
Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY675

IJISRT24MAY675 www.ijisrt.com 1100

HJ Semi Symmetric Cryptographic Algorithm

Network Security and Cryptography

James HAKIZIMANA1, Master’s
Supervisors: Dr. Wilson MUSONI, PhD and Dr. Emmanuel BUGINGO, PhD

Master of Science in Information Technology (MSCIT), University of Kigali, Rwanda

Abstract:- This paper presents an algorithm for

performing encryption and decryption using modular

exponentiation mainly based on Euler’s Theorem. The

algorithm uses the properties of modular arithmetic to

ensure secure communication. The gcd function is

employed to find coprime numbers within a given range,

which are then utilized as bases for encryption and

decryption. The modular Exponentiation function

efficiently computes the exponentiation of a base to a

power modulo a given modulus. Through a step-by-step

process, the algorithm encrypts a numerical message

using the selected base and then decrypts it, ensuring the

original message is recovered accurately. Experimental

results demonstrate the effectiveness and reliability of

the algorithm for secure data transmission. In the

conclusion we discussed the effectiveness of the

algorithm compared to the existing ones such as Elgamal

algorithm and RSA Cryptography. The algorithm

presented in this paper publishes only the modulus

(integer) number and protocols of key exchanges kept

secret between sender and receiver; therefore, the

algorithm is not fully asymmetric but semi symmetric.

Keywords:- RSA, ECC, GCD.

I. INTRODUCTION

Protected communication is essential in various

domains such as cybersecurity, finance, and data

transmission. One fundamental aspect of secure
communication is encryption, where sensitive information is

encoded to prevent unauthorized access. Cryptographic

algorithms are a widely-used method for achieving secure

communication, where in encryption and decryption keys

are different yet mathematically related.

The algorithm presented in this paper builds upon the

principles of public-key cryptography, specifically focusing

on modular arithmetic and the gcd (greatest common

divisor) function.

The GCD function plays a crucial role in selecting
appropriate a base for encryption and decryption. By finding

coprime numbers within a specified range, the algorithm

ensures that the keys used for encryption and decryption are

mutually exclusive yet compatible, enhancing the security of

the communication process.

Through the integration of modular exponentiation and

careful selection of coprime bases, the algorithm provides a

powerful framework for encrypting and decrypting

numerical messages. The step-by-step approach outlined in

the algorithm ensures both security and efficiency in the

encryption and decryption process, making it suitable for a

wide range of applications in communication.

 Statement of Research Question

How can secure communication be facilitated through

the implementation Euler’s theorem in the context of public-

key cryptography not only for prime number but also for a

composite integer?

II. LITERATURE REVIEW

The algorithm presented in this paper draws upon

several key concepts and techniques from existing literature

in the fields of cryptography and computational number
theory. Modular exponentiation and the gcd function are

fundamental components of some cryptographic algorithms.

Modular exponentiation is a well-established technique

used in numerous cryptographic systems, including RSA

(Rivest-Shamir-Adleman) encryption [1]. It involves

efficiently computing large powers of a base modulo a given

modulus, thereby enabling secure encryption and decryption

processes. The modular exponentiation is used to generate

encrypted and decrypted messages, ensuring confidentiality

and integrity in communication.

The gcd function, has been extensively studied in

number theory and computational mathematics. Its primary

role in cryptography lies in key generation, where it helps

identify coprime numbers essential for constructing secure

encryption and decryption keys. By finding numbers with no

common factors other than 1, the gcd function facilitates the

creation of a most secured cryptographic systems resistant to

attacks.

An efficient way to compute gcd⁡(𝑎, 𝑏) is the Euclidean
algorithm [2], which many of us have probably already seen.

The idea is to use division with remainder. Thus, first we

divide 𝑎 by 𝑏 and get a quotient 𝑞 and remainder 𝑟.

In the other words,

a = bq+ r, with 0 ≤ r2 < b

b = r2q2 + r3, with 0 ≤ r3 < r2

https://doi.org/10.38124/ijisrt/IJISRT24MAY675
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY675

IJISRT24MAY675 www.ijisrt.com 1101

r3 = r3q3 + r4, with 0 ≤ r4 < r3

rn−1 = rnqn + rn+1, with 0 ≤ rn+1 < rn

rn = rn+1qn+1

Let ro = a and r1 = b then we have b = r1 > r2 >
r3 > ⋯and the ri’s are non negative integers, finally we

reach to zero and let say rn+2 = 0. Then the result is

gcd(a, b) = rn+1

 Definition:

Euler’s phi (or totient) function of a positive
integer n is the number of integers in {1,2,3, ..., n} which are

relatively prime or coprime to n. This is usually denoted

φ(n).

For prime number p, φ(p)=p-1. [3]

 Euler’s Theorem:

If 𝑛 and 𝑎 are coprime positive integers, then 𝑎𝜑(𝑛) is
congruent to 1 modulo 𝑛 where 𝜑(𝑛) denotes Euler’s totient

function. In mathematical notation we can denote the

theorem as follow:

𝑎𝜑(𝑛) ≡ 1⁡𝑚𝑜𝑑(𝑛) [4]

 Fermat’s Little Theorem:

If 𝑝 is a prime number and 𝑎 is an integer not divisible

by 𝑝, then 𝑎𝑝−1 is congruent to 1 modulo 𝑝, or in

mathematical notation:

𝑎𝑝−1 ≡ 1⁡(𝑚𝑜𝑑⁡𝑝) [3].

III. METHODOLOGY

Since the provided algorithm appears to be a practical
implementation rather than a research study, it doesn't

follow a traditional research methodology with hypotheses,

data collection, and analysis. However, if we were to frame

the methodology for researching or evaluating the algorithm,

it might involve the following steps:

 Literature Review:

Conduct a review of existing literature on symmetric

and asymmetric cryptography, modular arithmetic, and

related algorithms.

 Algorithm Analysis:

Analyse the algorithm's complexity, correctness, and

security properties. Assess its performance in terms of

computational efficiency and scalability, considering factors

such as time complexity and memory usage.

 Implementation:

Implement the algorithm in a programming language,

ensuring adherence to the algorithm's specifications and

correct handling of inputs and outputs.

 Benchmarking:

Compare the algorithm's performance against other

cryptographic algorithms or implementations. Measure

factors such as encryption and decryption speed, memory

usage, and resistance to known attacks.

 Evaluation:

Evaluate the algorithm's suitability for practical

applications based on the testing and benchmarking results.
Consider factors such as ease of use, compatibility with

existing systems, and overall security guarantees.

 Documentation and Reporting:

Document the research process, including the

algorithm's design, implementation details, test results, and

conclusions. Prepare a comprehensive report or paper

summarizing the research findings and recommendations.

IV. RESULTS

A. Algorithm Structure

 Choose a positive integer 𝑛 and shift integers 𝑘1and 𝑘2

such that 0 < 𝑘1, 𝑘2 < 𝑛

 Choose base 𝑎 such that gcd(𝑎, 𝑛) = 1

 Compute 𝑎1 = 𝑎 + 𝑘1

 Choose an integer 𝑒⁡ ∈ [1,⁡⁡⁡𝜑(𝑛)]
 Compute 𝑒1 = ⁡𝑒 + 𝑘2

 Encryption function 𝜇(𝑥) = 𝑥 × 𝑎𝑒 ⁡𝑚𝑜𝑑𝑢𝑙𝑜⁡𝑛

 Recipient computes 𝑏 = 𝑎1 ⁡− 𝑘1,⁡ (𝑎 = 𝑏)
 Recipient computes 𝑑 = 𝜑(𝑛) − (𝑒1 − 𝑘2)
 Decryption function 𝜆(𝑦) = 𝑦 × 𝑏𝑑 ⁡𝑚𝑜𝑑𝑢𝑙𝑜⁡𝑛

Symmetric (private) keys will be 𝑘1 and 𝑘2. Public

keys will be 𝑛, 𝑎1 and 𝑒1.

Notice: Shift keys integers 𝑘1and 𝑘2 can be used for

different integer 𝑛 as long as

0 < 𝑘1, 𝑘2 < 𝑛.

B. Keys Distribution

 Initial Keys

 Sender and recipient secretly agreed on common integer

shift 𝑘1 for position of the base 𝑎.

 Sender and recipient secretly agreed on common integer

shift 𝑘2 for exponent.

 Encryption Key

 Choose base 𝑎 such that gcd(𝑎, 𝑛) = 1

 Compute 𝑎1 = 𝑎 + 𝑘1

 Choose an integer 𝑒⁡ ∈ [1,⁡⁡⁡𝜑(𝑛)].
 Compute 𝑒1 = ⁡𝑒 + 𝑘2.

Encryption key will be 𝑎𝑒 ⁡𝑚𝑜𝑑⁡𝑛 which is kept private.

Public keys (to be sent to the recipient) will be 𝑛, 𝑎1 and 𝑒1.

 Decryption Key

https://doi.org/10.38124/ijisrt/IJISRT24MAY675
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY675

IJISRT24MAY675 www.ijisrt.com 1102

 Recipient computes 𝑏 = 𝑎1 ⁡− 𝑘1.⁡ (𝑎 = 𝑏)
 Recipient computes 𝑑 = 𝜑(𝑛) − (𝑒1 − 𝑘2).⁡
 Decryption function 𝜆(𝑦) = 𝑦 × 𝑏𝑑 ⁡𝑚𝑜𝑑𝑢𝑙𝑜⁡𝑛

Decryption key will be ⁡𝑏𝑑 ⁡𝑚𝑜𝑑𝑢𝑙𝑜⁡𝑛.

Notice: 𝑒 + 𝑑 = 𝜑(𝑛) in such way 𝑎𝑒 × ⁡𝑏𝑑 = 𝑎𝑒 × ⁡𝑎𝑑 =
𝑎𝑒+𝑑 = 𝑎𝜑(𝑛) ≡ 1⁡𝑚𝑜𝑑𝑢𝑙𝑜⁡𝑛

C. Flowchart of the Algorithm

Fig 1 Flowchart of the Algorithm

https://doi.org/10.38124/ijisrt/IJISRT24MAY675
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY675

IJISRT24MAY675 www.ijisrt.com 1103

D. Pseudocodes

 𝑆𝑡𝑎𝑟𝑡
 𝑃𝑟𝑖𝑛𝑡⁡"Enter a Modulus number"

 𝑅𝑒𝑎𝑑⁡𝑁

 𝑃𝑟𝑖𝑛𝑡"𝐸𝑛𝑡𝑒𝑟⁡𝑎⁡𝑏𝑎𝑠𝑒⁡𝑠ℎ𝑖𝑓𝑡"
 𝑅𝑒𝑎𝑑⁡𝑘1

 𝑃𝑟𝑖𝑛𝑡"𝐸𝑛𝑡𝑒𝑟⁡𝑎𝑛⁡𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡⁡𝑠ℎ𝑖𝑓𝑡"
 𝑅𝑒𝑎𝑑⁡𝑘2

 𝑓𝑜𝑟⁡𝑗 = 3; 𝑗 ≤ 𝑁; 𝑗 + +

 𝑖𝑓 gcd(𝑁, 𝑗) = 1

 𝑝𝑟𝑖𝑛𝑡⁡ "possible base:", 𝑗

 𝑝𝑟𝑖𝑛𝑡⁡" Choose an appropriate integer from the list provided above to be your base :"

 𝑅𝑒𝑎𝑑⁡𝑎

 𝑎1 ← 𝑎 + 𝑘1⁡𝑚𝑜𝑑⁡𝑁

 𝑃𝑟𝑖𝑛𝑡"⁡𝐶ℎ𝑜𝑜𝑠𝑒⁡𝑎⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑖𝑛𝑡𝑒𝑔𝑒𝑟⁡𝑙𝑒𝑠𝑠⁡𝑡ℎ𝑎𝑛⁡𝜑(𝑁)⁡𝑡𝑜⁡𝑏𝑒⁡𝑦𝑜𝑢𝑟⁡𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡:⁡"
 𝑅𝑒𝑎𝑑⁡𝑒

 𝑒1 ← 𝑒 + 𝑘2𝑚𝑜𝑑⁡𝑁

 𝑃𝑟𝑖𝑛𝑡"⁡𝐸𝑛𝑡𝑒𝑟⁡𝑎⁡𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙⁡𝑣𝑎𝑙𝑢𝑒⁡⁡𝑀𝑒𝑠𝑠𝑎𝑔𝑒⁡𝑡𝑜⁡𝑏𝑒⁡𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑: "
 𝑅𝑒𝑎𝑑⁡𝑀𝑒𝑠𝑠𝑎𝑔𝑒

 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒⁡ ← 𝑀𝑒𝑠𝑠𝑎𝑔𝑒⁡ × 𝑎𝑒 ⁡𝑚𝑜𝑑⁡𝑁

 𝑃𝑟𝑖𝑛𝑡⁡ "Encrypted Message is" :, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒

 𝑃𝑟𝑖𝑛𝑡"⁡𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛⁡𝑝𝑟𝑜𝑐𝑒𝑠𝑠‼‼‼! "
 𝑏 ← 𝑎1 − 𝑘1⁡𝑚𝑜𝑑⁡𝑁

 𝑑 ← 𝜑(𝑁) − (𝑒1 − 𝑘1)𝑚𝑜𝑑⁡𝑁

 𝑃𝑟𝑖𝑛𝑡"⁡𝐸𝑛𝑡𝑒𝑟⁡𝑎⁡𝑚𝑒𝑠𝑠𝑎𝑔𝑒⁡𝑡𝑜⁡𝑏𝑒⁡𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑: "
 𝑅𝑒𝑎𝑑⁡⁡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒

 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 × 𝑏𝑑𝑚𝑜𝑑⁡𝑁

 𝑃𝑟𝑖𝑛𝑡⁡" Decrypted Message is: " , Decrypted Message

 𝐸𝑛𝑑

E. Time Complexity

To analyze the time complexity of the above code, we

break it into parts:

 GCD Function:

This function computes the greatest common divisor
(GCD) of two integers using the Euclidean algorithm. Its

time complexity is typically 𝑂(log(min⁡(𝑝, 𝑞))) where 𝑝

and 𝑞 are the input integers.

 Modular Exponentiation Function:

This function calculates the modular exponentiation of

a base raised to an exponent modulo a given modulus. The

time complexity of this function is 𝑂(log(𝑒𝑥𝑝)), where 𝑒𝑥𝑝

is the exponent.

 Main Function:

 The loop that computes the count of numbers coprime to

𝑝𝑛 runs from 1 to 𝑝𝑛. Inside the loop, the gcd function is

called. Therefore, this loop contributes 𝑂(𝑝𝑛 ×
log⁡(𝑝𝑛)) to the time complexity.

 The loop that searches for possible bases runs from 3 to

𝑠𝑞𝑟𝑡(𝑝𝑛). Inside the loop, the gcd, function is called.

Therefore, this loop contributes 𝑂(𝑠𝑞𝑟𝑡(𝑝𝑛) × log(𝑝𝑛))
to the time complexity.

 The overall time complexity of the main function

depends on the dominant terms. Since

𝑂(𝑝𝑛 × log⁡(𝑝𝑛)) dominates over 𝑂(𝑠𝑞𝑟𝑡(𝑝𝑛) ×
log(𝑝𝑛)), the overall time complexity of the main function

can be approximated as 𝑂(𝑝𝑛 × log(𝑝𝑛)).

Therefore, the time complexity of the code is

approximately 𝑂(𝑝𝑛 × log⁡(𝑝𝑛)).

F. Analysis of the Algorithm

The results of the algorithm involve the successful

encryption and decryption of numerical messages using the

implemented public key cryptographic system. Here are the

key outcomes:

 Encryption Process:

The algorithm effectively encrypts a numerical
message input by the user using modular arithmetic

operations. The encryption process utilizes the selected base

𝑎, along with the computed private exponent 𝑒 and modulus

𝑛, to transform the original message into an encrypted form.

 Decryption Process:

Following encryption, the algorithm decrypts the

encrypted message using the computed private exponent 𝑑,
along with the same base and modulus. This decryption
process accurately completes the encryption operation to

make the product of encryption key and decryption key, 1.

This ensures the original numerical message is recovered

without loss or alteration.

https://doi.org/10.38124/ijisrt/IJISRT24MAY675
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY675

IJISRT24MAY675 www.ijisrt.com 1105

 Message Integrity:

The decrypted message matches the original input

message, indicating the integrity and reliability of the

encryption and decryption processes. This outcome

demonstrates the algorithm’s ability to preserve the

confidentiality and authenticity of transmitted messages.

 Efficiency and Performance:
The algorithm exhibits efficient performance in terms

of computational complexity and execution time. Modular

exponentiation and gcd calculations are performed

effectively, allowing for rapid encryption and decryption of

messages even for large input values.

 Security Guarantees:

The algorithm provides security guarantees against

common cryptographic attacks due to its reliance on

modular arithmetic and the selection of coprime bases. By

using these mathematical properties, the algorithm offers
resistance to brute force attacks and other cryptographic

vulnerabilities. In facts, like ElGamal cryptosystem’s

security is based on the difficulty of the discrete logarithm

problem, also the security of the presented algorithm relies

on discrete logarithm problem with in additional that the

brute force attacker doesn’t know both the base and

exponent.

V. CONCLUSION AND RECOMMENDATIONS

In conclusion, the algorithm presented in this study

offers a practical and efficient solution for secure
communication through encryption and decryption. By

using modular exponentiation and the greatest common

divisor function, the algorithm facilitates the generation of

secure cryptographic keys and the transformation of

numerical messages into encrypted forms.

Through a step-by-step process, the algorithm enables

users to encrypt sensitive information with confidence,

knowing that their data remains confidential and secure

during transmission. The integration of modular arithmetic

ensures computational efficiency, while the selection of
coprime bases enhances the algorithm’s resistance to

cryptographic attacks.

The results of testing and evaluation demonstrate the

algorithm’s effectiveness in preserving message integrity

and confidentiality. Encrypted messages ca be accurately

decrypted, maintaining the original content’s integrity

without compromise.

Furthermore, the algorithm’s simplicity and ease of

implementation make it accessible to a wide range of users,

from cryptographic experts to practitioners requiring secure
communication solutions. As recommendations, we suggest

further research to this study and if possible, this algorithm

can be merged with another algorithm like elliptic curve

cryptography to enhance more security for users who are

familiar to prime number modulus. This should be one of the

future studies.

REFERENCES

[1]. A. Buchmann, J., Introduction to cryptography, New

York: Springer-Verlag, 2001.

[2]. A. Anderson, J., Number theory with application,

Carolina at Sparta: University of South: Upper saddle

river, 1997.

[3]. U. Dudley, Elementary Number Theory, New Yolk:
W. H. FREEMAN AND COMPANY , May 1978 .

[4]. Bart Goddard, Kenneth H. rosen, Elementary

Number Theory and its applications, Bosston:

Pearson Education, Inc, 2005.

APPENDIX: C++ CODES OF THE ALGORITHM

#include<iostream>

#include<cmath>

using namespace std;

int gcd(int p, int q) {

if (q == 0)

return p;

else

return gcd(q, p % q);

}

int modularExponentiation(int base, int exp, int mod) {

int result = 1;

base = base % mod;

while (exp > 0) {

if (exp % 2 == 1)

result = (result * base) % mod;
base = (base * base) % mod;

exp = exp / 2;

}

return result;

}

int main() {

int pn, k_1,k_2, a, a_1, e,e_1, d, b,e_key,

d_key,Encrypted_Message,

message,Encrypted,Decrypted_Message;

cout<< " enter a positive integer : "<<endl;

cin>>pn;
int count;

for(int i=1; i <pn; i++)

{

if (gcd(pn, i)== 1)

{

count++;

}}

int kk=count;

cout<<" enter a base shift"<<endl;

cin>>k_1;

cout<<" enter an exponent shift"<<endl;

cin>>k_2;

for(int j=3; j<sqrt(pn); j++)

{

if (gcd(pn, j)== 1)

cout<<"Possible base:"<<j<<endl;}

https://doi.org/10.38124/ijisrt/IJISRT24MAY675
http://www.ijisrt.com/

Volume 9, Issue 5, May – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24MAY675

IJISRT24MAY675 www.ijisrt.com 1106

cout<<" Choose an appropriate integer from the list

provided to be your base:"<<endl;

cin>>a;

a_1= (a+k_1)%pn;

cout<<" Choose a positive integer less than: "<<kk<< " to

be your exponent:"<<endl;

cin>>e;

e_1= (e+k_2)%pn;
cout<<" Symmetric keys: are: "<<k_1<<" ,

"<<k_2<<"."<<endl;

cout<<" Public keys: are: "<<pn<<" , "<<a_1<<" ,

"<<e_1<<"."<<endl;

e_key =modularExponentiation(a,e, pn);

cout<<" Encryption key= "<<e_key<<endl;

cout<< " Enter a numerical value to be encrypted: "<<endl;

cin>>message;

Encrypted_Message=((message*e_key)%pn);

cout<<" Encrypted message is:

"<<Encrypted_Message<<endl;
cout<<" Decryption process!!!"<<endl;

b= (a_1 -k_1)%pn;

d= (kk- (e_1 -k_2))%pn;

d_key=modularExponentiation(b, d, pn);

cout<<" Enter a message to be decrypted:"<<endl;

cin>>Encrypted;

Decrypted_Message=((Encrypted*d_key)%pn);

cout<<" Decrypted message is :

"<<Decrypted_Message<<endl;

return 0;}

https://doi.org/10.38124/ijisrt/IJISRT24MAY675
http://www.ijisrt.com/

	Abstract:- This paper presents an algorithm for performing encryption and decryption using modular exponentiation mainly based on Euler’s Theorem. The algorithm uses the properties of modular arithmetic to ensure secure communication. The gcd function...
	I. INTRODUCTION
	 Statement of Research Question

	II. LITERATURE REVIEW
	III. METHODOLOGY
	IV. RESULTS
	A. Algorithm Structure
	B. Keys Distribution
	C. Flowchart of the Algorithm
	D. Pseudocodes
	E. Time Complexity
	F. Analysis of the Algorithm

	V. CONCLUSION AND RECOMMENDATIONS
	APPENDIX: C++ CODES OF THE ALGORITHM

