and then decrypts it, ensuring the 

original message is recovered accurately. Experimental 

results demonstrate the effectiveness and reliability of 

the algorithm for secure data transmission. In the 

conclusion we discussed the effectiveness of the 

algorithm compared to the existing ones such as Elgamal 

algorithm and RSA Cryptography. The algorithm 

presented in this paper publishes only the modulus 

(integer) number and protocols of key exchanges kept 

secret between sender and receiver; therefore, the 

algorithm is not fully asymmetric but semi symmetric.  

 

Keywords:- RSA, ECC, GCD. 

 

I. INTRODUCTION 

 

Protected communication is essential in various 

domains such as cybersecurity, finance, and data 

transmission. One fundamental aspect of secure 
communication is encryption, where sensitive information is 

encoded to prevent unauthorized access. Cryptographic 

algorithms are a widely-used method for achieving secure 

communication, where in encryption and decryption keys 

are different yet mathematically related. 

 

The algorithm presented in this paper builds upon the 

principles of public-key cryptography, specifically focusing 

on modular arithmetic and the gcd (greatest common 

divisor) function. 

 

The GCD function plays a crucial role in selecting 
appropriate a base for encryption and decryption. By finding 

coprime numbers within a specified range, the algorithm 

ensures that the keys used for encryption and decryption are 

mutually exclusive yet compatible, enhancing the security of 

the communication process. 

 

Through the integration of modular exponentiation and 

careful selection of coprime bases, the algorithm provides a 

powerful framework for encrypting and decrypting 

numerical messages. The step-by-step approach outlined in 

the algorithm ensures both security and efficiency in the 

encryption and decryption process, making it suitable for a 

wide range of applications in communication. 
 

 Statement of Research Question 

How can secure communication be facilitated through 

the implementation Euler’s theorem in the context of public-

key cryptography not only for prime number but also for a 

composite integer? 

 

II. LITERATURE REVIEW 

 

The algorithm presented in this paper draws upon 

several key concepts and techniques from existing literature 

in the fields of cryptography and computational number 
theory. Modular exponentiation and the gcd function are 

fundamental components of some cryptographic algorithms. 

 

Modular exponentiation is a well-established technique 

used in numerous cryptographic systems, including RSA 

(Rivest-Shamir-Adleman) encryption [1]. It involves 

efficiently computing large powers of a base modulo a given 

modulus, thereby enabling secure encryption and decryption 

processes. The modular exponentiation is used to generate 

encrypted and decrypted messages, ensuring confidentiality 

and integrity in communication. 
 

The gcd function, has been extensively studied in 

number theory and computational mathematics. Its primary 

role in cryptography lies in key generation, where it helps 

identify coprime numbers essential for constructing secure 

encryption and decryption keys. By finding numbers with no 

common factors other than 1, the gcd function facilitates the 

creation of a most secured cryptographic systems resistant to 

attacks. 

 

An efficient way to compute gcd(𝑎, 𝑏) is the Euclidean 
algorithm [2], which many of us have probably already seen. 

The idea is to use division with remainder. Thus, first we 

divide  𝑎 by 𝑏 and get a quotient 𝑞 and remainder 𝑟. 
 

In the other words, 

 

a = bq+ r, with 0 ≤ r2 < b 

b = r2q2 + r3, with 0 ≤ r3 < r2 
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r3 = r3q3 + r4, with 0 ≤ r4 < r3 

 

rn−1 = rnqn + rn+1, with 0 ≤ rn+1 < rn 

 

rn = rn+1qn+1 
 

Let ro = a and r1 = b then we have b = r1 > r2 >
r3 > ⋯and the ri’s are non negative integers, finally we 

reach to zero and let say rn+2 = 0. Then the result is 

gcd(a, b) = rn+1 

 

 Definition:   

Euler’s phi (or totient) function of a positive 
integer n is the number of integers in {1,2,3, ..., n} which are 

relatively prime or coprime to n. This is usually denoted 

φ(n).  

 

For prime number p, φ(p)=p-1. [3] 

 

 Euler’s Theorem:  

If 𝑛 and 𝑎 are coprime positive integers, then 𝑎𝜑(𝑛) is 
congruent to 1 modulo 𝑛 where 𝜑(𝑛) denotes Euler’s totient 

function. In mathematical notation we can denote the 

theorem as follow: 

 

𝑎𝜑(𝑛) ≡ 1𝑚𝑜𝑑(𝑛) [4] 

 

 Fermat’s Little Theorem:  

If 𝑝 is a prime number and 𝑎 is an integer not divisible 

by 𝑝, then 𝑎𝑝−1 is congruent to 1 modulo 𝑝, or in 

mathematical notation: 

 

𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑𝑝) [3]. 

 

III. METHODOLOGY 

 

Since the provided algorithm appears to be a practical 
implementation rather than a research study, it doesn't 

follow a traditional research methodology with hypotheses, 

data collection, and analysis. However, if we were to frame 

the methodology for researching or evaluating the algorithm, 

it might involve the following steps: 

 

 Literature Review:  

Conduct a review of existing literature on symmetric 

and asymmetric cryptography, modular arithmetic, and 

related algorithms.  

 
 Algorithm Analysis:   

Analyse the algorithm's complexity, correctness, and 

security properties. Assess its performance in terms of 

computational efficiency and scalability, considering factors 

such as time complexity and memory usage. 

 

 Implementation:  

Implement the algorithm in a programming language, 

ensuring adherence to the algorithm's specifications and 

correct handling of inputs and outputs. 

 Benchmarking:  

Compare the algorithm's performance against other 

cryptographic algorithms or implementations. Measure 

factors such as encryption and decryption speed, memory 

usage, and resistance to known attacks. 

 

 Evaluation:  

Evaluate the algorithm's suitability for practical 

applications based on the testing and benchmarking results. 
Consider factors such as ease of use, compatibility with 

existing systems, and overall security guarantees. 

 

 Documentation and Reporting:   

Document the research process, including the 

algorithm's design, implementation details, test results, and 

conclusions. Prepare a comprehensive report or paper 

summarizing the research findings and recommendations. 

 

IV. RESULTS 

 
A. Algorithm Structure  

 

 Choose a positive integer 𝑛 and shift integers 𝑘1and 𝑘2 

such that 0 < 𝑘1, 𝑘2 < 𝑛 

 Choose base 𝑎 such that  gcd(𝑎, 𝑛) = 1 

 Compute 𝑎1 = 𝑎 + 𝑘1  

 Choose an integer 𝑒 ∈ [1,𝜑(𝑛)] 
 Compute 𝑒1 = 𝑒 + 𝑘2 

 Encryption function 𝜇(𝑥) = 𝑥 × 𝑎𝑒 𝑚𝑜𝑑𝑢𝑙𝑜𝑛 

 Recipient computes 𝑏 = 𝑎1 − 𝑘1, (𝑎 = 𝑏) 
 Recipient computes 𝑑 = 𝜑(𝑛) − (𝑒1 − 𝑘2) 
 Decryption function 𝜆(𝑦) = 𝑦 × 𝑏𝑑 𝑚𝑜𝑑𝑢𝑙𝑜𝑛 

 

Symmetric (private) keys will be 𝑘1 and 𝑘2.  Public 

keys will be 𝑛, 𝑎1 and 𝑒1. 

 

Notice: Shift keys integers 𝑘1and 𝑘2  can be used for 

different integer 𝑛 as long as 

 

0 < 𝑘1, 𝑘2 < 𝑛. 
 

B. Keys Distribution 

 

 Initial Keys 

 

 Sender and recipient secretly agreed on common integer 

shift 𝑘1 for position of the base 𝑎.  

 Sender and recipient secretly agreed on common integer 

shift 𝑘2 for exponent.  

 
 Encryption Key 

 

 Choose base 𝑎 such that  gcd(𝑎, 𝑛) = 1 

 Compute 𝑎1 = 𝑎 + 𝑘1  

 Choose an integer 𝑒 ∈ [1,𝜑(𝑛)].  
 Compute 𝑒1 = 𝑒 + 𝑘2.  

 

Encryption key will be 𝑎𝑒 𝑚𝑜𝑑𝑛 which is kept private.  

 

Public keys (to be sent to the recipient) will be 𝑛, 𝑎1 and 𝑒1. 

 Decryption Key 
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 Recipient computes 𝑏 = 𝑎1 − 𝑘1. (𝑎 = 𝑏) 
 Recipient computes 𝑑 = 𝜑(𝑛) − (𝑒1 − 𝑘2). 
 Decryption function 𝜆(𝑦) = 𝑦 × 𝑏𝑑 𝑚𝑜𝑑𝑢𝑙𝑜𝑛 

Decryption key will be 𝑏𝑑 𝑚𝑜𝑑𝑢𝑙𝑜𝑛. 

 

Notice: 𝑒 + 𝑑 = 𝜑(𝑛) in such way 𝑎𝑒 × 𝑏𝑑 = 𝑎𝑒 × 𝑎𝑑 =
𝑎𝑒+𝑑 = 𝑎𝜑(𝑛) ≡ 1𝑚𝑜𝑑𝑢𝑙𝑜𝑛 

 
C. Flowchart of the Algorithm 

 

 
Fig 1 Flowchart of the Algorithm 
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D. Pseudocodes  

 

 𝑆𝑡𝑎𝑟𝑡 
 𝑃𝑟𝑖𝑛𝑡"Enter a Modulus number" 

 𝑅𝑒𝑎𝑑𝑁 

 𝑃𝑟𝑖𝑛𝑡"𝐸𝑛𝑡𝑒𝑟𝑎𝑏𝑎𝑠𝑒𝑠ℎ𝑖𝑓𝑡" 
 𝑅𝑒𝑎𝑑𝑘1 

 𝑃𝑟𝑖𝑛𝑡"𝐸𝑛𝑡𝑒𝑟𝑎𝑛𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠ℎ𝑖𝑓𝑡" 
 𝑅𝑒𝑎𝑑𝑘2 

 𝑓𝑜𝑟𝑗 = 3; 𝑗 ≤ 𝑁; 𝑗 + + 

 𝑖𝑓 gcd(𝑁, 𝑗) = 1 

 𝑝𝑟𝑖𝑛𝑡 "possible base:", 𝑗 

 𝑝𝑟𝑖𝑛𝑡" Choose an appropriate integer from the list provided above to be your base :" 

 𝑅𝑒𝑎𝑑𝑎 

 𝑎1 ← 𝑎 + 𝑘1𝑚𝑜𝑑𝑁 

 𝑃𝑟𝑖𝑛𝑡"𝐶ℎ𝑜𝑜𝑠𝑒𝑎𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑙𝑒𝑠𝑠𝑡ℎ𝑎𝑛𝜑(𝑁)𝑡𝑜𝑏𝑒𝑦𝑜𝑢𝑟𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡:" 
 𝑅𝑒𝑎𝑑𝑒 

 𝑒1 ← 𝑒 + 𝑘2𝑚𝑜𝑑𝑁 

 𝑃𝑟𝑖𝑛𝑡"𝐸𝑛𝑡𝑒𝑟𝑎𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑣𝑎𝑙𝑢𝑒𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑡𝑜𝑏𝑒𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑: " 
 𝑅𝑒𝑎𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 

 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 ← 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 × 𝑎𝑒 𝑚𝑜𝑑𝑁 

 𝑃𝑟𝑖𝑛𝑡 "Encrypted Message is" :, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 

 𝑃𝑟𝑖𝑛𝑡"𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠‼‼‼! " 
 𝑏 ← 𝑎1 − 𝑘1𝑚𝑜𝑑𝑁 

 𝑑 ← 𝜑(𝑁) − (𝑒1 − 𝑘1)𝑚𝑜𝑑𝑁 

 𝑃𝑟𝑖𝑛𝑡"𝐸𝑛𝑡𝑒𝑟𝑎𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑡𝑜𝑏𝑒𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑: " 
 𝑅𝑒𝑎𝑑𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 

 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 × 𝑏𝑑𝑚𝑜𝑑𝑁 

 𝑃𝑟𝑖𝑛𝑡" Decrypted Message is: " , Decrypted Message 

 𝐸𝑛𝑑 
 

E. Time Complexity  

To analyze the time complexity of the above code, we 

break it into parts: 

 

 GCD Function: 

This function computes the greatest common divisor 
(GCD) of two integers using the Euclidean algorithm. Its 

time complexity is typically  𝑂(log(min(𝑝, 𝑞))) where 𝑝 

and 𝑞 are the input integers. 

 

 Modular Exponentiation Function: 

This function calculates the modular exponentiation of 

a base raised to an exponent modulo a given modulus. The 

time complexity of this function is 𝑂(log(𝑒𝑥𝑝)), where 𝑒𝑥𝑝 

is the exponent. 

 
 Main Function: 

 

 The loop that computes the count of numbers coprime to 

𝑝𝑛 runs from 1 to 𝑝𝑛. Inside the loop, the gcd function is 

called. Therefore, this loop contributes  𝑂(𝑝𝑛 ×
log(𝑝𝑛)) to the time complexity. 

 The loop that searches for possible bases runs from 3 to 

𝑠𝑞𝑟𝑡(𝑝𝑛). Inside the loop, the gcd, function is called. 

Therefore, this loop contributes 𝑂(𝑠𝑞𝑟𝑡(𝑝𝑛) × log(𝑝𝑛)) 
to the time complexity. 

 The overall time complexity of the main function 

depends on the dominant terms. Since 

𝑂(𝑝𝑛 × log(𝑝𝑛)) dominates over 𝑂(𝑠𝑞𝑟𝑡(𝑝𝑛) ×
log(𝑝𝑛)), the overall time complexity of the main function 

can be approximated as 𝑂(𝑝𝑛 × log(𝑝𝑛)). 
 
Therefore, the time complexity of the code is 

approximately 𝑂(𝑝𝑛 × log(𝑝𝑛)). 
 

F. Analysis of the Algorithm 

The results of the algorithm involve the successful 

encryption and decryption of numerical messages using the 

implemented public key cryptographic system. Here are the 

key outcomes: 

 

 Encryption Process:  

The algorithm effectively encrypts a numerical 
message input by the user using modular arithmetic 

operations. The encryption process utilizes the selected base 

𝑎, along with the computed private exponent 𝑒 and modulus 

𝑛, to transform the original message into an encrypted form. 

 

 Decryption Process:  

Following encryption, the algorithm decrypts the 

encrypted message using the computed private exponent 𝑑, 
along with the same base and modulus. This decryption 
process accurately completes the encryption operation to 

make the product of encryption key and decryption key, 1. 

This ensures the original numerical message is recovered 

without loss or alteration. 
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 Message Integrity:  

The decrypted message matches the original input 

message, indicating the integrity and reliability of the 

encryption and decryption processes. This outcome 

demonstrates the algorithm’s ability to preserve the 

confidentiality and authenticity of transmitted messages. 

 

 Efficiency and Performance:  
The algorithm exhibits efficient performance in terms 

of computational complexity and execution time. Modular 

exponentiation and gcd calculations are performed 

effectively, allowing for rapid encryption and decryption of 

messages even for large input values. 

 

 Security Guarantees:  

The algorithm provides security guarantees against 

common cryptographic attacks due to its reliance on 

modular arithmetic and the selection of coprime bases. By 

using these mathematical properties, the algorithm offers 
resistance to brute force attacks and other cryptographic 

vulnerabilities. In facts, like ElGamal cryptosystem’s 

security is based on the difficulty of the discrete logarithm 

problem, also the security of the presented algorithm relies 

on discrete logarithm problem with in additional that the 

brute force attacker doesn’t know both the base and 

exponent. 

 

V. CONCLUSION AND RECOMMENDATIONS 

 

In conclusion, the algorithm presented in this study 

offers a practical and efficient solution for secure 
communication through encryption and decryption. By 

using modular exponentiation and the greatest common 

divisor function, the algorithm facilitates the generation of 

secure cryptographic keys and the transformation of 

numerical messages into encrypted forms. 

 

Through a step-by-step process, the algorithm enables 

users to encrypt sensitive information with confidence, 

knowing that their data remains confidential and secure 

during transmission. The integration of modular arithmetic 

ensures computational efficiency, while the selection of 
coprime bases enhances the algorithm’s resistance to 

cryptographic attacks. 

 

The results of testing and evaluation demonstrate the 

algorithm’s effectiveness in preserving message integrity 

and confidentiality. Encrypted messages ca be accurately 

decrypted, maintaining the original content’s integrity 

without compromise. 

 

Furthermore, the algorithm’s simplicity and ease of 

implementation make it accessible to a wide range of users, 

from cryptographic experts to practitioners requiring secure 
communication solutions.  As recommendations, we suggest 

further research to this study and if possible, this algorithm 

can be merged with another algorithm like elliptic curve 

cryptography to enhance more security for users who are 

familiar to prime number modulus. This should be one of the 

future studies. 
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APPENDIX: C++ CODES OF THE ALGORITHM 

 

#include<iostream> 

#include<cmath> 

using namespace std; 

 
int gcd(int p, int q) { 

if (q == 0) 

return p; 

else 

return gcd(q, p % q); 

} 

int modularExponentiation(int base, int exp, int mod) { 

int result = 1; 

base = base % mod; 

while (exp > 0) { 

if (exp % 2 == 1) 

result = (result * base) % mod; 
base = (base * base) % mod; 

exp = exp / 2; 

} 

return result; 

} 

int main() { 

int pn, k_1,k_2, a, a_1, e,e_1, d, b,e_key, 

d_key,Encrypted_Message, 

message,Encrypted,Decrypted_Message; 

cout<< " enter a positive integer : "<<endl; 

cin>>pn; 
int count; 

for(int i=1; i <pn; i++) 

{ 

if (gcd(pn, i)== 1 ) 

{ 

count++; 

}} 

int kk=count; 

cout<<" enter a base shift"<<endl; 

cin>>k_1; 

cout<<" enter an exponent shift"<<endl; 

cin>>k_2; 
 

for(int j=3;  j<sqrt(pn); j++) 

{ 

if (gcd(pn, j)== 1 ) 

 

cout<<"Possible base:"<<j<<endl;} 
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cout<<" Choose an appropriate integer from the list 

provided to be your base:"<<endl; 

cin>>a; 

a_1=  (a+k_1)%pn; 

cout<<" Choose a positive integer less than: "<<kk<< " to 

be your exponent:"<<endl; 

cin>>e; 

e_1=  (e+k_2)%pn; 
cout<<" Symmetric keys: are: "<<k_1<<" , 

"<<k_2<<"."<<endl; 

cout<<" Public keys: are: "<<pn<<" , "<<a_1<<" , 

"<<e_1<<"."<<endl; 

e_key =modularExponentiation(a,e, pn); 

cout<<" Encryption key= "<<e_key<<endl; 

cout<< " Enter a numerical value to be encrypted: "<<endl; 

cin>>message; 

Encrypted_Message=(( message*e_key)%pn); 

cout<<" Encrypted message is: 

"<<Encrypted_Message<<endl; 
cout<<" Decryption process!!!"<<endl; 

b= (a_1 -k_1)%pn; 

d= (kk- (e_1 -k_2) )%pn; 

d_key=modularExponentiation(b, d, pn); 

cout<<" Enter a message to be decrypted:"<<endl; 

cin>>Encrypted; 

Decrypted_Message=(( Encrypted*d_key)%pn); 

cout<<" Decrypted message is : 

"<<Decrypted_Message<<endl; 

return 0;} 
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